How Vertex Elimination Can Overachieve

Terry A. McKee
Department of Mathematics & Statistics
Wright State University, Dayton, Ohio 45435 USA

Abstract

Vertex elimination orderings play a central role in many portions
of graph theory and are exemplified by the so-called ‘perfect elimina-
tion orderings’ of chordal graphs. But perfect elimination orderings
and chordal graphs enjoy many special advantages that overlap in
more general settings: the random way that simplicial vertices can
be chosen, always having a choice of simplicial vertices, the hereditary
nature of being simplicial, and the neutral effect of deleting a sim-
plicial vertex on whether the graph is chordal. A graph metatheory
of vertex elimination formalizes such distinctions for general vertex
elimination and examines them with simple theorems and delineat-
ing counterexamples.

1 When ¢-elimination “succeeds”

It is convenient to think in terms of a graph-theoretic language based on
atomic formulas that are interpreted as equality and adjacency of vertices,
with the usual connectives of negation (-), conjunction (A), disjunction (V),
and implication (—), and with universal and existential quantifiers (V and
3); quantification will always be over vertices. Other atomic formulas could
be allowed, and conjunction and disjunction could be allowed over infinite
sets of formulas so as to extend the language significantly beyond first-
order logic—the only essential restriction is that quantification is always
over vertices. For formulas #(v) and #(v), let, as usual, (Jv : ¢(v))¥(v)
abbreviate (3v)[¢(v) A ¥(v)] and (Vv : ¢(v))¥(v) abbreviate (Vv)[¢(v) —
¥(v)]. The standard model-theoretic notation G |= ¢[vy) means that the
graph G satisfies the formula ¢(v) when all occurrences of the free variable
v are assigned to be a specific vertex vgp € V(G). When it aids readability,
= and & will abbreviate ‘implies’ and ‘if and only if’; also, ¢ => ¥ = 7
will abbreviate that ¢ = 9 and ¥ = .

JCMCC 76 (2011), pp. 201-211

Some specialized notation is useful for discussing elimination. Suppose
a graph G has V(G) ordered as (vy,...,v). Let G; denote the subgraph
of G induced by {vi,...,vn}; in other words, G1 = G and G; = G —
{v1,...,vi_1} whenever 2 < i < n (so G, = K,). Define (3'v)¢(v) =
(Jv)®(v) and, for each integer ¢ > 2, define

(Fv)9(v) to abbreviate (v # vy, ..., vi-1)¥(v),

which itself abbreviates (3v : =(v = v1) A--- A =(v = v;1))¥(v) and is
equivalent to (3v € V(Gi))¥(v). Similarly, define (V!v)y(v) = (Vv)¥(v)
and, for each i > 2, define

(Viv)p(v) to abbreviate (Vv # vy,...,vi-1)¥(v),

which abbreviates (Vv : (v = v1) A+ - -A-(v = vi-1))¥(v) and is equivalent
to (Vv € V(Gi))¥(v). For each integer i > 1, define the relativization ¢
of the formula ¢ by replacing each 3 and V occurring in ¢ with 3 and
V' respectively. For instance, if ¢ is (3v)(Vw)¢(v,w), then ¢! & ¢ and
¢® © (v # v, v2)(Yw # v1,v2)(¥(v,w))3. If a formula o has no free
variables, then G | ¢ if and only if G; |= o (if and only if G; [¢*).

Define an ordering (vy,...,vs) of V(G) to be a ¢-elimination ordering
of G if G; |= ¢[v] for each i € {1,...,n—1}. Say that ¢-elimination suc-
ceeds in G if G has a ¢-elimination ordering; more formally, ¢-elimination
succeeds if G satisfies

(3o : (1)) - (Fvn-1: $(va=1))*"H{v1 = v1) (1)

(v1 = v; could be replaced by anything that is constantly true). An equiv-
alent, perhaps more suggestive way to say that ¢-elimination succeeds in
G would be for G to satisfy the following:

n-1
@) - (3 tvp-1) /\ &' (vi).

i=1
Let S(#) denote the class of all graphs in which ¢-elimination succeeds.

Example 1 Interpret ¢;(v) as ‘v is a simplicial vertez’ (in other words,
‘N(v) is complete’). Then ¢;-elimination succeeds in G if and only if G
has a perfect elimination ordering, and S(¢1) is the class of chordal graphs
(typically defined as those graphs in which every cycle of length four or
more has a chord; see [3, 6, 8] for these and many other characterizations).

Chapter 5 of [3] contains a trove of graph classes that can be similarly

characterized by some sort of ¢-elimination succeeding; also see [6] and
Chapter 12 of [11].

202

It must be emphasized that this formulation only applies to those forms
of vertex elimination that involve repeatedly locating and then deleting
a vertex—uv;—that has a particular property—¢(v)—in the subgraph G;.
This is different from studying algorithms that recognize whether or not a
given graph is in a particular class or studying efficient constructions for
¢-elimination orderings.

This approach also excludes many well-studied elimination-type order-
ings. For example, a graph is strongly chordal if it is chordal and every cycle
C of even length six or more has a chord whose endpoints divide E(C) into
two odd-length paths; see [3, 8]. Strongly chordal graphs can be character-
ized both by ‘strong elimination orderings’—which are excluded—and by
‘simple elimination orderings’—which are included (see [3] for both).

This approach is also different from algorithmic graph searching—see [4]
for an overview—such as LexBFS. (There are, of course, connections be-
tween elimination orderings and graph searching that date back at least

to [9); again, see [4].)

2 When “random” ¢-elimination succeeds

As with eliminating leaves from trees, the order in which simplicial ver-
tices are eliminated from chordal graphs in Example 1 does not matter;
backtracking is never required. Such ¢-elimination orderings for G were
informally referred to in [8] as being ‘foolproof.” We will say here, instead,
that random ¢-elimination succeeds in G. (The adjectives ‘indifferent’ and
‘oblivious’ would be reasonable alternatives to ‘random.’) Define random
¢-elimination succeeding in G formally by G satisfying all of the n expres-
sions

(Vo1 : §(w1))" -+ (Yoi : $(:))' (Fuia : Blviga))'H (2)

o (Bvn-1 : $(vn=1))" " v1=01)

(¢ universal quantifiers followed by n —i— 1 existential quantifiers) running
from ¢ = 0—when (2) reduces to (1)—toi=n—1. (The i = n -1 in-
stance, with all universal quantifiers, does not by itself define ¢-elimination
succeeding in G, because the ith instance is required to ensure that the
(i + 1)st instance does not hold vacuously. Nothing needs to be said about
whether the one-vertex graph G, satisfies [v,]; ¢-elimination will always
succeed in Kj.) An equivalent, perhaps more suggestive way to say that
random ¢-elimination succeeds in G would be for G to satisfy the following:

n-1 i . n-1
A o) (Vo) | A #(05) = (3 vi1) - (3 Poaor) A ()| -
i=0 i=0 k=il

203

Example 2 Interpret ¢2(v) as ‘N(v) is connected.” Then ¢2-elimination
does not succeed in Cy (there is no choice for v;); ¢z-elimination succeeds
in the wheel C4 + K, but random ¢,-elimination does not succeed there
(the degree-4 vertex satisfies ¢2(v) yet cannot be taken as vy, since there
would be no possible v2); and random ¢;-elimination succeeds in Kj.

Define a vertex property ¢(v) to be hereditary if, for every graph G, for
every vp € V(G) such that G | ¢[vo], and for every induced subgraph H
of G such that vo € V(H), it follows that H |= é[vo]. Property ¢,(v) from
Example 1—being simplicial—is the prototypical example of a hereditary
vertex property, while property ¢2(v) is not hereditary: take G = K12
(C4 with one chord) with vp and w the two degree-3 vertices and H =
G — w= K 5. Call a graph G nontrivial if |V(G)| > 2.

Theorem 1 For every vertez property ¢(v) and graph G, the following
conditions satisfy the implications (1.1) = (1.2) = (1.3):

(1.1) For every induced subgraph H of G, there exists a vertex v in H such
that H = ¢[v].

(1.2) Random ¢-elimination succeeds in G.
(1.3) ¢-elimination succeeds in G.
Moreover, if ¢(v) is hereditary, then (1.1), (1.2), and (1.3) are equivalent.

Proof: The implications (1.1) = (1.2) = (1.3) are straightforward conse-
quences of the definition of (random) ¢-elimination succeeding.

Suppose $(v) is hereditary and condition (1.3) holds [toward showing
(1.1)); specifically, suppose (v1,...,vs) is a ¢-elimination ordering for G.
Suppose H is an induced subgraph of G and h is the minimum subscript
such that v, € V(H). Then by (1.3), Ga contains a vertex v, such that
Gh |= ¢[vn). Since H is also an induced subgraph of G and since ¢(v) is
hereditary, H | ¢[vs). Thus (1.1) holds. 0

Example 3 Interpret #s(v) as the non-hereditary property ‘v is neither
a cut-vertex nor an isolated vertex of a nontrivial graph.’ Then S(¢3) is
the class of connected graphs. Random ¢s-elimination succeeds in all con-
nected graphs, but the subgraph H induced by two nonadjacent vertices
of G = C4 contains no vg such that H |= @s[vo]. Hence, the converse of
(1.1) = (1.2) fails in general.

Example 4 Interpret ¢4(v) as the non-hereditary property ‘v has a maxi-
mum neighbor’ (where w € N{[v] is a mazimum neighbor of v if N{u] C N[w]
for every u € N[v]; note that w = v is allowed). Reference [2] (or Thm.
8.3.1 in [3]) shows that S(¢4) is the class of dually chordal graphs:(often

204

defined as those graphs that have maximum neighbor elimination order-
ings; see [3, 8] for other characterizations and that dually chordal graphs
are always strongly chordal). Random ¢4-elimination does not succeed in
all dually chordal graphs (in the wheel C4 + K, the degree-4 vertex wy
is its own maximum neighbor and so wy satisfies ¢2(v); yet wg cannot be
used as v;, since there would be no possible v;). Hence, the converse of
(1.2) = (1.3) fails in general.

Corollary 2 For every verter property $(v), the following conditions sat-
isfy the implications (2.1) = (2.2) = (2.3):

(2.1) ¢(v) is hereditary.

(2.2) S(9) is hereditary (meaning S(9) is closed under induced subgraphs).

(2.3) Random ¢-elimination succeeds in each G € S(¢).

Proof: The implication (2.1) = (2.2) follows from (2.1) = [(1.3) = (1.1)],
while (2.2) = (2.3) follows from (1.1) => (1.2) and the definition of random
¢-elimination succeeding. o

Example 5 Interpret ¢s5(v) as the non-hereditary property ‘deg(v) = 1 or
v has a twin’ (where w is a twin of v if v and w have exactly the same neigh-
bors except possibly for v and w themselves). Reference [1] (or Thm. 11.6.7
in [3]) shows that S(¢s) is the class of distance-hereditary graphs—those
graphs G in which the distance between vertices in a connected induced
subgraph of G always equals their distance in G (see [3] for other charac-
terizations). Random ¢s-elimination succeeds in every distance-hereditary

graph (since (2.2) holds).

Observe that ¢s-elimination is a counterexample to (2.2) = (2.1), and
that @3-elimination is a counterexample to (2.3) = (2.2).

Corollary 2 can be rephrased as saying that the vertex property ¢(v)
being hereditary (or the weaker condition that the class S(¢) is hered-
itary) implies that ¢-elimination ‘overachieves’ in the sense of condition
(2.3): ¢-elimination succeeds implies random ¢-elimination succeeds. But
Example 3 shows that ¢-elimination can also overachieve in non-hereditary
cases.

Suppose C is any graph class (for instance, the class of chordal graphs or
the class of connected graphs). Define a vertex property ¢(v) to be neutral
for C to mean that, for every graph G and v € V(G), if G |= ¢[vo] then
G € C & G-y € C. For example, property ¢;(v) (‘v is a simplicial vertex’)
is neutral for the class of chordal graphs; property ¢3(v) (‘v is neither a
cut-vertex nor an isolated vertex’) is neutral for the class of connected
graphs; property ¢4(v) (‘v has a maximum neighbor’) is not neutral for
the class of dually chordal graphs (take G = C3 + K, and deg(v) = 4);

205

and property ¢s(v) (‘v is a leaf or has a twin’) is neutral for the class of
distance-hereditary graphs.

It is of interest to note that this concept of being neutral for a graph
class appears in a contemplative discussion of ¢-elimination in [11] in almost
the same words as above (on page 181, called ‘local testing’ in the context
of ¢5(v) and distance-hereditary graphs). Theorem 3 will show that being
neutral for a class characterizes when random ¢-elimination is equivalent
to (general) ¢-elimination.

Theorem 3 Suppose a vertex property ¢(v) is neutral for a graph class C
that contains K, and suppose every nontrivial G € C contains a verter vg
such that G = ¢[vg). Then S(¢) = C and random ¢-elimination succeeds
in every G € S(¢).

Conversely, if random ¢-elimination succeeds in every G € S(¢), then
#(v) is neutral for S(¢).

Proof. First suppose C and ¢(v) are as described in the first sentence of the
theorem, toward showing that (i) S(¢) = C and (ii) G € C implies random
¢-elimination succeeds in G. Argue by induction on |V(G)|, from the basis
G = K, € 8(¢) NC (remembering that ¢-elimination always succeeds in
Ky).

For (i): If G € S(¢), then there is a v; such that G | é[v1] and
G — vy = G2 € S(¢); therefore G — v; € C (by induction hypothesis), and
so G € C (because G = ¢[v1] and ¢(v) is neutral for C). Similarly, G € C
implies G — vg € C; therefore G — vg € S(¢) (by induction hypothesis),
and so G € S(¢) (with v, = vg).

For (ii): Suppose G € C = S(¢) and let v; be an arbitrary vertex such
that G |= ¢[v1] (v1 = ve ensures that such vertices exist). Then G—v, € C
(because ¢(v) is neutral for C). Therefore random ¢-elimination succeeds in
G —v; (by induction hypothesis), which implies that random ¢-elimination
succeeds in G (by the arbitrary choice of v;).

For the converse, suppose random ¢-elimination succeeds in each G €
S($), and that v; € V(G) and G |= ¢[v)] [toward showing that G € §(¢) &
G — v; € 8(4)). The = direction is immediate. The <= direction fol-

lows from every ¢-elimination ordering (vs,...,vs) of G — v; automati-
cally extending to a ¢-elimination ordering (v1,v2,...,%s) of G (because
G [é[u). o

Up to now, we have considered various ways that ¢-elimination can
overachieve in the sense of (2.3). In the following sections, we consider two
related senses of overachievement.

206

3 When random ¢-elimination “flourishes”

The specific choice of each vertex v; never matters in random ¢-elimination,
but this freedom is hollow when there is only one possible v; to choose
from. This suggests a related notion in which the vertex property é(v)
itself overachieves—when, at every stage of ¢-elimination before the last,
there exist at least two choices for v; (meaning at least two v; such that
each G; = ¢[v]) that are viable choices (meaning these v; can go on to
be in ¢-elimination orderings). When this happens, we will say that ¢-
elimination flourishes in G. If ¢-elimination flourishes in G, then G has
at least 2”~! g-elimination orderings. Theorem 4 generalizes a well-known
property of ¢;-elimination (perfect elimination) orderings; see [6, page 84].

Theorem 4 For every vertex property ¢(v) and graph G, ¢-elimination
flourishes in G if and only if each verter v is the final vertez in some ¢-
elimination ordering.

Proof. If ¢-elimination flourishes in G and v is any pre-determined vertex
of G, then each v; with 1 < i < n can be chosen to be different from v = v,.

Conversely, suppose G is a minimum-order graph such that each vertex
is the final vertex in some ¢-elimination ordering of G, yet ¢-elimination
does not flourish in G [arguing by contradiction]. Then the minimality of
G would require that v; is uniquely determined, contradicting that v = v;
could be saved until last. o

If, in addition to ¢-elimination flourishing in G, every v; such that G; =
#[vi] is a viable choice for every i, we will say that random ¢-elimination
flourishes in G. It is well-known that random ¢;-elimination flourishes
in chordal graphs, but random ¢s-elimination does not flourish in G =
Cs+ K;: although each of the five vertices of G satisfies ¢2(v), choosing v;
to be the degree-4 vertex is not viable since no possibility would exist for
va. (Yet ¢2-elimination does flourish in G.)

A formal definition of random ¢-elimination flourishing in G results from
random ¢-elimination succeeding in G—in other words, from G satisfying
all the expressions at (2)—in addition to G satisfying the modified versions

(Vo1 : $(v1))! - - - (Vo = B(w:))F (Yw : $(w)) ™ (Fvigs # w: $(vie1))' ! (3)
cee (B'Un-—l : ¢(vn_l))n—l(‘v1 =)

of those expressions fori = 0, ...,n—3—where (Jvj4; : #(vi1))ttin (2) is
replaced with (Vw : ¢(w))+!(Fvizy # w : #(vi41))*+?! in (3)—ensuring that
there are always at least two viable choices for those v;4;. An equivalent,

207

perhaps more suggestive way to write (3) would be the following:

n-1

/\ (V'vy) -+ (Vo) (Y'w #)

=0

] n-1
A #05) AF(w) = @ vigr) - @ Hona) A #5(00) | -

j=0 k=i+1

Theorem 5 For every vertez property ¢(v) and graph G, the following
conditions satisfy the implications (5.1) = (5.2) = (5.3):
(5.1) For every nontrivial induced subgraph H of G, there exist at least

two vertices v in H such that H = ¢[v].
(5.2) Random ¢-elimination flourishes in G.
(5.3) ¢-elimination flourishes in G.
Moreover, if ¢(v) is hereditary, then (5.1), (5.2), and (5.3) are equivalent.

Proof: The proof of Theorem 5 strictly parallels the proof of Theorem 1. O

Let F(¢) denote the class of all graphs in which ¢-elimination flourishes.

Corollary 6 For every vertez property ¢(v), the following conditions sat-
isfy the implications (6.1) = (6.2) = (6.3):

(6.1) ¢(v) is hereditary.
(6.2) F(¢) is hereditary (meaning it is closed under induced subgraphs).
(6.3) Random ¢-elimination flourishes in each G € F(4).

Proof: The proof of Corollary 6 strictly parallels the proof of Corollary 2. O

Random ¢3s-elimination flourishes in all connected graphs and is a coun-
terexample to both (6.3) = (6.2) and (5.2) = (5.1) holding in general. Ran-
dom ¢4-elimination does not flourish in all dually chordal graphs, although
¢4-elimination does flourish in all dually chordal graphs by Theorem 4 and
[5, Thm. 5}; thus ¢4-elimination is a counterexample to (5.3) => (5.2) hold-
ing in general. The proof of [1, Thm. 1] shows that random ¢5-elimination
flourishes in all distance-hereditary graphs and is a counterexample to
(6.2) = (6.1) holding in general.

In random ¢;-elimination, two viable vertices always exist that are max-
imally distant from each other in G; when i < n (this is the notion of
‘diametral elimination ordering’ in [3]). But such maximally distant viable
vertices do not necessarily exist at every stage of random ¢s-elimination

208

(take G to be the distance-hereditary graph formed from C4 + K by creat-
ing one new degree-1 vertex that is incident to one of the existing degree-3
vertices). Yet [3, Thm. 5.1.5] presents another vertex property ¢(v) that
has S(¢) = S(¢s) for which maximally distant viable pairs of vertices do
always exist (namely, interpret ¢(v) as ‘v is 2-simplicial’—meaning that
there is no induced Py in the subgraph induced by {w : dist(v, w) < 2}).

Theorem 7 Suppose a vertex property ¢(v) is neutral for a graph class C
that contains K, and suppose every nontrivial G € C contains two ver-
tices vg such that G |= ¢[vg]. Then F(¢) = C and random ¢-elimination
flourishes in every G € F(¢).

Conversely, if random ¢-elimination flourishes in every G € F(¢), then
é(v) is neutral for F(¢).

Proof. The proof of Theorem 7 strictly parallels the proof of Theorem 3. O

Example 6 Interpret ¢s(v) as the non-hereditary property ‘v is a maxi-
mum-degree simplicial vertex.” Then S(¢s) is the class of chordal graphs
and random ¢¢-elimination succeeds in every chordal graph (since (1.1)
holds). But ¢e-elimination does not flourish in either of the two chordal
graphs shown on the left in Fig. 1 (v, = a is forced in each).

ANA S

I G2

Figure 1: Three examples related to @¢-elimination.

(Example 6 might seem related to ‘maximum cardinality search’ as de-
fined in [12], but it is easy to see that, in either of the two chordal graphs on
the left in Fig. 1, (a, e,d, b, c) is a ¢¢-elimination ordering that does not cor-
respond to a maximum cardinality search. See [10] for a general discussion
of perfect elimination orderings, including their relationship to maximum
cardinality search.)

In the ¢;-elimination, simplicial vertex example that motivated The-
orem 4, any arbitrary complete subgraph of order k can be held back to
become the final k vertices eliminated (see the ruminative discussion on
page 84 of [6]). In contrast, random @e-elimination can flourish in G with-
out it being possible to hold back even two adjacent vertices to become the
final two vertices: If G is the chordal graph shown on the right in Fig. 1,
then one cannot ensure that {vs,vs} = {7, k} (doing so would force v; =7
and v € {f, g}, leaving no choice for v & {j, k} in G3).

209

4 When “setwise” ¢-elimination succeeds

Instead of considering the set of viable choices for each v; and then choosing
just one to eliminate, one can consider simultaneously removing all the
eligible vertices v; that satisfy ¢(v) in a batch, and then repeating. This
replaces vertex elimination in a graph G with ‘setwise elimination’ (partially
motivated for chordal graphs in [7]). Neither of the adjectives ‘random’ nor
‘lourishing’ is appropriate for setwise ¢-elimination.

For i > 1, define

@) = {wo € V(Gy) : Gy E ¢[wo]},

where Gp;) = G and, when i > 2, Gjj = G- (§yU---U ®(i-1)). Say
that setwise ¢-elimination succeeds in G if some V(Gp)) = §. Random
#-elimination succeeding in G clearly implies that setwise ¢-elimination
succeeds in G.

Perhaps surprisingly, ¢-elimination succeeding and setwise ¢-elimination
succeeding are logically independent: Random ¢3-elimination succeeds in
the graph G shown on the left in Fig. 2, but setwise ¢3-elimination does not
succeed there (setwise @3-elimination stops with @[5 = # and Gy = 2K,).
Setwise @s-elimination succeeds in the graph G shown on the right in Fig. 2
(with Gpg) & Py, Gig) & P, and V(Gy4)) = 0), but ¢s-elimination does not
succeed there.

PP <>

Figure 2: Two examples related to setwise ¢-elimination.

Theorem 8 If vertez property ¢(v) is hereditary and G is any graph, then
¢-elimination succeeds in G if and only if setwise ¢-elimination succeeds
in G.

Proof. Suppose ¢(v) is hereditary and G is given.

First suppose (vi,...,vs) is a2 ¢-elimination ordering of G. Suppose
setwise ¢-elimination stops with ®p41) = @ and V(G41)) # 9 [arguing by
contradiction]. Let i < n be minimum such that v; € V(Gx41)), making
Glk+1) an induced subgraph of G;. Then ¢(v;) will not hold in G4y
(since v; & P41y = 0). Thus ¢(v;) will not hold in G; (because ¢(v) is
hereditary), contradicting that (v1,...,vs) is a ¢-elimination ordering of G.

Conversely, suppose setwise ¢-elimination succeeds in G. Let &) =
{v1,-- -, v, }, @[2) = {Vky1415 - -, Vk,}, and sOOD, and let 0 = (v1,...,vn). If

210

v € ®f541) = {vk;41,- -+, Uk, }, then ¢(v;) will hold in Gij4q). Thus ¢(v;)
will hold in the induced subgraph G; of Gi;j4) (because ¢(v) is hereditary).
This shows that ¢ is a ¢-elimination ordering for G, and so shows that
¢-elimination succeeds in G. a

References

[1] H.-J. Bandelt and H. M. Mulder, Distance-hereditary graphs, J. Com-
bin. Theory, Ser. B 41 (1986) 182-208.

[2] A. Brandstadt, F. Dragan, V. Chepoi, and V. Voloshin, Dually chordal
graphs, SIAM J. Discrete Math. 11 (1998) 437-455.

(3] A. Brandstadt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey,
Society for Industrial and Applied Mathematics, Philadelphia, 1999.

[4] D.G. Corneil and R. Krueger, A unified view of graph searching, SIAM
J. Discrete Math. 22 (2008) 1259-1276.

[5) F. Dragan, HT-graphs: Centers, connected r-domination, and Steiner
trees, Comput. Sci. J. Moldova 1 (1993) 64-83.

[6] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (sec-
ond edition), Elsevier, Amsterdam, 2004.

(7] T. A. McKee, The depths of chordal graphs, Congr. Numer. 157 (2002)
203-211.

(8] T. A. McKee and F. R. McMorris, Topics in Intersection Graph The-
ory, Society for Industrial and Applied Mathematics, Philadelphia,

1999.

[9] D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of
vertex elimination on graphs, SIAM J. Comput. 5 (1976) 266—283.

[10] D. R. Shier, Some aspects of perfect elimination orderings in chordal
graphs, Discrete Appl. Math. 7 (1984) 325-331.

[11] J. P. Spinrad, Efficient Graph Representations, American Mathemati-
cal Society, Providence, 2003.

(12] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs, SIAM J. Comput. 13 (1984) 566-579.

211

