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Abstract

A set D of vertices in a graph G = (V, E) is a locating-dominating
set if for every two vertices u,v of V' \ D the sets N(u) N D and
N(v) N D are non-empty and different. We establish two equivalent
conditions for trees with unique minimum locating-dominating sets.

1 Introduction

In a graph G = (V, E), the open neighborhood of a vertex v € V is the set
N(v) = {u € V, uv € E}, the closed neighborhood is N[v] = N(v) U {v},
and the degree of v denoted by deg(v) is the size of its open neighborhood.

A set D C V is a locating-dominating set if every two vertices z,y of
V'\ D satisfy N(z) N D # N(y) N D # 0. The locating-domination number
72 (G) is the minimum cardinality of a locating-dominating set. If D is
any locating-dominating set minimum size, then we call D a 4. (G)-set.
Locating-domination was introduced by Slater (8, 9]. For more details on
domination in graphs, see the monographs by Haynes, Hedetniemi, and
Slater [4, 5].

The main goal of this paper is the characterization of trees with unique
minimum locating-dominating sets. A graph G will be called a unigque
locating-domination graph, or ULD-graph for short, if it has a unique . (G)-
set. In [7], Lane gave a computer program that found all ULD-trees of
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order at most 15 and a construction of trees T with a unique vz (T)-set
but no characterization of such trees. Much research has been done on the
uniqueness of some variation of minimum dominating sets in the class of
trees, see for example [1, 2, 3, 6].

A vertex of degree one is called a leaf, and its neighbor is called a support
vertez. The set of leaves adjacent to a support vertex v is L, and v is called
strong if |Ly| > 2. We denote by S(T") the set of support vertices of T.

We begin by giving two useful observations.

Observation 1 If T is a nontrivial tree with a unique v (T')-set D, then:
a) every support vertez belongs to D,
b) every support vertez is adjacent to ezactly one leaf,
¢) D contains no leaf.

Proof. a) Assume that v is a support vertex such that v ¢ D. Then D
contains all leaves adjacent to v. By substituting any leaf of L, by v in D
we get a second v (T')-set, a contradiction.

b) Assume now that v is adjacent to two or more leaves. Let v',v" be
any two leaves of L,. Then the uniqueness of D implies that v € D, and
the minimality of D implies that D contains all leaves of v except one, say
v', but then {v"} U D\ {v'} is also a 7z (T)-set, a contradiction.

c) Let u be the unique leaf adjacent to v and suppose that u € D. By (a)
v € D. Since D is a v (T)-set, the set D\ {u} is not a locating-dominating
set, so there is a vertex w such that w ¢ D and the only neighbor of w in
D is v; but then {w} U D\ {u} is also a vz (T')-set, a contradiction. O

Observation 2 The path P; is the smallest nontrivial ULD-tree.

Proof. Let T be the smallest nontrivial ULD-tree. By Observation 1 (b),
T is not a star and so T" has diameter at least three. The path Pj is the only
tree of diameter three with no strong support vertices, and P4 admits at
least two v (T')-sets. It follows that T has diameter at least four. Clearly,
among such trees P is the smallest ULD-tree. O

2 Characterizations

Now we give a sufficient condition for a graph G to admit a unique v (G)-
set.

Lemma 3 Let G be a connected nontrivial graph and D be a v (G)-set. If
for every v € D we have 7,(G \ v) > vL(G), then G is a ULD-graph.
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Proof. Assume that G has a second v, (G)-set D' and let v be a vertex of
D\ D'. Then D' is a locating dominating set of G \ v and s0 7. (G \ v) <
|D’| = |D|, a contradiction. O

Next we will show that the converse of Lemma 3 is true for trees but
not valid for all graphs. To see this, consider the graph obtained from
two disjoint cycles Cs, y1y2ysyays and z;z,z3z4z5 by identifying vertices
z; and y;. Let w denote the resulting new vertex. Add two new vertices
u,v and edges uz;,vy; for i = 2,3,4,5. Then {z3,s,ys,y5} is a unique
7L (G)-set, but for every z € {23, 25,42, 45}, 7(G \ 2) = 1 (G).

Lemma 4 Let T be a nontrivial ULD-tree and D be its unique v.(T)-set.
Then for every vertex v € D, v (T \ v) > v.(T).

Proof. Let T be a ULD-tree with 7y (T)-set D, and assume to the contrary
that v,(T'\ v) < 4L(T) for some vertex v € D. By Observation 1 (c),
v cannot be a leaf. Let uj,us,...,u, be the neighbors of v in T and
Ty; be the component of T\ v that contains u;. Clearly p > 2. Let
D’ be a vy, (T \ v)-set and D; = DNT,; and D} = D' N Ty, for every
i. By assumption |D’| < |D|. Note that D’ contains at most one vertex
of {u1,uz,...,up}, for otherwise D’ would be a second 7 (T)-set since
v ¢ D', contradicting the uniqueness of D. Also for every i € {1,...,p},
Dj is a y1(Ty;)-set, D; U {v} is a locating dominating set of the subgraph
T, + v, and such a set is the smallest containing v. Since D} U {v} is also
a locating dominating set of Ty, + v, it follows that |D; U{v}| < |D!U{v}|,
so |D;| < |Di| for every 1 < i < p. Let @ C {1,2,...,p} be such that
|De| < |Dyf if and only if £ € Q. Thus |Dj| > |Dy| + 1 for every £ € Q.
Furthermore since D, U {u.} is a locating dominating set of Ty,,, we have
[Dy| < |De U {ug}| = |Dy| + 1, and so |Dj)| = |Dy| + 1 for every £ € Q.
Therefore |D| > |IY| = Y2, ID}| = S0, [Dil + Q] = D] — 1 +1Ql, 50
Q@ < 1. If |@] = 0, then |D'| = |D]| — 1 and, for some u, ¢ D, D' U {u;}
is a second - (T")-set, a contradiction. Thus |Q| = 1. Put @ = {j}. Since
|D;| = |Dj| + 1, we have u; ¢ D, but then (i_; ;; D) UD; U {u;} is a
71 (T)-set different from D, a contradiction. Thus v, (T \ v) > 7L(T) for
every veD. O

As an immediate consequence of Lemmas 3 and 4 we obtain our first
characterization of ULD-trees.

Theorem 5 A nontrivial tree T is a ULD-tree with a unique v (T)-set D
if and only if for every vertex v € D, v (T \ v) > v,.(T).

Let T; and T3 be two vertex-disjoint ULD-trees, each of order at least 5.
Let A; be the unique v (T})-set and Az the unique v (T3)-set. We define
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two operations that can be used for linking 7 and T and producing a new
ULD-tree.

¢ Operation O;. Let T be the tree obtained from T} and T; by adding
an edge joining a vertex of A; in T} with a vertex of Az in T3.

¢ Operation @,. Let T be the tree obtained from T and T3 by adding
an edge joining a vertex of V(T1) \ A; and a vertex of V(T32) \ Az.

Lemma 6 The tree T obtained from T, and T2 by performing Operation
0O, or Oy is a ULD-tree and Ay U A, is the unique v (T)-set.

Proof. Let D be a v.(T)-set, Dy = DNV (T1) and D; = DN V(T3).
Let vyv2 be the edge added between v; € T} and vz € T3. It is clear that
in each case A; U Az is a locating—dominating set of T and so v.(T) <
YL (Th) + 7 (T2).

Suppose that T is produced by @;. If v1, v are both in D, then D; and
D, are two locating-dominating sets of T} and T3, respectively. Therefore
v (T1) + 7L(T2) < |D1| + | D2| = 71(T), and so y2(T) = 72 (Th) + (T2).
It follows from the uniqueness of A; and A; that Ay = D;, A; = Ds
and A; U A; is the unique 41 (7)-set, so T is a ULD-tree. If v;,vp are
not in D, then D; and D; are two locating-dominating sets of 7 and T3,
respectively. Hence y.(T1) + 72(T2) < |Di| + |D2| = 4L(T), implying
the equality 72 (T) = y2(Ti) + 7 (T2). It follows for i € {1,2} that D;
is a vz (T)-set different from A;, because v; ¢ D;, a contradiction to the
uniqueness of A;. Thus let us assume without loss of generality that v; € D,
and vg & D,. Then D is alocating-dominating set of T1 and so | D1 > |4, ].
Also D, is a locating-dominating set of T3 \ vo; so, since A is a unique
41 (T2)-set with vz € Az, then by Lemma 4, we have |Da| > 7.(T2 \ v2) >
|Ag]. Then 41 (T) = |Dy| + |Da| > |Ay| + |Az| 2 7.(T), a contradiction.

Now suppose that T is produced by Oz. If v1,vs are both in D, or
both not in D, then D; and D, are two locating-dominating sets of T
and T3 respectively, and so v.(T1) + 72 (T2) < |D1| + |D2| = 4.(T). Thus
YL (T) = .(T1) + 7(T2). I v1,v2 € D, then v; € D; (i € {1,2}), in
which case D; is a second 4. (T})-set, a contradiction. So v, v, are both
not in D. It follows from the uniqueness of A; and Aj that 4; = Dy,
As = Dy and A; U A; is a unique vz (T)-set. Finally assume v, € D,
and vo € D;. Then D, is a locating dominating set of T; and since A; is
unique |D;| > |A;| + 1. Since vy & Ay, A1 U Dy U {vz} is a y1(T)-set; but
since D2 U {v2} is a locating dominating set of T> and T3 is a ULD-tree,
| D3| +1 > |Az| + 1. It follows that D has size at least [A;]| + |42| + 1, a
contradiction. O
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Let T3, ..., Tk be k vertex-disjoint ULD-trees, each of order at least ﬁve,
with A; as a unique vz (T;)-set for every 1 < i < k. Let u; € 4; for each i.
We define the following two operations:

¢ Operation Os: Let T be the tree obtained from T1,..., Tk (k > 3)
by adding a new vertex v and edges vu; for every 1 < i < k.

¢ Operation O4: Let T be the tree obtained from T3, ..., Tk (k > 2)
by adding a star K x (k > 2) of center vertex v and leaves wy, . . ., wy,
and edges w;u; for every i, with the condition that for at least two
values of i € {1,...,k} vertex u; has a private neighbor in 7} with
respect of A;.

Lemma 7 The tree T obtained from T,..., T} by performing Operation
O3 is a ULD-tree and Ay U---U A is its unique v (T)-set.

Proof. Let D be a 7L(T)-set and let D; = DNV(T;) for every 1 <i < k.

Since k > 3, A; U---U Ay is a locating-dominating set and so 71,(T) <
Z -1 1L(T3). Assume for a contradiction that v € D and let u; be a vertex
such that u; ¢ D. Then u; ¢ D; and D; is a locating dominating set of
Ti\ u;. Since A; is a unique y(7})-set and u; € A;, by Theorem 5, we have
|D;| > |A;|. Then (D\ D;)U A; is a locating dominating set of 7" of size less
than |D|, a contradiction. Thus u; € D for every 1 < ¢ < k. It follows that
D\ {v} is alocating dominating set, which is agam a contradiction. Thus D
does not contam v, which lmphes that each D is a locating dominating set
of T;. Thus Z,_.l 1L (T.) < Z,_l |D;] = yL(T), which unphes the equality.
It follows from the uniqueness of A; that D; = A; and A; U.--U A, is a
unique vz (T)-set. O

Lemma 8 The tree T obtained from Ty,...,Ti by performing Operation
Oy is a ULD-tree and Ay U---U A U {v} is its unique v (T)-set.

Proof. Since k¥ > 2, A U---U Ag U {v} is a locating-dominating set,

and so v.(T) < E"_l 7L(T. + 1. Let D be a y2(T)-set and let D; =
DNV(T;) forevery 1 < i < k. Let @ C {1,...,k)} such that u; ¢ D if
and only if § ¢ Q. Then D contains |Q)] verticw of {v,w;, i € @}. Since
for each i € @, A; is a unique vz (T;)-set, u; ¢ D and D; is a locating
dominating set of T; \ u;, it follows from Theorem 5 that |D;| > |4;]. But
then (|J; ;) U (U»e A;) U {v} is a locating dommatmg set of T of size
less thanﬁ%l ,a contradlctnon Thus u; € D for every 1. It follows that each
D; is a locating dominating set of T; and D contains at least one vertex
from N[v] to dominate v. Hence z,_.l 1(T) < Zf:x |D;| < |D]-1,
which implies equality. Note that uniqueness of A; implies that the private
neighbor of u, with respect to A, remains a private neighbor of u, with
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respect of D in T (else D, would be a second vz (T)-set), and similarly for
the private neighbor of u,. Thus D contains v, for otherwise w,,w, € D
and then {v} U D \ {wy,w,} is a locating dominating set smaller than D.
Consequently A; U---U Ax U {v} is a unique v (T")-set. O

The corona of a tree T is the tree constructed from a copy of T by
adding, for each vertex v € V(T'), a new vertex v’ and an edge vv'. Let
F be the family of trees obtained from coronas of order at least four by
subdividing once each edge between support vertices. For instance P5 € F
since it is obtained from a path P; (which is a corona of P;) by subdividing
the edge linking the support vertices.

The following observation is easy to establish.

Observation 9 If T € F, then the set of support vertices of T is the
unique yL(T)-set.

We now are ready to establish our main result.

Theorem 10 Let T be a tree of order n > 2. Then the following conditions
are equivalent:

(a) T is a ULD-tree.
(b) T has a 7. (T)-set D such that (T \ v) > vL(T) for everyv € D.

(c) T is either in F or can be constructed from disjoint trees of F by a
finite sequence of operations 01, 03,03 or Q4.

Proof. By Theorem 5, we have (a)4>(b). By Observation 9 and Lemmas 6,
7 and 8, we have (c)=>(a). Hence it remains to show that (a)=>(c). Let T
be a ULD-tree and D its unique vz (T’)-set. We use induction on the order
n of T. By Observation 2, T has diameter at least four and n > 5. If n = §,
then T = Ps and Ps € F, establishing the base case. Assume that every
nontrivial ULD-tree 7" of order n’ < n is in F or can be constructed from
disjoint trees of F by a finite sequence of operations 01, 03,03 or O4. Let
T be a ULD-tree of order n. By Observation 1, every support vertex is
adjacent to exactly one leaf, so D contains every support vertex and does
not contain any leaf.

Assume first that T contains two adjacent vertices u and v that are
both in D or both not in D. Let T, and T, be the subtrees of T' obtained
by removing the edge uv. Clearly D, = DN7T, and D, = DNT, are two
locating dominating sets of T, and so 7L (Ty) + 72(Tv) < 7L(T). Equality
is obtained from the fact that the union of any v (T )-set and any vz (Ty)
is a locating dominating set of T. Since D is the unique 7z (T)-set, it
follows that D, is the unique vz (T,)-set and D, is the unique vz (T;)-set.
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By the induction hypothesis, T;, (resp. T) is in F or can be constructed
from disjoint trees of F by a finite sequence of operations @1, 02,03 or
O4. Thus T can be obtained from T,, and T, by using Operation @; or 0,.
Thus we may now assume that each of D and V \ D is independent.

Suppose that there exists a vertex z € V' \ D of degree at least 3. Let
t = degp(z) and 1, ..., be the neighbors of z in D. Consider the forest
obtained by removing z. Clearly, |D| = ;_, | D;i|, where D; = DN Ty;-
Also the uniqueness of D implies that D; is a unique 7. (T}, )-set for each
1 < i <t. By the induction hypothesis, Ty, is in F or can be constructed
from disjoint trees of F by a finite sequence of operations @y, @3, O3 or
O4. Thus T can be obtained from Ty,,...,T,, by Operation @3. Thus
from now on we suppose that each vertex of V' \ D has degree at most two.

Suppose now that D contains a vertex z that is not a support vertex.
Then z has degree at least two. Let wy,...,wp (p > 2) be the neighbors
of z in V' \ D. Since as assumed above degp(w;) = 2 for every i, let u;
denote the second neighbor of w; for every i. Assume for a contradiction
that at most one vertex of {uj,...,up}, say u;, has a private neighbor
with respect to D (note that such a private neighbor will be a leaf). Then
{w1} UD\ {z} is a second v (T)-set, a contradiction. Thus at least two
vertices from {uj,...,up} have private neighbors with respect to D. Let
T"=T\{z,w,...,wp}. It can be seen easily that |D| = 3F_, v, (T...) +
1=3%_,|Di|+1and D; is a unique 71 (Ty;)-set for each 1 < i < p, where
u; has a private neighbor with respect to its 41 (Ty;)-set for at least two
values of j. By the induction hypothesis, every Ty, either is in F or can
be constructed from disjoint trees of F by a finite sequence of operations
01,032,053 or O4. Thus T can be obtained from Ty,,, ..., T, by Operation
0.

Finally we assume that every vertex of D is a support vertex. Since
every vertex of V' \ D has degree at most two, we have T € F. This
completes the proof. O
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