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Abstract

A total dominating function (TDF) of a graph G = (V,E) is a
function f : V' — [0,1] such that for all v € V, the sum of the
function values over the open neighbourhood of v is at least one. A
minimal total dominating function (MTDF) f is a TDF such that
it is not a TDF if for any v € V, the value of f(v) is decreased. A
convex combination of two MTDFs f and g of a graph G is k) =
Af +(1 - A)g, were 0 < A < 1. A basic minimal total dominating
function (BMTDF) is an MTDF which cannot be expressed as a
convex combination of two or more different MTDFs. In this paper
we study the structure of the set of all minimal total dominating
functions (Fr) of some classes of graphs and characterize the graphs
having §r isomorphic to one simplex.
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1 Introduction

Throughout this paper the notation G = (V, E) represents a finite undi-
rected graph which does not contain loops or multiple edges. Unless spec-
ified otherwise, we follow the terminology of West [11]. A dominating set
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of G = (V, E) is a subset S of V such that every vertex of V — S is adjacent
to a vertex in S. A dominating set S is a minimal dominating set if no
proper subset of S is a dominating set.

The characteristic function of a dominating set is a function f : V —

{0,1} such that
Y fl@z=1
z€N|[v)

for all v € V , where N|[v] is the closed neighborhood of v. This function
is generalized by allowing f(v) to vary in the closed interval [0, 1] instead
of the two element set {0,1}. A dominating function (DF) of a graph
G = (V,E) is a function f : V — [0,1] such that

Y fl@)21

z€N|v]

for all v € V. This fractional version of domination was first formally
defined in 1987 by Hedetniemi and Wimer [7). A minimal dominating
function (MDF) is a DF such that f is not a DF if for any v € V/, the value
of f(v) is decreased.

An analogous theory of total dominating functions was first developed
by Cockayne et al. [3] in 1990’s. A real valued function f: V — [0,1] of &
graph G = (V, E) is called a total dominating function (TDF) if

Y i@ =21

zEN(v)

for all v € V. The TDF f is a minimal TDF (MTDF) if there does not exist
another TDF g such that g(v) < f(v) for all v € V with strict inequality
at some vertex. The theory of fractional total domination has been studied
by many authors 2, 3, 4, 12].

The subset S of V is called a total dominating set if every vertex in
G is adjacent to at least one vertex in S. A minimal total dominating set
is a total dominating set S, such that S — {v} is not a total dominating
set, for all v € S. The 0 — 1 valued TDFs (MTDFs) are the characteristic
functions of total dominating sets (minimal total dominating sets) of a
graph. The minimum and maximum of the cardinalities of all MDSs of a
graph are called the total domination number (v:(G)) and the upper total
domination number (I's(G)) respectively.

For an MTDF £ of G, f(N(v)) = T.ene) £(7) and If] = Loev £(3)-
The boundary of f or By is {v € V : ¥,y f(x) = 1}, the positive
set of f or Py is {v € V : f(z) > 0} and the mid set of f or P} is
{veV:1> f(z) > 0}. For any two subsets A and B of V, we write
A —, B if every vertex in B is adjacent to some vertex in A. The fractional
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total domination number (v4:(G)) and the fractional upper total domination
number (I's.(G)) are defined as follows:

Y7¢(G) = min{|f|: f is an MTDF of G},

T'7:(G) = maz{|f|: f is an MTDF of G}.

A graph has either only one MTDF or infinitely may MTDFs. The
following theorem helps us to identify MTDF's from a collection of TDFs.

Theorem 1.1. [1] A total dominating function f of the graph G is a
minimal total dominating function if and only if By —, Py.

Let f and g be two TDFs of G. A convex combination of f and g is
hr = Af 4+ (1 — A)g where 0 < A < 1. This function is clearly a TDF.
Therefore the set of all TDF's forms a convex set. However it is evident
from the following theorem that a convex combination of two MTDF's need

not always be an MTDF.

Theorem 1.2. (5, 8] A convez combination of n MTDFs f1, fa,... fn is
minimal if and only if By, By, (N...NBs, =t P, UPr,U...UPF;,.

An MTDF of G is called a universal minimal total dominating function
if its convex combination with any other MTDF is minimal.

Since the set of TDFs is convex, some TDFs cannot be expressed as
a convex combination two or more TDFs. Motivated by this fact Reji
Kumar introduced the basic total dominating functions (BTDF's) and the
basic minimal total dominating functions (BMTDFs) [8]. An MTDF is
called a basic minimal total dominating function or BMTDF, if it cannot be
expressed as a proper convex combination of two or more distinct MTDFs.
A necessary and sufficient condition for an MTDF to be a basic MTDF is
known and based on this an algorithm is developed to find whether a given
MTDF is basic or not. The following results discuss it.

Theorem 1.3. [8] An MTDF f is a BMTDF if and only if there does not
ezist another MTDF g such that By = By and Py = P,.

Theorem 1.4. (8] Let f be an MTDF of the graph G with By = {vy,va,...,
Um} and P} = {u1,us,...,un}. Let A = (a;;) be an m x n matriz defined

by
Qi = 1 ifv; is adjacent to u;
71 0 otherwise.
Consider the system of linear equations given by
Ea.-j:cj =0, wherel <i<m. (1.1)
j .
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The function f is ¢ BMTDF if and only if (1.1) does not have a non-
trivial solution.

Corollary 1.5. [8] Every 0 — 1 MTDF of G is a BMTDF.

It was proved in [8] that any finite graph G has only finitely many
BMTDFs. Also, G has four BMTDFs, say fi, f2, f3 and f4 such that
%(G) = |fil, Te(G) = |f2|; ¥1¢(G) = |fs| and T5e(G) = |fal. So we
can restrict our search for the four domination parameters to a relatively
small set of BMTDFs and Theorem 1.3 and Theorem 1.4 provide an easy
algorithm to find all BMTDFs of a graph. This motivated us to study
further about the set of all BMTDFs of a graph.

We denote the set of all MTDFs of G by Fr(G) and the set of all
BMTDFs by §p7(G). For a graph G, we define:

Co(G) = {v € V: f(v) =0 for any MTDF f of G} and

C1(G) = {v e V: f(v) =1 for any MTDF f of G}.

Cockayne et al. [3] proved that for any v € V(G), v € Cy(G) if and
only if v is in no MTDS of G and v € C1(G) if and only if v is in every
MTDS of G.

The set of all leaves of Gis L = {v € V : d(v) = 1} and the set of
all remote vertices is R = {v € V : v € N(u) for v € L}. The following
relations, established by Cockayne et al. {3] are useful in our discussion. For
any graph G, C1(G) = R. For any vertex v € V(G), v € Co(G) if and only
if for any u € N(v) there exists a vertex w, satisfying N(w) C N(u) — {v}.

Let K be a convex subset of R". A point z € K is an extreme point of
Kifyze K,0<A<1l,and z=Ay+ (1 - A)zimply z =y = 2. The
set of all extreme points of K is denoted by ezt(K). A set F C K is a face
of K if either F = @ or F = K or there exists a supporting hyperplane H
of K such that F = K[\ H. An n - simplez in the Euclidean space is the
convex hull of n + 1 affinely independent points. A convez polytope is the
convex hull of a finite set. A finite family B of convex polytopes in R™ is
called a simplicial complez if it satisfies the following conditions.

1. Every face of a member of B is itself a member of ‘B;

2. The intersection of any two members of B is a face of each of them.

For further study of simplices, polytopes and complexes, the reader is

referred to [6].
If £ = wv is an edge and w is not a vertex of G, then z is said to be

subdivided when it is replaced by the edges uw and wv. If each edge of G
is subdivided, then the resulting graph is called the subdivision graph of
G and is denoted by S(G).
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2 Structure of the set of all MTDF's of some
classes of graphs

There exists a bijection, say 6, from the set of all functions f : V — [0,1] of a
graph G = (V, E) to the n dimensional cube I™. Let (f) denote the image
of a function f € Fr(G) and 8(Fr(G)) = {6(f) : f € Fr(G)}. The line
segment connecting any two points in 8(F7(G)) is a subset of 8(Fr(G)) if
and only if the corresponding functions make a minimal convex combination
in 37(G). Let A C §pr(G) and €4 = {h: h = } ;4 Asf where 1 >
Af > 0and Y .., As = 1}. The set €4 is the set of all proper convex
combinations of the BMTDFs in A. If a convex combination is minimal,
then by Theorem 1.2, all convex combinations are minimal and they have
the same boundary and positive set. We denote the boundary of this convex
combinations by B4 and the positive set by P4. For convenience we denote
an element of €4 by f4. We have already seen that only a finite number of
MTDF's are basic MTDFs. All other MTDF's can be expressed as a convex
combination of the functions in a subset of the set of all BMTDFs. The
next result is a consequence of all these observations, and Theorem 1.3.

Theorem 2.1. Let A C Fpr(G) such that for any subset A; of A, the
convex combination fa, is an MTDF and By, # Ba, or P4, # Pa, for
any two nonempty subsets Ay and Az. Then €4 is a simplex with dimension
|A] - 1.

Proof. We shall prove this by induction on the cardinality of A. The result
is trivially true when |A| = 1. When |4] = 2, let A = {f}, f2}. Any
f € €4 is a convex combination of f; and fp. Therefore (€4) is a 1 -
simplex. Next assume that the result is true for all sets with cardinality
at most n that satisfy the given condition. Let A’ = {fi, f2,..., fa+1} be
a set containing (n + 1) BMTDFs. Form a set of n BMTDF's - we shall
denote it by A - by removing fn4+1. By the induction assumption, €, is
an (n — 1) - simplex. If €4/ is an n - simplex, then we are done. Suppose
that €4 is not an n - simplex. Then the image of f(,.1) lies in the same
hyperplane, in which €4 lies. Clearly 6(fn+1) is not an element of €,4.
Otherwise B4 = By and P4 = P4/, which is a contradiction. Now the
line segment connecting any interior point of €4 and 6(f,+;) intersects
with a face of the simplex at some point. Let the pre-images of the interior
point and the intersecting point be g and A respectively. Then By = By,
and P, = Py. Since k is a point on the face of the simplex, there exists a
subset A4 of A such that h = f. This contradicts the given condition that
for any non-empty subsets A; and Az, By, # Ba, or Pa, # Pa,. a

The converse of the above result is not true in general. The structure
of 1 (Cy) is studied in [10] for all values of n. It is interesting to note that
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the set F7(Cy) is convex, but it is not a simplex. Let us denote the four 0
-1 MTDFs of C4 by fi = (1,1,0,0), f2 = (0,1,1,0), f3 = (0,0,1,1) and
f1=(1,0,0,1). We shall show that any MTDF g of C4 can be expressed as
a convex combination of these four MTDFs. It is clear that all vertices of
the four cycle are in B,. If g(v1) = 6, then g(vs) = (1—6) and if g(v2) = A,
then g(v4) = (1 — A). By equating the function values at each vertex, we
get the system of equations, A\ + Ay = A, A1 + A2 =6, Ao+ A3 = (1-A)
and A3 + Ay = (1 — 8). This system is consistent. Solutions are obtained
by assigning arbitrary value to one of the A;’s. Let f; ; denote the convex
combination of the functions f; and f;. Then the convex combinations f; 2,
f1,3 and fo 3 have either different boundary sets or different positive sets.
But By, ,, = By, , and Py, ,; = Py, ;. Still the convex combination of the
three points (1,1,0,0), (0,1,1,0) and (0,0, 1,1) make a two simplex in I*.

If 6(¢4) where A C Fpr(G) is isomorphic to a (|A| — 1) - simplex,
then we denote this simplex by I(A). Let G be a graph with |V| = n.
The Euclidean dimension of 37(G) is at most n because I(§7(G)) C R™.
Applying Theorem 2.1, we can prove the following result.

Lemma 2.2. Let G be a graph having order n such that |Fpr(G)| = 7,
and F7(G) is convez.

1. If r < (n+1) and for all different subsets Ay and A2 of Fpr(G),
By,, # Bj,, or Py, # Py,,, then $7(G) is an (r — 1) - simplex.
Otherwise 7(G) is a convez polytope having dimension at most n—1.

2 Ifr > (n+1), then Fr(G) is a convez polytope having dimension at
most n and there exist two subsets A; and Az of Fu7(G), such that
BfA‘ = BfAz and PfA1 = PIAQ *

Lemma 2.8. If 7(G) is not convez, then it is a simplicial complez.

Proof. There exist maximal subsets A, As,...,4; of Fpr(G) such that
I(Ay), I(Ag),...,I(A,) aresimplices in R™. The union of all these simplices
is a simplicial complex. (]

Theorem 2.4. For a complete bipartite graph G = K, n, the set F7(Km,n)
18 isomorphic to

1. an(n—1) - simplezif m=1 andn > 2;

2. a convex polytope, otherwise.

Proof. Let Vi = {u1,u2,...,um} and V2 = {v1,v2,...,vn} be the partition
of G = Kpn. We define the functions fiy,,) for ¢ = 1,2,...,m and
j=1,2,...,n as follows.

1 if £ = u; or v;;
f(unw)(x) ={ 0 OtherWi;e. !
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These functions are BMTDF's of the graph. Now we claim that the graph
has no BMTDF other than these. If the graph has another 0 - 1 MTDF,
then the function values of at least two vertices in either V; or Va must be
equal to 1. But such a function cannot be an MTDF. Next suppose that
the graph has a BMTDF g which is not & 0 - 1 function. Then P, # @ and
by Theorem 1.3, the system of equations contains only two equations. The
rank of this system is two and since g is basic, | Pl is 2. This is possible
only if each equation contains only one variable. Let us take P} = {u1,n1}.
Then the system is z; = 0,y; = 0, where z; and y; are the variables
representing the vertices u; and v; respectively. This is impossible because
the boundary of every MTDF of Kp,5 is V(Km,) and if |[PJ N\ Vi| # 0,
then |P;(V;] > 1 when i = 1 or 2. Thus it is clear that K, has only
0 — 1 BMTDFs and |31 (Km,a)| = mn.

Ifm=1and n > 2, let V(G) = {v,v1,va,...,v,} and d(v) = n. Let
33T(K(1,ﬂ)) = {f(v,w) :1=1,2,...,n}. Then Bf(u.ui) =V and Pf(v.w) =
{v,v;} for all 7. Next let S; and Sz be any two different nonempty subsets
of §87(K(1,n)) and the convex combinations of the elements of these sets
be h; = Zfesl Asf and hy = desg Agg respectively, where >0 ;cq Af =

ses; 29 = 1. The positive sets of h; and h; are always different. Also
since I%T(Km,n)l < |V, we can conclude that the set of all MTDFs of K} ,
is an (n — 1) - simplex. But when both m and n > 2, the subsets §; =
{F(ws,01)s fws,02)s Flua,o0)} @0 82 = {Fus 1)1 f(us,09)» frua,00) Fiua,v)} Ve
the property Bs, = Bs, and Ps, = Ps,. So §Fr(Km,,) is isomorphic to a
complex polytope having maximum dimension (m + n). O

Theorem 2.5. F7r(S(K1,,)) is a 1 - simplez.

Proof. Let V(S(K(l,n))) = {'U,’U],‘Ug, creyUn,y Uy, U,y .. !un}) N(ui) = {vi}’
N(v) = {v,u;} and N(v) = {v1,v2,...,vn}. Let g be an arbitrary MTDF
of G. Since N(u;) = {v;}, we have g(v;) = 1 for all ¢, where 1 < i < n.
Now if g(v) = 0, then we have g(u;) =1 fori =1,2,...,n. If g(u;) =0
for ¢ = 1,2,...,n, then g(v) = 1. Suppose g(u1) =r > 0. Then u; € P,
and hence v; € B,;. Consequently g(v) = 1 —r and g(u;) = r for all
i=1,2,...,n. Now let f, : V — [0,1] be defined by

r  fz=u;fori=1,2,...,n, wherer € [0,1];
lr ifz=w.

1 ifz=vyfori=12,...,n;
fr(z) = {

Then the set of all MTDFs of G is given by §r = {f, : 0 < r < 1}. The
functions fy and f; take only the values 0 and 1 and hence are BMTDFs.
The set 1 can be divided into three equivalent classes, namely, Y; = {fo},
Y2 ={fi} and Y3 = {f; : 0 < r < 1} and any function in Y3 is a convex
combination of fo and f;. Thus Fr(S(K,»)) is a 1 - simplex. O
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3 Characterization of graphs having §r iso-
morphic to one simplex.

Cockayne et al. obtained a characterization of the graphs having unique
MTDF [3]. If G has a unique MTDF, then Fz(G) is isomorphic to a
0 - simplex. Reji Kumar [9] presented a characterization of the graphs
having the set of all minimal dominating functions (the open neighbourhood
analogue of MTDFs) isomorphic to a 1 - simplex. This motivated us to
characterize the graphs having the set of all MTDF's isomorphic to a 1 -
simplex. To proceed further we need the following definitions. For a graph
G,let C; =V —(Co|JCh1). A C; path is a chain of vertices {vy,vz,...,v;}
(r is odd), connected by edges, such that, {v,vs,...,v—2),v:} C C2
and |[N(v;) N Cz| = 2 and |N(v;)(C1| = 0 for all even values of ¢. Also
B(G) = {v € V : v = v; where i is even and v; is in some C; path}

Theorem 3.1. The set F(G) is isomorphic to a 1 - simplez if and only
if any two vertices u,v € V(G) — (ColJC1) are connected by at least one
C, path and B(G) C By for any MTDF f of G.

Proof. Suppose, §1(G) is isomorphic to a 1 - simplex in I, where n is the
order of the graph. Then there exists two n tuples z;1, Zi2, ..., Zin Where
i = 1 and 2, such that, all other n tuples on the 1 - simplex are convex
combinations of these two n tuples. We define the functions f;(v;) = z;;
fori = 1,2 and j = 1,2,...,n. By our definition of the set §r(G), the
functions f, and f; are MTDFs. Also all other MTDFs of G are convex
combinations of f; and f2. So f; and f» are BMTDFs.

Next we claim that, f; and f, are 0 — 1 MTDFs. To prove the claim,
first suppose that G has only one MTDS say f. Then we get V(G) =
Co(G)JC1(G) and Co(G)NC1(G) = 0. Also C; = R. Let g be any
MTDF which is not a 0 — 1 MTDF. Clearly g(z) = 1 for all z € C(G).
So g(z) > 0 for some z € Co((G). This contradicts the fact that g is an
MTDF, since there exists another MTDF f < g. So G has at least two
different MTDSs and hence at least two BMTDFs. But we know that G has
exactly two BMTDF's f; and fo. Clearly f; and fo are the characteristic
functions of two MTDSs of G.

Next let us partition V in to three subsets Cp, Cy and Cs. If v € Gy,
then either fi(v) = 0 and fo(v) = 1 or fi(v) = 1 and f2(v) = 0. Both
cannot be either 0 or 1 simultaneously. So we can further partition the set
C, into Cy; and Ca2, such that

_J1 if v € Cy;
fl(”)‘{o if v € Ca.
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_f 1 ifveCoyy
fz(‘U)—{ 0 ifve Cyy.

Let f be a convex combination of f; and f,. Next we proceed to prove
the following claims about the corresponding system of linear equations of

f.
1. Each equation contains exactly two variables.
2. If the system has r variables, then its rank is r — 1.

3. In the solution, the values of the variables are either A or —A.

Proof of the claim (1): Each equation in the system represents a vertex
in the boundary of the corresponding MTDF. We shall prove that for all
v € By, [N(v) () P¢| = 2. At this moment, it is useful to note that P; = C,.
Suppose v € By contains three or more vertices of C,. Then one of the
sets Ca; and Cy2 contains at least two of these vertices. For these vertices,
either f; values or f; values are all 1, which implies either v ¢ By, or
v ¢ By,. Hence v ¢ (By, | By,) = By. This is a contradiction.

Proof of the claim (2) : Suppose the rank of the system is less than
7 — 1. Then the number of variables assigned arbitrary values is at least 2.
These independent variables cannot occur together in one equation. Also
there does not exist a subset of the equations ey, e, ..., e, such that, one
independent variable is present in e;, another independent variable is in e,
and e; and e;;) have one variable in common, for i = 1,2,...,r. This gives
more than two 0 — 1 MTDF's of G, which is a contradiction.

Proof of the claim (3) : Since the system has only one independent
variable and each equation contains exactly two variables, the system has a
solution in which the variables get the values either A or —A. This proves
the claim 3.

Next we claim that for any two variables z; and z; in the system, there
exists a chain of equation e, ez, ..., e, such that, z; is present in e;, z; is
in e, and e; and e;;; have one variable in common, for ¢ = 1,2,...,r. If
not, the system of equations can be partitioned into more than one set of
equations (say Sy,S5s,...,Sp), such that each set has the above mentioned
property. If the number of equations in the set S; is n;, then it contains
n; + 1 variables. Thus the whole system contains }";(n; + 1) variables, all
together in its ), n; equations. Then the rank of the system must be at
most ). n; and the number of variables which are assigned independent
values is at least p > 1. This is a contradiction to the claim 2.

Next we shall show that, in the graph, there exists a Cy path between
every pair of vertices u,v € C2. As a contrary suppose that there exists no
such path between u,v € Cs. Let f be an MTDF of G. Rename u as u;.
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Let w1, w12, .., W1 € By such that u; € N(wy;), where i =1,2,..., 7.
Then N(wy;){(NC2 = 2 for all i. Otherwise we get a contradiction to
the claim 1. Let N(wy;)[Ca = {u1,u1:}. The corresponding equations
are T, + 1, where i = 1,2,...,71. We can apply the same argument
to each uy; again and include more and more equations to the system.
‘Whenever a new variable is introduced in the system, both the the number
of equations and the number of variables increase by one and whenever a
variable repeats in the system, the number of equations alone increases by
one. Since C, is a finite set, this procedure must end after some time. If
the vertex v is represented somewhere in the equations, then we are done.
Otherwise we can repeat the above steps replacing the vertex v by v and
get another set of equations, such that none of its variables occurs in the
first set. Suppose there are n; and np variables in the first and second
set of equations respectively. Then the rank of the whole system, which
contains n; + 1y equations is n; + ng — 2. Thus we get a contradiction to
the claim 2.

To prove the converse, assume that G is a graph with the specified
properties. Take an arbitrary MTDF f of G. Then B(G) € By. The cor-
responding system of linear equations will give only A or —A as solutions
for the variables corresponding to the elements of C;. So there exist two
0 — 1 BMTDFs f; and f, such that, f is a convex combination of f; and

fo. a
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