Super edge-graceful labelings of total stars and total cycles* Abdollah Khodkar Department of Mathematics University of West Georgia Carrollton, GA 30118 akhodkar@westga.edu Kurt Vinhage Department of Mathematics Florida State University Tallahassee, FL 32306 kwv06@fsu.edu #### Abstract Let $[n]^*$ denote the set of integers $\{-\frac{n-1}{2},\ldots,\frac{n-1}{2}\}$ if n is odd, and $\{-\frac{n}{2},\ldots,\frac{n}{2}\}\setminus\{0\}$ if n is even. A super edge-graceful labeling f of a graph G of order p and size q is a bijection $f:E(G)\to [q]^*$, such that the induced vertex labeling f^* given by $f^*(u)=\sum_{uv\in E(G)}f(uv)$ is a bijection $f^*:V(G)\to [p]^*$. A graph is super edge-graceful if it has a super edge-graceful labeling. We prove that total stars and total cycles are super edge-graceful. Keywords: labeling in graphs; edge labeling; super edge-graceful labeling ## 1 Introduction In this paper we consider only simple, finite, undirected graphs. We define the set of integers $[n]^*$ to be $\{-\frac{n-1}{2},\ldots,\frac{n-1}{2}\}$ if n is odd, and $\{-\frac{n}{2},\ldots,\frac{n}{2}\}\setminus\{0\}$ if n is even. Notice that the cardinality of $[n]^*$ is n, and $[n]^*$ contains 0 if and only if n is odd. A graph of order p and size q is said to be super edge-graceful if there is a bijection $f:E(G)\to [q]^*$, such that the ^{*}Research supported by NSF Grant DMS0648919, University of West Georgia induced vertex labeling f^* given by $f^*(u) = \sum_{uv \in E(G)} f(uv)$ is a bijection $f^* : V(G) \to [p]^*$. A graph of order p and size q is edge-graceful [2] if the edges can be labeled by $1, 2, \ldots, q$ such that the vertex sums are distinct (mod p). A necessary condition for a graph with p vertices and q edges to be edge-graceful is that $q(q+1) \equiv \frac{p(p-1)}{2} \pmod{p}$. Super edge-graceful labelings (SEGL) were first considered by Mitchem and Simoson [7] showing that super edge-graceful trees are edge-graceful. In particular, Mitchem and Simoson noticed that if G is a super-edge graceful graph and p|q, if q is odd, or p|q+1, if q is even, then G is edge-graceful. Some families of graphs have been shown to be super-edge graceful by explicit labelings. It is known that, for example, paths of all orders except 2 and 4 and cycles of all orders except 4 and 6 are super edge-graceful [1], as are trees of odd order with three even vertices [5] and complete graphs of all orders except 1, 2 and 4 [3]. In [4] it is shown that all complete bipartite graphs are super edge-graceful except for $K_{2,2}$, $K_{2,3}$, and $K_{1,n}$ if n is odd. For a graph G = (V, E) we associate the total graph T(G) as follows: $V(T(G)) = V(G) \cup E(G)$ and $E(T(G)) = E(G) \cup \{(v, (u, v)) \mid v \in V(G) \text{ and } \{u, v\} \in E(G)\}$. In this paper we deal with the total stars $T(\operatorname{St}(n))$ and the total cycles $T(C_n)$, where $\operatorname{St}(n)$ is the star graph with n vertices and C_n is the cycle graph with n vertices. We prove that the total stars and the total cycles are super edge-graceful. This confirms that Conjectures 2 and 3 of [6] are true. ## 2 Total stars The total star $T(\operatorname{St}(2n+1))$ has 4n+1 vertices and 6n edges. So the vertex labels required for a super edge-graceful labeling are $\{0,\pm 1,\pm 2,\ldots,\pm 2n\}$ and the edge labels needed are $\{\pm 1,\pm 2,\ldots,\pm 3n\}$. Similarly, the total star $T(\operatorname{St}(2n))$ has 4n-1 vertices and 6n-3 edges. So the vertex labels required for a super edge-graceful labeling are $\{0,\pm 1,\pm 2,\ldots,\pm (2n-1)\}$ and the edge labels needed are $\{0,\pm 1,\pm 2,\ldots,\pm (3n-2)\}$. **Theorem 1.** T(St(2n+1)) is super-edge graceful for every $n \ge 1$. **Proof.** Because 2n+1 is odd, there are an even number (2n) of edges in the original star. Thus, when the total star is taken, there are an even number of 3-cycles joined at a single point. Consider n of these 3-cycles independently from the rest. Label each of the edges not incident to the center vertex as -n, -(n+1), -(n+2), ..., -(2n-1). On each of the other edges, then, label as follows (see Figure 1): 1. for the 3-cycle with edge labeled -n, label the other two edges 3n and 3n-1; 2. for each other 3-cycle, if m represents the label already placed, label the other edges as 2n + m and 4n + m - 1. Figure 1: A SEGL of T(St(9)) Generating the associated vertex labels from these edge labelings, we see that for the first case, we get the vertex labels 2n and 2n-1. For the others, if m is the edge label not incident to the center vertex, then the associated vertex labels with it will be: (2n+m)+m=2(n+m) and (4n+m-1)+m=2n+2(n+m)-1. Note that when m ranges from -(2n-1) to -(n+1) each even number from -2(n-1) to -2 appears once from the first half of the labels, and each odd number from 1 to 2n-3 appears once from the other. The final 3-cycle produces the vertex labels 2n and 2n-1, making each of the vertex labels from 1 to 2n appears exactly once in the n 3-cycles in absolute value. In addition, each of the edge labels from 1 to 3n appears exactly once in this labeling. To complete the labeling, copy the labeling produced above, replacing the values with their opposites, for the remaining n 3-cycles. Thus, since each edge and vertex label appeared exactly once in absolute value for the first n 3-cycles, their opposites will appear in the second n 3-cycles. The center vertex, by construction, will have the label of zero. This completes the proof. **Theorem 2.** T(St(2n)) is super-edge graceful for every $n \ge 1$. *Proof.* Since 2n is even, there are an odd number (2n-1) of edges in the original star. When the total graph is taken, there are 2n-1 3-cycles connected at a single vertex. Select one such 3-cycle, and label its edges with zero as the edge not incident to the center vertex and the other two as $\pm (2n-1)$. Pick, from the 2n-2 remaining 3-cycles, n-1 of them. For each $0 \le m \le n-2$, label an edge of a 3-cycle not incident to the center vertex with -(n+m). Then label the remaining two edges on each 3-cycle as n-m-1 and 3n-m-2 (see Figure 2). Figure 2: A SEGL of T(St(10)) Letting m range from 0 to n-2 shows that each of the integers from 1 to 3n-2 appears exactly once in absolute value, with the exception of 2n-1. Note that each of the two vertices that are not the center vertex in the 3-cycles will have labels -(n+m)+n-m-1=-2m-1 and -(n+m)+3n-m-2=2(n-m)-2. The first of these produce, in absolute value, all odd integers from 1 to 2n-3, and the others produce the even integers between 2 and 2n-2, so that every integer from 1 to 2n-2 appears exactly once in absolute value. Put the opposite edge labels on the remaining n-1 3-cycles to make every edge label and vertex label appear exactly once, with the triangle singled out in the start containing the missing edge labels 0 and $\pm(2n-1)$, and generating the missing vertex labels $\pm(2n-1)$. The center vertex, again, produces label zero. This completes the proof. Now we are ready to state the main result of this section. **Theorem 3.** The total star T(St(n)) is super-edge graceful for every $n \geq 2$. ## 3 The total cycles The total cycle $T(C_n)$ has a unique cycle of length n if $n \geq 4$ and we call it the inner cycle and a unique cycle of length 2n if $n \geq 3$, which is called the outer cycle. In $T(C_3)$ the original cycle is the inner cycle. In this section we assume (u_1, u_2, \ldots, u_n) is the inner cycle and $(u_1, u_1, u_2, u_2, \ldots, u_n, u_n)$ is the outer cycle. The induced vertex label for a vertex v is denoted by $\ell(v)$ in this section. Consider $T(C_{16})$, displayed in Figure 3. We show how we can find a SEGL for this graph. Label the outer edges of $T(C_{16})$ as shown in Figure 3. With this labeling $\ell(w_i) = -18 + 2i$ for $1 \le i \le 8$ and $\ell(w_i) = -\ell(w_{17-i})$ for $9 \le i \le 16$. In addition, $\ell(u_1) = \ell(u_9) = 0$, $\ell(u_i) = -19 + 2i$ for $10 \le i \le 16$. The remaining edge labels are $\{\pm 1, \pm 2, \ldots, \pm 7, \pm 16\}$, which will be used to label the edges of the inner cycle. Note that labeling the edges of inner cycle will not change the labels of vertices $\{w_1, w_2, \ldots, w_{16}\}$. Figure 4 displays a SEGL for $T(C_{16})$. In this labeling the vertices of inner cycle have all odd labels and the other vertices have all even labels. Figure 3: A Partial SEGL of $T(C_{16})$ Figure 4: A SEGL of $T(C_{16})$ We write the SEGL shown in Figure 4 as follows: Inner cycle: $$-16$$ 16 -2 4 -6 6 -4 2 -3 5 -7 7 -1 1 -5 3 Outer cycle: 8 -24 9 -23 10 -22 11 -21 12 -20 13 -19 14 -18 15 -17 17 -15 18 -14 19 -13 20 -12 21 -11 22 -10 23 -9 24 -8 A super edge-graceful labeling for $T(C_{16})$ The structure of the edge labeling described above can be generalized for $T(C_n)$ when $n \equiv 0 \pmod{8}$. For $n \not\equiv 0 \pmod{8}$ we need to use different modifications of this structure. ## 3.1 Case $n \equiv 0 \pmod{8}$ The following labeling is a SEGL for $T(C_8)$: Inner cycle: $$-8$$ 8 2 -2 1 -1 -3 3 Outer cycle: 4 -12 5 -11 6 -10 7 -9 9 -7 10 -6 11 -5 12 -4 Note that the edge u_1u_2 is labeled -8, the edge u_2u_3 is labeled 8 and so on. Similarly, the edge u_1w_1 is labeled 4, the edge w_1u_2 is labeled -12 and so on. Now let $n \ge 16$. Define $f: E(T(C_n)) \to \{\pm 1, \pm 2, \dots, \pm 3n/2\}$ by (Inner cycle) $$f(u_iu_{i+1}) = \begin{cases} -n & \text{if} & i=1\\ n & \text{if} & i=2\\ (-1)^i(2i-4) & \text{if} & 3 \le i \le n/4+1\\ (-1)^i(n-2i+2) & \text{if} & n/4+2 \le i \le n/2\\ (-1)^i(2i-n+1) & \text{if} & n/2+1 \le i \le 3n/4-1\\ (-1)^i(2n-2i-1) & \text{if} & 3n/4 \le i \le n-4\\ -1 & \text{if} & i=n-3\\ 1 & \text{if} & i=n-2\\ -5 & \text{if} & i=n-1\\ 3 & \text{if} & i=n \end{cases}$$ (Outer cycle) $$f(u_i w_i) = \begin{cases} n/2 + i - 1 & \text{if} \quad 1 \le i \le n/2 \\ n/2 + i & \text{if} \quad n/2 + 1 \le i \le n \end{cases}$$ $$f(w_i u_{i+1}) = \begin{cases} -3n/2 + i - 1 & \text{if} \quad 1 \le i \le n/2 \\ -3n/2 + i & \text{if} \quad n/2 + 1 \le i \le n \end{cases}$$ The SEGL for $T(C_{16})$ shown above is obtained from the edge labeling f when n = 16. The pattern in the edge labeling f can be observed better when n = 24. The function f produces the following SEGL for $T(C_{24})$. In order to prove that f defines a SEGL for $T(C_n)$ we first observe that every edge label appears at some edge. Now consider the edge labels of the outer cycle. Let $\ell'(x)$ denote the label of vertex x induced only by the edge labels of the outer cycle. We have $\ell'(w_i) = -n + 2i - 2$ for $1 \le i \le n/2$ and $\ell'(w_i) = -\ell'(w_{n-i+1})$ for $n/2 + 1 \le i \le n$. Hence, all even vertex labels appear at the vertices $\{w_1, w_2, \ldots, w_n\}$. In addition, as seen for case n = 16 above, $\ell'(u_1) = \ell'(u_{n/2+1}) = 0$, $\ell'(u_i) = -n + 2i - 3$ for $2 \le i \le n/2$ and $\ell'(u_i) = -\ell'(u_{n-i+2})$ for $n/2 + 2 \le i \le n$. Hence, every odd vertex label appears at some vertex of the inner cycle except ± 1 . Now if we also consider the edge labels for the inner cycle, then $\ell(u_1) = -(n-3)$, $\ell(u_2) = -(n-1)$, $\ell(u_3) = 1$, $\ell(u_{n/4+2}) = -(n/2-1)$, $\ell(u_{n/2+1}) = -1$, $\ell(u_{3n/4}) = n/2 - 1$, $\ell(u_{n-3}) = n - 1$, $\ell(u_{n-2}) = n - 5$, $\ell(u_{n-1}) = n - 7$, and $\ell(u_n) = n - 3$. Recall that $\ell(x)$ denote the label of vertex x induced by the edge labels of the outer cycle and the inner cycle. Let $$A = \{1, 2, 3, n/4 + 2, n/2 + 1, 3n/4, n - 3, n - 2, n - 1, n\}.$$ Then $\{\ell'(u_i) \mid i \in A \setminus \{1, n/2 + 1\}\} = \{\ell(u_i) \mid i \in A \setminus \{3, n/2 + 1\}\}$. Now partition the vertices of the inner cycle which are not in A into subsets of the form $\{u_i, u_{i+1}\}$ for some i. It is easy to see that if $\ell'(u_i) = r$ and $\ell'(u_{i+1}) = s$, then $\ell(u_i) = s$ and $\ell(u_{i+1}) = r$. Hence, f is a SEGL of $T(C_n)$. ## 3.2 Case $n \equiv 1 \pmod{8}$ For n = 9 and 17 see the following SEGLs. A super edge-graceful labeling for $T(C_9)$: Inner cycle: $$0$$ 4 -4 -2 9 -3 1 -1 3 Outer cycle: 5 -13 6 -12 7 -11 8 -10 2 -9 10 -8 11 -7 12 -6 13 -5 A super edge-graceful labeling for $T(C_{17})$: For $n \ge 25$ define $f: E(T(C_n)) \to \{0, \pm 1, \pm 2, \dots, \pm (3n-1)/2\}$ by (Inner cycle) Inner cycle) $$f(u_{i}u_{i+1}) = \begin{cases} -n & \text{if } i = 1 \\ n & \text{if } i = 2 \\ -5 & \text{if } i = 3 \\ (-1)^{i}(n+5)/2 - 2i & \text{if } 4 \le i \le (n-9)/4 \\ 1 & \text{if } i = (n-5)/4 \\ -1 & \text{if } i = (n-1)/4 \\ -(n-3)/2 & \text{if } i = (n+3)/4 \\ (n-3)/2 & \text{if } i = (n+7)/4 \\ -(n-7)/2 & \text{if } i = (n+1)/4 \\ (-1)^{i+1}(2i - (n+9)/2) & \text{if } (n+15)/4 \le i \le (n+1)/2 \\ (-1)^{i+1}((3n+5)/2 - 2i) & \text{if } (n+3)/2 \le i \le (3n+1)/4 \\ (-1)^{i}((3n+1)/2 - 2i) & \text{if } (3n+5)/4 \le i \le n \end{cases}$$ Outer cycle) (Outer cycle) $$f(u_i w_i) = \begin{cases} (n+1)/2 + i - 1 & \text{if} \quad 1 \le i \le n, \ i \ne (n+1)/2 \\ 3 & \text{if} \quad i = (n+1)/2 \end{cases}$$ $$f(w_i u_{i+1}) = \begin{cases} (-3n+1)/2 + i - 1 & \text{if} \quad 1 \le i \le n, \ i \ne (n+1)/2 \\ 0 & \text{if} \quad i = (n+1)/2 \end{cases}$$ The edge labeling f produces the following SEGL for $T(C_{25})$. It is straightforward to check that f is a SEGL for $T(C_n)$ for $n \equiv 1 \pmod{n}$ 8), $n \geq 25$. #### Case $n \equiv 2 \pmod{8}$ 3.3 Define the edge labeling $f: E(T(C_n)) \to \{\pm 1, \pm 2, \dots, \pm 3n/2\}$ by (Inner cycle) $$f(u_{i}u_{i+1}) = \begin{cases} -(n+1) & \text{if} \quad i=1\\ n+1 & \text{if} \quad i=2\\ (-1)^{i+1}(n/2+2-2i) & \text{if} \quad 3 \leq i \leq (n+2)/4\\ (-1)^{i}(n-2i) & \text{if} \quad (n+6)/4 \leq i \leq n/2-1\\ -2 & \text{if} \quad i=n/2\\ -n/2+2 & \text{if} \quad i=n/2+1\\ (-1)^{i+1}((3n+4)/2-2i) & \text{if} \quad n/2+2 \leq i \leq (3n+2)/4\\ -n/2+1 & \text{if} \quad i=(3n+6)/4\\ (-1)^{i}((2n+4)-2i) & \text{if} \quad (3n+10)/4 \leq i \leq n \end{cases}$$ (Outer cycle) (Outer cycle) $$f(u_i w_i) = \begin{cases} n/2 + i - 1 & \text{if } 1 \le i \le n/2 + 1 \\ n/2 + i & \text{if } n/2 + 2 \le i \le n \end{cases}$$ $$f(w_i u_{i+1}) = \begin{cases} -3n/2 + i - 1 & \text{if } 1 \le i \le n/2 - 1 \\ -3n/2 + i & \text{if } n/2 \le i \le n \end{cases}$$ The edge labeling f produces the following SEGL for $T(C_{26})$. Inner cycle: $$-27$$ 27 9 -7 5 -3 1 10 -8 6 -4 2 -2 -11 11 -9 7 -5 3 -1 -12 12 -10 8 -6 4 Outer cycle: 13 -39 14 -38 15 -37 16 -36 17 -35 18 -34 19 -33 20 -32 21 -31 22 -30 23 -29 24 -28 25 -26 26 -25 28 -24 29 -23 30 -22 31 -21 32 -20 33 -19 34 -18 35 -17 36 -16 37 -15 38 -14 39 -13 It is straightforward to check that f is a SEGL for $T(C_n)$ for $n \equiv 2 \pmod{n}$ 8), $n \ge 10$. ## Case $n \equiv 3 \pmod{8}$ A super edge-graceful labeling for $T(C_3)$ is displayed below. Inner cycle: $$0 \quad 3 \quad -4 \\ 4 \quad -3 \quad 2 \quad 1 \quad -1 \quad -2$$ For $$n \ge 11$$ define $f: E(T(C_n)) \to \{0, \pm 1, \pm 2, \dots, \pm (3n-1)/2\}$ by (Inner cycle) $$f(u_i u_{i+1}) = \begin{cases} 0 & \text{if} & i = 1\\ n & \text{if} & i = 2\\ (-1)^{i+1}((n+3)/2 - 2i) & \text{if} & 3 \le i \le (n+1)/4\\ -1 & \text{if} & i = (n+5)/4\\ -(n-5)/2 & \text{if} & i = (n+9)/4\\ (-1)^i((n+4) - 2i) & \text{if} & (n+13)/4 \le i \le (n+1)/2\\ (3n+3)/2 - 2i & \text{if} & (n+3)/2 \le i \le (3n-1)/4\\ -(2i - (3n-1)/2) & \text{if} & (3n+3)/4 \le i \le n-1\\ -(n-1) & \text{if} & i = n \end{cases}$$ (Outer cycle) $$f(u_i w_i) = \begin{cases} (n-1)/2 + i - 1 & \text{if} \quad 1 \le i \le (n+1)/2 \\ (n-1)/2 + i & \text{if} \quad (n+3)/2 \le i \le n \end{cases}$$ $$f(w_i u_{i+1}) = \begin{cases} (-3n+1)/2 + i - 1 & \text{if} \quad 1 \le i \le (n+1)/2 \\ (-3n+1)/2 + i & \text{if} \quad (n+3)/2 \le i \le n \end{cases}$$ The edge labeling f produces the following SEGL for $T(C_{27})$. It is straightforward to check that f is a SEGL for $T(C_n)$ for $n \equiv 3 \pmod{8}$, $n \ge 11$. ## 3.5 Case $n \equiv 4 \pmod{8}$ A SEGL for $T(C_4)$ is displayed below. Inner cycle: -6 6 -5 5 Outer cycle: 4 -2 -1 -3 3 1 2 -4 For $n \geq 12$ define $f: E(T(C_n)) \rightarrow \{\pm 1, \pm 2, \dots, \pm 3n/2\}$ by (Inner cycle) $$f(u_i u_{i+1}) = \begin{cases} -n & \text{if} & i = 1\\ n & \text{if} & i = 2\\ (-1)^{i+1}(2i-4) & \text{if} & 3 \le i \le (n/4) + 1\\ (-1)^{i+1}(n-2i+2) & \text{if} & n/4 + 2 \le i \le n/2\\ -1 & \text{if} & i = n/2 + 1\\ 1 & \text{if} & i = n/2 + 2\\ 3 & \text{if} & i = n/2 + 3\\ -3 & \text{if} & i = n/2 + 4\\ (-1)^i(2i-n-5) & \text{if} & n/2 + 5 \le i \le 3n/4 + 2\\ (-1)^i(2n-2i+5) & \text{if} & 3n/4 + 3 \le i \le n \end{cases}$$ (Outer cycle) $$f(u_i w_i) = \begin{cases} n/2 + i - 1 & \text{if} \quad 1 \le i \le n/2 \\ n/2 + i & \text{if} \quad n/2 + 1 \le i \le n \end{cases}$$ $$f(w_i u_{i+1}) = \begin{cases} -3n/2 + i - 1 & \text{if} \quad 1 \le i \le n/2 \\ -3n/2 + i & \text{if} \quad n/2 + 1 \le i \le n \end{cases}$$ The edge labeling f produces the following SEGL for $T(C_{20})$. It is straightforward to check that f is a SEGL for $T(C_n)$ for $n \equiv 4 \pmod{8}$, $n \ge 12$. ## 3.6 Case $n \equiv 5 \pmod{8}$ For n = 5 and 13 see the following SEGLs. A super edge-graceful labeling for $T(C_5)$: Inner cycle: $$-5$$ 5 -1 -4 4 Outer cycle: 2 -7 3 -6 0 1 6 -3 7 -2 A super edge-graceful labeling for $T(C_{13})$: Inner cycle: $$-13$$ 13 -5 -1 -3 3 1 -6 4 2 -2 -4 6 Outer cycle: 7 -19 8 -18 9 -17 10 -16 11 -15 12 -14 5 0 14 -12 15 -11 16 -10 17 -9 18 -8 19 -7 For $n \ge 21$ define $f: E(T(C_n)) \to \{0, \pm 1, \pm 2, \dots, \pm (3n-1)/2\}$ by (Inner cycle) $$f(u_i u_{i+1}) = \begin{cases} -n & \text{if} \quad i = 1\\ n & \text{if} \quad i = 2\\ 3 & \text{if} \quad i = 3\\ (n-3)/2 & \text{if} \quad i = 4\\ (-1)^{i+1}((n+9)/2 - 2i) & \text{if} \quad 5 \le i \le (n-1)/4\\ -(n-7)/2 & \text{if} \quad i = (n+3)/4\\ 1 & \text{if} \quad i = (n+7)/4\\ -3 & \text{if} \quad i = (n+11)/4\\ (-1)^i((n+6)-2i) & \text{if} \quad (n+15)/4 \le i \le (n+1)/2\\ 2 & \text{if} \quad i = (n+3)/2\\ -2 & \text{if} \quad i = (n+3)/2\\ (-1)^{i+1}((3n+13)/2 - 2i) & \text{if} \quad (n+7)/2 \le i \le (3n+5)/4\\ (-1)^{i+1}(2i-(3n+1)/2) & \text{if} \quad (3n+9)/4 \le i \le n \end{cases}$$ (Outer cycle) $$f(u_i w_i) = \begin{cases} (n+1)/2 + i - 1 & \text{if} \quad 1 \le i \le (n-1)/2 \\ -1 & \text{if} \quad i = (n+1)/2 \\ (n-1)/2 + i & \text{if} \quad (n+3)/2 \le i \le n \end{cases}$$ $$f(w_i u_{i+1}) = \begin{cases} (-3n+1)/2 + i - 1 & \text{if} \quad 1 \le i \le (n-1)/2 \\ 0 & \text{if} \quad i = (n+1)/2 \\ (-3n-1)/2 + i & \text{if} \quad (n+3)/2 \le i \le n \end{cases}$$ The edge labeling f produces the following SEGL for $T(C_{29})$. It is straightforward to check that f is a SEGL for $T(C_n)$ for $n \equiv 5 \pmod{8}$, $n \geq 21$. ## 3.7 Case $n \equiv 6 \pmod{8}$ A super edge-graceful labeling for $T(C_6)$: Inner cycle: 7 -8 9 -9 8 -7 Outer cycle: 1 -3 5 -2 6 -4 -1 -5 2 4 -6 3 A super edge-graceful labeling for $T(C_{14})$: Inner cycle: $$-15$$ 15 1 -3 3 5 -4 -1 -5 2 -2 4 -6 6 Outer cycle: 7 -21 8 -20 9 -19 10 -18 11 -17 12 -16 13 -14 14 -13 16 -12 17 -11 18 -10 19 -9 20 -8 21 -7 Now let $n \geq 22$. Define $f: E(T(C_n)) \to \{\pm 1, \pm 2, \dots, \pm 3n/2\}$ by (Inner cycle) $$f(u_{i}u_{i+1}) = \begin{cases} -(n+1) & \text{if} \quad i = 1\\ n+1 & \text{if} \quad i = 2\\ (-1)^{i+1}(2i-5) & \text{if} \quad 3 \le i \le (n-6)/4\\ n/2 - 8 & \text{if} \quad i = (n-2)/4\\ (-1)^{i+1}(2i-n/2) & \text{if} \quad (n+2)/4 \le i \le n/2 - 5\\ n/2 - 2 & \text{if} \quad i = n/2 - 4\\ -(n/2 - 4) & \text{if} \quad i = n/2 - 3\\ (n/2 - 6) & \text{if} \quad i = n/2 - 2\\ -(n/2 - 6) & \text{if} \quad i = n/2 - 1\\ -(n/2 - 2) & \text{if} \quad i = n/2 - 1\\ (n/2 - 4) & \text{if} \quad i = n/2 + 1\\ (-1)^{i}((3n/2 + 1 - 2i)) & \text{if} \quad n/2 + 2 \le i \le (3n - 2)/4\\ (-1)^{i}(2i - (3n - 2)/2) & \text{if} \quad (3n + 2)/4 \le i \le n - 1\\ (n - 2)/2 & \text{if} \quad i = n \end{cases}$$ (Outer cycle) $$f(u_i w_i) = \begin{cases} n/2 + i - 1 & \text{if} \quad 1 \le i \le n/2 + 1 \\ n/2 + i & \text{if} \quad n/2 + 2 \le i \le n \end{cases}$$ $$f(w_i u_{i+1}) = \begin{cases} -3n/2 + i - 1 & \text{if} \quad 1 \le i \le n/2 - 1 \\ -3n/2 + i & \text{if} \quad n/2 \le i \le n \end{cases}$$ The edge labeling f produces the following SEGL for $T(C_{30})$. It is straightforward to check that f is a SEGL for $T(C_n)$ for $n \equiv 6 \pmod{8}$, $n \geq 22$. ### Case $n \equiv 7 \pmod{8}$ A super edge-graceful labeling for $T(C_7)$: A super edge-graceful labeling for $T(C_{15})$: A super edge-graceful labeling for $$T(C_{15})$$: Inner cycle: 0 15 -5 3 -3 -1 1 5 -4 6 2 -2 4 -6 -14 Outer cycle: 7 -22 8 -21 9 -20 10 -19 11 -18 12 -17 13 -16 14 -15 16 -13 17 -12 18 -11 19 -10 20 -9 21 -8 22 -7 Let $n \geq 23$. Define $f: E(T(C_n)) \rightarrow \{0, \pm 1, \pm 2, \dots, \pm (3n-1)/2\}$ by (Inner cycle) $$f(u_{i}u_{i+1}) = \begin{cases} 0 & \text{if } i = 1\\ n & \text{if } i = 2\\ (-1)^{i}((n+7)/2 - 2i) & \text{if } 3 \le i \le (n+1)/4\\ 1 & \text{if } i = (n+5)/4\\ -3 & \text{if } i = (n+9)/4\\ -(n-9)/2 & \text{if } i = (n+13)/4\\ (n-5)/2 & \text{if } i = (n+17)/4\\ -1 & \text{if } i = (n+21)/4\\ (-1)^{i}(n+6-2i) & \text{if } (n+25)/4 \le i \le (n+1)/2\\ -(n-7)/2 & \text{if } i = (n+3)/2\\ (n-3)/2 & \text{if } i = (n+5)/2\\ (-1)^{i+1}((3n+3)/2 - 2i) & \text{if } (n+7)/2 \le i \le (3n-1)/4\\ (-1)^{i+1}(2i - (3n-1)/2) & \text{if } (3n+3)/4 \le i \le n-1\\ -(n-1) & \text{if } i = n \end{cases}$$ (Outer cycle) $$f(u_i w_i) = \begin{cases} (n-1)/2 + i - 1 & \text{if} \quad 1 \le i \le (n+1)/2 \\ (n-1)/2 + i & \text{if} \quad (n+3)/2 \le i \le n \end{cases}$$ $$f(w_i u_{i+1}) = \begin{cases} (-3n+1)/2 + i - 1 & \text{if} \quad 1 \le i \le (n+1)/2 \\ (-3n+1)/2 + i & \text{if} \quad (n+3)/2 \le i \le n \end{cases}$$ The edge labeling f produces the following SEGL for $T(C_{31})$. It is straightforward to check that f is a SEGL for $T(C_n)$ for $n \equiv 3 \pmod{8}$, $n \geq 23$. Now we are ready to state the main result of this section. **Theorem 4.** The total cycle $T(C_n)$ is super edge-graceful for $n \geq 3$. # References - S. Cichacz, D. Froncek, A. Khodkar and W. Xu, Super edge-graceful paths and cycles, Bulletin of the Institute of Combinatorics and its Applications 57 (2009), 79-90. - [2] S.P. Lo, On edge-graceful labelings of graphs, Congressus Numerantium 50 (1985), 231-241. - [3] A. Khodkar, R. Rasi and S.M. Sheikholeslami, Super edge-gracefulness of complete graphs, Utilitas Mathematica (to appear). - [4] A. Khodkar, S. Nolen and J.T. Perconti, Super Edge-Graceful Labelings of Complete Bipartite Graphs, Australasian Journal of Combinatorics (to appear). - [5] S.-M. Lee and Y.-S. Ho, All trees of odd order with three even vertices are super edge-graceful, JCMCC 62 (2007), 53-64. - [6] S.-M. Lee, L. Wang and E.R. Yera, On super edge-graceful Eulerian graphs, Congressus Numerantium 174 (2005), 83-96. - [7] J. Mitchem and A. Simoson, On edge-graceful and super-edge-graceful graphs, Ars Combin. 37 (1994), 97-111.