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ABSTRACT. The edge-bandwidth of a graph G is the smallest number
b for which there is an injective labeling of E(G) with integers such
that the difference between the labels at any adjacent edges is at
most b. The edge-bandwidth of a torus (a product of two cycles) has
been computed within an additive error of 5. Here we improve the
upper bound, reducing the error to 3.

1. INTRODUCTION

Let G be a graph with n vertices. Given a bijection 7 : V(G) — [n], let
B(n) be the maximal difference between 7(u) and n(v) for adjacent vertices
u and v of G. The bandwidth B(G) of G is the minimal value of B(n),
taken over all such bijections 7.

This classical problem was introduced by Harary (Problem 16 on p.167
in [6]) and Harper [8]. It has been extensively studied due to its connections
to isoperimetric inequalities [4], VLSI design and other layout problems [5),
multicasting (3], multi-channel transmission of data with noise [2], graph
searching [7], and other.

The edge-bandwidth B'(G) of G is the bandwidth of the line graph of
G. In other words, it is the smallest integer k for which there is a bijection
between E(G) and {1,...,e(G)} such that the difference between the labels
at any two adjacent edges is at most k. This parameter was introduced by
Hwang and Lagarias [9)].

Let us consider Cy,, & Cp,, the m x n-torus, where C,, denotes the cycle of
order n and & denotes the Cartesian product of graphs. The bandwidth of
tori was studied by Li, Tao, and Shen [10] who computed B(C,, ® Cy) for
all m,n. Balogh, Mubayi, and Plub4r [1] considered the edge bandwidth
of the torus C,, & C, and established the following bounds:

(1) 4n-2V2n-1<B'(C,®Cpn)<4n, n>3.
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In [11], the gap in (1) has been reduced by improving the lower bound
so that for any m > n > 3, we have

(2) 4n—-5< B'(Cr ® Cp) < 4n.

The lower bound follows from the following more precise theorem proved
implicitly in [11].
Theorem 1. Assume that m and n are integers withm > n > 3. Then

2m-2n -1

B'(Cn®Cp) > 4n—4+ 7

for some integer £ with 1 < £ < m/2.

Note that Theorem 1 implies that for m strictly larger than n
dn+2
— -

B(Cn®C,) > dn— [

In this note, we show that the upper bound in (2) can be improved as
follows.

Theorem 2. Assume that m and n are integers with m > n > 3.
(a) fm<2n+2, then B'(C ®Cr) < 4n—1.
(b) Ifn is even, and m < n+ 2, or n is odd and m < n + 1, then
(c) If m=n € {3,4,6}, then B'(C ®Cy) < 4n - 3.

Combining Theorems 1 and 2, we obtain the following bounds.

Corollary 3. Assume that m and n are integers with m > n > 3.
(1) If m > 4n + 3, then B'(Cr, @ Cp) = 4n.
(2) If2n+3<m<4n+2, thendn -1 < B'(Cr ® Cy) < 4n.
(8) If m=2n+2, then B'(Crn ®Cy) =4n—1.
(4) Ifi82 cm<2n+1, thendn-2< B'(Crn ®Cy) S dn—1.
(5) fon—1<m< 2832 thendn -3< B (Cr ®Cp) < dn—1.
(6) Ifn+1<m< an, thendn-3< B'(Crn®Cyr) <4n—2.
(7) If m=n€ {3,4,6}, thendn -5 < B'(Cr ® Cp) < 4n -3.
(8) If m=n¢ {3,4,6}, thendn -5 < B'(Crn ®Cy) < 4n - 2.
Where a, is equal to n+ 2 if n is even and to n+ 1 for n odd.

2. NOTATION

For a positive integer n, the set {1,2,...,n} will be denoted by [n].
Given graphs F and H of orders m and n respectively, we will assume that
V(F) = [m], V(H) = [n], and the Cartesian product G = F @ H has the
vertex set

V(@) ={(G,j):1<i<m, 1<j<n}
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and the edge set
{rip:1<i<m, DeEH)}U{cp,;: De E(F), 1<j<n}

with 7; ¢y, incident to (i, z) and (i, y) and ¢y, ; incident to (z,j) and (y, 7).
(Here we abbreviate {z,y} to zy.) The edges of the form r; p are called

horizontal and the edges cp ; are vertical.
For a cycle C),, we assume that it traverses its vertex set in the natural

order 1,2,...,n—1,n,1. If F and H are cycles, then for any i € [m] and
J € [n - 1] the edge 74,{5,5+1} Will be denoted shortly by r; ; and r;, =
Ti{n,1}- Likewise we define ¢;; for i € [m] and j € [n]. Fori =1,...,m,
the i-th row is

Ry={rij:j€[n]},
and the i-th quasi-row is

Qi={ci;:j€n]}.

For example, Figure 1 illustrates our notation for the torus Cs @ Cy,

where the edges on the right and the bottom are assumed to loop around
and connect to the corresponding vertices on the left and the top.

2,4

C1,2 C1,3
72,1 72,2 72,3
2,2 2,3

71,4
C1,4
72,4
C2,4
T34
3,4

C2,2 C2,3
73,1 73,2 73,3
3,2 3,3 34
T e T

FIGURE 1. The torus C; @ Cj.

3. PROOF OF THEOREM 2.

Let a;,a2,...,am—1 be a sequence of nonnegative integers with a; < n

for every ¢, such that
m-—1

Zai=(m—2)n.

i=1
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For each k with0 < k<m -1, set

k
Sk = Ea,‘.

i=1

In particular, s = 0 and s,—1 = (m—2)n. Let A;, A2,...,Am—1 be
the disjoint subsets of {2n + 1,...,2mn — 2n}, with A; consisting of a;
consecutive integers, with blocks of n consecutive integers between them,
that is we define

Ai={E+)n+sa+1,...,E+1)n+s},
i=1,2,...,m— 1. In particular,
A = {2n+1,2n+2,...,2n+ a1},
Ay = {3n+a1+1,...,3n+ 2},
and
Am-1={2m-2)n—am-1+1,...,(2m - 2)n}.

Denote by D; the interval {n+1,...,2n} consisting of n integers that
precede A;, by Dy, the interval {(m —2)n + 1,(m — 1) n} with n integers
that follow Arm—1, and by D; (i = 2,...,m — 1) the interval consisting of n
integers that are between A;_; and A;.
We define a labeling 7 : E (Cr, @ Cn) — [2mn] as a union 7 = n, U7 of
two functions with disjoint domains, where
m-—1

M ¢ By U Rpmya1 U | @i — [2mn] \ U 4
i=1 i=1

and
m-1

n2: U R, - U A;
ie[m)\{1,[m/2]+1} i=1
The function 7, is specified as follows. The edges of the row R; are
assigned the smallest n labels, that is we define
M (r1,) = 3

for every j € [n]. The edges of R[m/2)+1 get the largest n labels, however
we shift the labeling to start with 7[5/2]41,n, that is we define

T (Trn/2]+1,n) =@m-1)n+1,
and

™ (T[n/2‘|+1,j) =2m-1)n+j+1,

forj=1,2,...,n—1.
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Let o be the permutation of [m] defined by

) z_%l if 7 is odd,
0'(2) = i—2 .
m— —— ifiis even.

2

The edges of the quasi-row Q,(;) are labeled with the elements of D;.
Namely, for each i € [m] and j € [n] we define

m (c,(i),j) =in+8;_1 +J.

In particular,

and

M (Co(1),5)
M (c.,(z),,-)

M (Co(m).i) =

n+J,
n+ay +7,

2m-2)n+j,

for every j € [n]. Figure 2 shows the labeling n; for m even, and Figure 3

for m odd.

Ry 1 ot (0} n-1 O

Q1 n+1 I 2n -1 I

Ry O— O

Q2 3n4s2+1 Tn+oz+2 ﬁn+az—l 4an + a3

Qm/a (m- n+om_3+

-]

m—1)n+8ym_2+2

mn+amoz -1

mn+sm_3

2mn —n 42 2mn-n+3 2 2mn~n41
m/3+le\ (\¥ mn oY
Qm/a41|2mn-2n+1 2mn —2n +2 2mn—-n -1 T2mn—n
Qm-1 [4n+a3+1 J4”+’a+2 5n+4s3—1 l&n+aa

Rm g} O O

Qm n+ay+1 2n+8 +2 (3n+31—1 T3n+a;

FIGURE 2. The labeling m;, for m even.

Example 4. Let m =n =6, a; = a3 = a5 = 6, and az = a4 = 3. Figure

4 shows the resulting

labeling m,.
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1 2 n~-1 n
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Q n+1 n+2 “l2an -1 2n

Rz (P \/ " <>

Q2 3n+s2+1 3n+a2+2 dn 4832 -1 4n + 83
Qrmysa1|2mn —2n+1 2mn - 2n 4 2 2mn—-n-—1 2mn —-n
R 2mn —n +2 2mn - n +3 2mn 2mn—~-n4 1
[‘i“]+l('> (‘r e O )

(m=—1n+smg+lf(m-n+asm_2+2 mn4sn_2-1 |mn+tom_2
1

Qm-1 [In+33+1 4n 4 83 + 2 5n+4as8g~1 5n + a3
Rm o .. 0 e

Qm 2n+a +1 2n+ 281 +2 3n+4s; —-1 3n+ 8

FIGURE 3. The labeling 7; for m odd.

Lemma 5. Let 1} be the mazimal difference | (e) — m(e’)| with the edges
e, € being adjacent. Then

(3) 17; = 2n+max{1 + a3,a; + az,a2 +a3,...,0m-2 + Gm-1,am-1 + 1} .

Proof. Note that if e is an edge of the quasi-row @Q; and ¢’ is the adjacent
edge of the quasi-row Qp,, then

Im(e) —m(e)l =n+ai.

If e is an edge of Q[m/2) and ¢’ is the adjacent edge of Q[m /2741, then
Im(e) —m(e')l =n+am-1.
Otherwise, if the edges e, e’ are in quasi-rows and are adjacent, then one
of them is in Q,(;) and the other is in Qg(i+2) for somei=1,2,...,m—2.
Then
Im(e) —m(e)] = 2n+ ai + @i

If e and € are both in R; or both in R[m/21+1, then

Im(e) —m(e) <n-1.
Ifeisin R; and €' is in @, or @, then

Im(e) —m(e’)| < 2n+a1+1.
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FI1GURE 4. The labeling ; of Cg & Cs.

Ifeisin Rl’m/2'|+1 and e’ is in Qf"‘/'fl or Qfm/2'|+1’ then
Im(e) —m(e)l < 2n+am_y + 1.
It follows that the equality (3) holds. a

Now we define ;. Forevery i = 1,2,...,m-2, let 7(¢) = max {o(i), 0 (i + 2)},
that is, let
i+3
7() = 2
m —

if ¢ is odd,
i—2
2
Note that, for every ¢ = 1,2,...,m — 2, the quasi-rows Qo) and Qo(iz2)
are adjacent in the torus with the row R, ;) between them. Note also that

{r(),...,7(m = 2)} = [m]\ {1, [m/2] + 1},

so the domain of 7, is the union Ry3)U--+U Ry(m—3). Let Bi,...,Bm_2
be disjoint sets of cardinality n such that

m-—2 m—1
UB:=U 4,
k=1

i=1

if ¢ is even.

183



and b; < b; whenever 0 <i < j <m-—2, b; € B;, and b; € B;. Let 7 be
any bijective function

m-2 m—1
N2t U Ry — U A;
k=1 i=1

so that 72(e) € By, for every e € R,(x). Figure 5 shows the labeling 72 in
Example 4.

FIGURE 5. The labeling n2 of Cs & Cs.

Lemma 6. Let n* be the mazimal difference |n(e) — n(e’)| with the edges
e, e’ being adjacent. Then n* = 77.

Proof. Since 0 < a; < n for every i € [m — 1], and

m~1
Za,- =n(m-2),

i=1
it follows that
By C Ak U Ak,
for every k € [m —2]. Therefore any two elements of By differ by at
most 2n — 1, implying that if e and ¢’ are in the same row R; with i €
[m]\ {1, [m/2] + 1}, then
In(e) —n(e)| S 2n -1 < nf.
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Assume that e is in R,(x) for some k € [m — 2], and ¢’ is a vertical edge
adjacent to e. Let e” be the vertical edge adjacent to both e and e/. Without
loss of generality, ' € Q () and €” € Qy(x42). Then n(e) € By, n(e’) € Dy,
and 7(e”) € Di42, which implies that
n(e’) < nle) < n(e"),
and consequently
In(e) —n(e")l < In(e") —n(e”)| < n}.
0O

Now we are ready to complete the proof of Theorem 2. Let m and n
be integers with m > n > 3. Assume that m < 2n + 2. Then there exist
nonnegative integers a;, 1 = 1,2,...,m — 1, such that a; < n for i odd and
a; <n—1 for i even and

m—1
Za,-=n(m—2).

i=1

Then

max {1+ a;,a; +az,a2 +@3,...,am-2 + am_1,am—1 + 1} < 2n -1,
and it follows from Lemmas 5 and 6 that

B,(Cm e Cﬂ) S 4n - 1-

If m < n+ 2 with n even or m < n + 1 with n odd, then there exist
nonnegative integers a;, i = 1,2,...,m — 1, such that a; < n for ¢ odd and
a; <n—2 for ¢ even and

m-—1

Zai=n(m—2),

=1
which gives

max {1 +a1,a; +az,82+@3,...,8m-2 + am_1,8m-1 + 1} < 2n — 2,
and implies that

B'(Crn®C,)<4n-2.

If m = n = 3, then let a; = 2 and a3 = 1, see Figure 6. If m = n =4,
then let a; = a3 = 4 and ap = 0, see Figure 7. If m = n = 6, then let
a; = a3 = as = 6 and az = a4 = 3, see Example 4 (Figures 4 and 5).

In all these cases

max {1+ a,a; +az,82 +a3,...,8m-2 + Gm-1,am-1 + 1} = 2n - 8,

implying that
B'(Cp,®Cy) < 4n -3.
Thus the proof is complete.
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FIGURE 7. The labeling 7 of C4 & Cj.

4. CONCLUDING REMARK

The upper bound on the edge-bandwidth of a torus given in Theorem
2 seems to be tight and we would like to conjecture that it is actually the
exact value. To prove the equality, however some refined techniques might
be necessary. The situation seems to resemble the proof of the exact value
of the edge-bandwidth of grids in [11]. There one technique was used to
calculate the lower bound within an additive error of 1, and a different
approach was required to remove this error. Perhaps a modification of that
method would work for tori.
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