Super edge-graceful labelings of total stars and total cycles*

Abdollah Khodkar
Department of Mathematics
University of West Georgia
Carrollton, GA 30118
akhodkar@westga.edu

Kurt Vinhage
Department of Mathematics
Florida State University
Tallahassee, FL 32306
kwv06@fsu.edu

Abstract

Let $[n]^*$ denote the set of integers $\{-\frac{n-1}{2},\ldots,\frac{n-1}{2}\}$ if n is odd, and $\{-\frac{n}{2},\ldots,\frac{n}{2}\}\setminus\{0\}$ if n is even. A super edge-graceful labeling f of a graph G of order p and size q is a bijection $f:E(G)\to [q]^*$, such that the induced vertex labeling f^* given by $f^*(u)=\sum_{uv\in E(G)}f(uv)$ is a bijection $f^*:V(G)\to [p]^*$. A graph is super edge-graceful if it has a super edge-graceful labeling. We prove that total stars and total cycles are super edge-graceful. Keywords: labeling in graphs; edge labeling; super edge-graceful labeling

1 Introduction

In this paper we consider only simple, finite, undirected graphs. We define the set of integers $[n]^*$ to be $\{-\frac{n-1}{2},\ldots,\frac{n-1}{2}\}$ if n is odd, and $\{-\frac{n}{2},\ldots,\frac{n}{2}\}\setminus\{0\}$ if n is even. Notice that the cardinality of $[n]^*$ is n, and $[n]^*$ contains 0 if and only if n is odd. A graph of order p and size q is said to be super edge-graceful if there is a bijection $f:E(G)\to [q]^*$, such that the

^{*}Research supported by NSF Grant DMS0648919, University of West Georgia

induced vertex labeling f^* given by $f^*(u) = \sum_{uv \in E(G)} f(uv)$ is a bijection $f^* : V(G) \to [p]^*$.

A graph of order p and size q is edge-graceful [2] if the edges can be labeled by $1, 2, \ldots, q$ such that the vertex sums are distinct (mod p). A necessary condition for a graph with p vertices and q edges to be edge-graceful is that $q(q+1) \equiv \frac{p(p-1)}{2} \pmod{p}$.

Super edge-graceful labelings (SEGL) were first considered by Mitchem and Simoson [7] showing that super edge-graceful trees are edge-graceful. In particular, Mitchem and Simoson noticed that if G is a super-edge graceful graph and p|q, if q is odd, or p|q+1, if q is even, then G is edge-graceful. Some families of graphs have been shown to be super-edge graceful by explicit labelings. It is known that, for example, paths of all orders except 2 and 4 and cycles of all orders except 4 and 6 are super edge-graceful [1], as are trees of odd order with three even vertices [5] and complete graphs of all orders except 1, 2 and 4 [3]. In [4] it is shown that all complete bipartite graphs are super edge-graceful except for $K_{2,2}$, $K_{2,3}$, and $K_{1,n}$ if n is odd.

For a graph G = (V, E) we associate the total graph T(G) as follows: $V(T(G)) = V(G) \cup E(G)$ and $E(T(G)) = E(G) \cup \{(v, (u, v)) \mid v \in V(G) \text{ and } \{u, v\} \in E(G)\}$. In this paper we deal with the total stars $T(\operatorname{St}(n))$ and the total cycles $T(C_n)$, where $\operatorname{St}(n)$ is the star graph with n vertices and C_n is the cycle graph with n vertices. We prove that the total stars and the total cycles are super edge-graceful. This confirms that Conjectures 2 and 3 of [6] are true.

2 Total stars

The total star $T(\operatorname{St}(2n+1))$ has 4n+1 vertices and 6n edges. So the vertex labels required for a super edge-graceful labeling are $\{0,\pm 1,\pm 2,\ldots,\pm 2n\}$ and the edge labels needed are $\{\pm 1,\pm 2,\ldots,\pm 3n\}$. Similarly, the total star $T(\operatorname{St}(2n))$ has 4n-1 vertices and 6n-3 edges. So the vertex labels required for a super edge-graceful labeling are $\{0,\pm 1,\pm 2,\ldots,\pm (2n-1)\}$ and the edge labels needed are $\{0,\pm 1,\pm 2,\ldots,\pm (3n-2)\}$.

Theorem 1. T(St(2n+1)) is super-edge graceful for every $n \ge 1$.

Proof. Because 2n+1 is odd, there are an even number (2n) of edges in the original star. Thus, when the total star is taken, there are an even number of 3-cycles joined at a single point. Consider n of these 3-cycles independently from the rest. Label each of the edges not incident to the center vertex as -n, -(n+1), -(n+2), ..., -(2n-1). On each of the other edges, then, label as follows (see Figure 1):

1. for the 3-cycle with edge labeled -n, label the other two edges 3n and 3n-1;

2. for each other 3-cycle, if m represents the label already placed, label the other edges as 2n + m and 4n + m - 1.

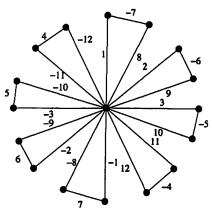


Figure 1: A SEGL of T(St(9))

Generating the associated vertex labels from these edge labelings, we see that for the first case, we get the vertex labels 2n and 2n-1. For the others, if m is the edge label not incident to the center vertex, then the associated vertex labels with it will be: (2n+m)+m=2(n+m) and (4n+m-1)+m=2n+2(n+m)-1. Note that when m ranges from -(2n-1) to -(n+1) each even number from -2(n-1) to -2 appears once from the first half of the labels, and each odd number from 1 to 2n-3 appears once from the other. The final 3-cycle produces the vertex labels 2n and 2n-1, making each of the vertex labels from 1 to 2n appears exactly once in the n 3-cycles in absolute value. In addition, each of the edge labels from 1 to 3n appears exactly once in this labeling.

To complete the labeling, copy the labeling produced above, replacing the values with their opposites, for the remaining n 3-cycles. Thus, since each edge and vertex label appeared exactly once in absolute value for the first n 3-cycles, their opposites will appear in the second n 3-cycles. The center vertex, by construction, will have the label of zero. This completes the proof.

Theorem 2. T(St(2n)) is super-edge graceful for every $n \ge 1$.

Proof. Since 2n is even, there are an odd number (2n-1) of edges in the original star. When the total graph is taken, there are 2n-1 3-cycles connected at a single vertex. Select one such 3-cycle, and label its edges with zero as the edge not incident to the center vertex and the other two as $\pm (2n-1)$. Pick, from the 2n-2 remaining 3-cycles, n-1 of them. For each $0 \le m \le n-2$, label an edge of a 3-cycle not incident to the center

vertex with -(n+m). Then label the remaining two edges on each 3-cycle as n-m-1 and 3n-m-2 (see Figure 2).

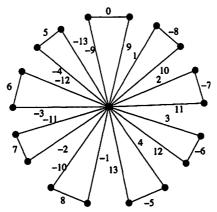


Figure 2: A SEGL of T(St(10))

Letting m range from 0 to n-2 shows that each of the integers from 1 to 3n-2 appears exactly once in absolute value, with the exception of 2n-1. Note that each of the two vertices that are not the center vertex in the 3-cycles will have labels -(n+m)+n-m-1=-2m-1 and -(n+m)+3n-m-2=2(n-m)-2. The first of these produce, in absolute value, all odd integers from 1 to 2n-3, and the others produce the even integers between 2 and 2n-2, so that every integer from 1 to 2n-2 appears exactly once in absolute value. Put the opposite edge labels on the remaining n-1 3-cycles to make every edge label and vertex label appear exactly once, with the triangle singled out in the start containing the missing edge labels 0 and $\pm(2n-1)$, and generating the missing vertex labels $\pm(2n-1)$. The center vertex, again, produces label zero. This completes the proof.

Now we are ready to state the main result of this section.

Theorem 3. The total star T(St(n)) is super-edge graceful for every $n \geq 2$.

3 The total cycles

The total cycle $T(C_n)$ has a unique cycle of length n if $n \geq 4$ and we call it the inner cycle and a unique cycle of length 2n if $n \geq 3$, which is called the outer cycle. In $T(C_3)$ the original cycle is the inner cycle. In this section we assume (u_1, u_2, \ldots, u_n) is the inner cycle and $(u_1, u_1, u_2, u_2, \ldots, u_n, u_n)$ is the outer cycle. The induced vertex label for a vertex v is denoted by $\ell(v)$ in this section. Consider $T(C_{16})$, displayed in Figure 3. We show how

we can find a SEGL for this graph. Label the outer edges of $T(C_{16})$ as shown in Figure 3. With this labeling $\ell(w_i) = -18 + 2i$ for $1 \le i \le 8$ and $\ell(w_i) = -\ell(w_{17-i})$ for $9 \le i \le 16$. In addition, $\ell(u_1) = \ell(u_9) = 0$, $\ell(u_i) = -19 + 2i$ for $10 \le i \le 16$. The remaining edge labels are $\{\pm 1, \pm 2, \ldots, \pm 7, \pm 16\}$, which will be used to label the edges of the inner cycle. Note that labeling the edges of inner cycle will not change the labels of vertices $\{w_1, w_2, \ldots, w_{16}\}$. Figure 4 displays a SEGL for $T(C_{16})$. In this labeling the vertices of inner cycle have all odd labels and the other vertices have all even labels.

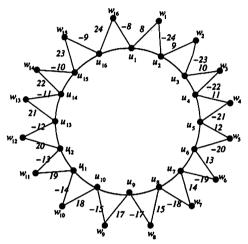


Figure 3: A Partial SEGL of $T(C_{16})$

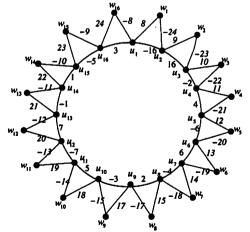


Figure 4: A SEGL of $T(C_{16})$

We write the SEGL shown in Figure 4 as follows:

Inner cycle:
$$-16$$
 16 -2 4 -6 6 -4 2 -3 5 -7 7 -1 1 -5 3 Outer cycle: 8 -24 9 -23 10 -22 11 -21 12 -20 13 -19 14 -18 15 -17 17 -15 18 -14 19 -13 20 -12 21 -11 22 -10 23 -9 24 -8

A super edge-graceful labeling for $T(C_{16})$

The structure of the edge labeling described above can be generalized for $T(C_n)$ when $n \equiv 0 \pmod{8}$. For $n \not\equiv 0 \pmod{8}$ we need to use different modifications of this structure.

3.1 Case $n \equiv 0 \pmod{8}$

The following labeling is a SEGL for $T(C_8)$:

Inner cycle:
$$-8$$
 8 2 -2 1 -1 -3 3

Outer cycle: 4 -12 5 -11 6 -10 7 -9 9 -7
 10 -6 11 -5 12 -4

Note that the edge u_1u_2 is labeled -8, the edge u_2u_3 is labeled 8 and so on. Similarly, the edge u_1w_1 is labeled 4, the edge w_1u_2 is labeled -12 and so on.

Now let $n \ge 16$. Define $f: E(T(C_n)) \to \{\pm 1, \pm 2, \dots, \pm 3n/2\}$ by (Inner cycle)

$$f(u_iu_{i+1}) = \begin{cases} -n & \text{if} & i=1\\ n & \text{if} & i=2\\ (-1)^i(2i-4) & \text{if} & 3 \le i \le n/4+1\\ (-1)^i(n-2i+2) & \text{if} & n/4+2 \le i \le n/2\\ (-1)^i(2i-n+1) & \text{if} & n/2+1 \le i \le 3n/4-1\\ (-1)^i(2n-2i-1) & \text{if} & 3n/4 \le i \le n-4\\ -1 & \text{if} & i=n-3\\ 1 & \text{if} & i=n-2\\ -5 & \text{if} & i=n-1\\ 3 & \text{if} & i=n \end{cases}$$

(Outer cycle)

$$f(u_i w_i) = \begin{cases} n/2 + i - 1 & \text{if} \quad 1 \le i \le n/2 \\ n/2 + i & \text{if} \quad n/2 + 1 \le i \le n \end{cases}$$

$$f(w_i u_{i+1}) = \begin{cases} -3n/2 + i - 1 & \text{if} \quad 1 \le i \le n/2 \\ -3n/2 + i & \text{if} \quad n/2 + 1 \le i \le n \end{cases}$$

The SEGL for $T(C_{16})$ shown above is obtained from the edge labeling f when n = 16. The pattern in the edge labeling f can be observed better when n = 24. The function f produces the following SEGL for $T(C_{24})$.

In order to prove that f defines a SEGL for $T(C_n)$ we first observe that every edge label appears at some edge. Now consider the edge labels of the outer cycle. Let $\ell'(x)$ denote the label of vertex x induced only by the edge labels of the outer cycle. We have $\ell'(w_i) = -n + 2i - 2$ for $1 \le i \le n/2$ and $\ell'(w_i) = -\ell'(w_{n-i+1})$ for $n/2 + 1 \le i \le n$. Hence, all even vertex labels appear at the vertices $\{w_1, w_2, \ldots, w_n\}$. In addition, as seen for case n = 16 above, $\ell'(u_1) = \ell'(u_{n/2+1}) = 0$, $\ell'(u_i) = -n + 2i - 3$ for $2 \le i \le n/2$ and $\ell'(u_i) = -\ell'(u_{n-i+2})$ for $n/2 + 2 \le i \le n$. Hence, every odd vertex label appears at some vertex of the inner cycle except ± 1 . Now if we also consider the edge labels for the inner cycle, then $\ell(u_1) = -(n-3)$, $\ell(u_2) = -(n-1)$, $\ell(u_3) = 1$, $\ell(u_{n/4+2}) = -(n/2-1)$, $\ell(u_{n/2+1}) = -1$, $\ell(u_{3n/4}) = n/2 - 1$, $\ell(u_{n-3}) = n - 1$, $\ell(u_{n-2}) = n - 5$, $\ell(u_{n-1}) = n - 7$, and $\ell(u_n) = n - 3$. Recall that $\ell(x)$ denote the label of vertex x induced by the edge labels of the outer cycle and the inner cycle. Let

$$A = \{1, 2, 3, n/4 + 2, n/2 + 1, 3n/4, n - 3, n - 2, n - 1, n\}.$$

Then $\{\ell'(u_i) \mid i \in A \setminus \{1, n/2 + 1\}\} = \{\ell(u_i) \mid i \in A \setminus \{3, n/2 + 1\}\}$. Now partition the vertices of the inner cycle which are not in A into subsets of the form $\{u_i, u_{i+1}\}$ for some i. It is easy to see that if $\ell'(u_i) = r$ and $\ell'(u_{i+1}) = s$, then $\ell(u_i) = s$ and $\ell(u_{i+1}) = r$. Hence, f is a SEGL of $T(C_n)$.

3.2 Case $n \equiv 1 \pmod{8}$

For n = 9 and 17 see the following SEGLs.

A super edge-graceful labeling for $T(C_9)$:

Inner cycle:
$$0$$
 4 -4 -2 9 -3 1 -1 3
Outer cycle: 5 -13 6 -12 7 -11 8 -10 2 -9
 10 -8 11 -7 12 -6 13 -5

A super edge-graceful labeling for $T(C_{17})$:

For $n \ge 25$ define $f: E(T(C_n)) \to \{0, \pm 1, \pm 2, \dots, \pm (3n-1)/2\}$ by (Inner cycle)

Inner cycle)
$$f(u_{i}u_{i+1}) = \begin{cases}
-n & \text{if } i = 1 \\
n & \text{if } i = 2 \\
-5 & \text{if } i = 3 \\
(-1)^{i}(n+5)/2 - 2i & \text{if } 4 \le i \le (n-9)/4 \\
1 & \text{if } i = (n-5)/4 \\
-1 & \text{if } i = (n-1)/4 \\
-(n-3)/2 & \text{if } i = (n+3)/4 \\
(n-3)/2 & \text{if } i = (n+7)/4 \\
-(n-7)/2 & \text{if } i = (n+1)/4 \\
(-1)^{i+1}(2i - (n+9)/2) & \text{if } (n+15)/4 \le i \le (n+1)/2 \\
(-1)^{i+1}((3n+5)/2 - 2i) & \text{if } (n+3)/2 \le i \le (3n+1)/4 \\
(-1)^{i}((3n+1)/2 - 2i) & \text{if } (3n+5)/4 \le i \le n
\end{cases}$$
Outer cycle)

(Outer cycle)

$$f(u_i w_i) = \begin{cases} (n+1)/2 + i - 1 & \text{if} \quad 1 \le i \le n, \ i \ne (n+1)/2 \\ 3 & \text{if} \quad i = (n+1)/2 \end{cases}$$

$$f(w_i u_{i+1}) = \begin{cases} (-3n+1)/2 + i - 1 & \text{if} \quad 1 \le i \le n, \ i \ne (n+1)/2 \\ 0 & \text{if} \quad i = (n+1)/2 \end{cases}$$

The edge labeling f produces the following SEGL for $T(C_{25})$.

It is straightforward to check that f is a SEGL for $T(C_n)$ for $n \equiv 1 \pmod{n}$ 8), $n \geq 25$.

Case $n \equiv 2 \pmod{8}$ 3.3

Define the edge labeling $f: E(T(C_n)) \to \{\pm 1, \pm 2, \dots, \pm 3n/2\}$ by

(Inner cycle)

$$f(u_{i}u_{i+1}) = \begin{cases} -(n+1) & \text{if} \quad i=1\\ n+1 & \text{if} \quad i=2\\ (-1)^{i+1}(n/2+2-2i) & \text{if} \quad 3 \leq i \leq (n+2)/4\\ (-1)^{i}(n-2i) & \text{if} \quad (n+6)/4 \leq i \leq n/2-1\\ -2 & \text{if} \quad i=n/2\\ -n/2+2 & \text{if} \quad i=n/2+1\\ (-1)^{i+1}((3n+4)/2-2i) & \text{if} \quad n/2+2 \leq i \leq (3n+2)/4\\ -n/2+1 & \text{if} \quad i=(3n+6)/4\\ (-1)^{i}((2n+4)-2i) & \text{if} \quad (3n+10)/4 \leq i \leq n \end{cases}$$
(Outer cycle)

(Outer cycle)

$$f(u_i w_i) = \begin{cases} n/2 + i - 1 & \text{if } 1 \le i \le n/2 + 1 \\ n/2 + i & \text{if } n/2 + 2 \le i \le n \end{cases}$$

$$f(w_i u_{i+1}) = \begin{cases} -3n/2 + i - 1 & \text{if } 1 \le i \le n/2 - 1 \\ -3n/2 + i & \text{if } n/2 \le i \le n \end{cases}$$

The edge labeling f produces the following SEGL for $T(C_{26})$.

Inner cycle:
$$-27$$
 27 9 -7 5 -3 1 10 -8 6 -4 2 -2 -11 11 -9 7 -5 3 -1 -12 12 -10 8 -6 4

Outer cycle: 13 -39 14 -38 15 -37 16 -36 17 -35 18 -34 19 -33 20 -32 21 -31 22 -30 23 -29 24 -28 25 -26 26 -25 28 -24 29 -23 30 -22 31 -21 32 -20 33 -19 34 -18 35 -17 36 -16 37 -15 38 -14 39 -13

It is straightforward to check that f is a SEGL for $T(C_n)$ for $n \equiv 2 \pmod{n}$ 8), $n \ge 10$.

Case $n \equiv 3 \pmod{8}$

A super edge-graceful labeling for $T(C_3)$ is displayed below.

Inner cycle:
$$0 \quad 3 \quad -4 \\ 4 \quad -3 \quad 2 \quad 1 \quad -1 \quad -2$$

For
$$n \ge 11$$
 define $f: E(T(C_n)) \to \{0, \pm 1, \pm 2, \dots, \pm (3n-1)/2\}$ by

(Inner cycle)

$$f(u_i u_{i+1}) = \begin{cases} 0 & \text{if} & i = 1\\ n & \text{if} & i = 2\\ (-1)^{i+1}((n+3)/2 - 2i) & \text{if} & 3 \le i \le (n+1)/4\\ -1 & \text{if} & i = (n+5)/4\\ -(n-5)/2 & \text{if} & i = (n+9)/4\\ (-1)^i((n+4) - 2i) & \text{if} & (n+13)/4 \le i \le (n+1)/2\\ (3n+3)/2 - 2i & \text{if} & (n+3)/2 \le i \le (3n-1)/4\\ -(2i - (3n-1)/2) & \text{if} & (3n+3)/4 \le i \le n-1\\ -(n-1) & \text{if} & i = n \end{cases}$$

(Outer cycle)

$$f(u_i w_i) = \begin{cases} (n-1)/2 + i - 1 & \text{if} \quad 1 \le i \le (n+1)/2 \\ (n-1)/2 + i & \text{if} \quad (n+3)/2 \le i \le n \end{cases}$$

$$f(w_i u_{i+1}) = \begin{cases} (-3n+1)/2 + i - 1 & \text{if} \quad 1 \le i \le (n+1)/2 \\ (-3n+1)/2 + i & \text{if} \quad (n+3)/2 \le i \le n \end{cases}$$

The edge labeling f produces the following SEGL for $T(C_{27})$.

It is straightforward to check that f is a SEGL for $T(C_n)$ for $n \equiv 3 \pmod{8}$, $n \ge 11$.

3.5 Case $n \equiv 4 \pmod{8}$

A SEGL for $T(C_4)$ is displayed below.

Inner cycle: -6 6 -5 5 Outer cycle: 4 -2 -1 -3 3 1 2 -4

For $n \geq 12$ define $f: E(T(C_n)) \rightarrow \{\pm 1, \pm 2, \dots, \pm 3n/2\}$ by

(Inner cycle)

$$f(u_i u_{i+1}) = \begin{cases} -n & \text{if} & i = 1\\ n & \text{if} & i = 2\\ (-1)^{i+1}(2i-4) & \text{if} & 3 \le i \le (n/4) + 1\\ (-1)^{i+1}(n-2i+2) & \text{if} & n/4 + 2 \le i \le n/2\\ -1 & \text{if} & i = n/2 + 1\\ 1 & \text{if} & i = n/2 + 2\\ 3 & \text{if} & i = n/2 + 3\\ -3 & \text{if} & i = n/2 + 4\\ (-1)^i(2i-n-5) & \text{if} & n/2 + 5 \le i \le 3n/4 + 2\\ (-1)^i(2n-2i+5) & \text{if} & 3n/4 + 3 \le i \le n \end{cases}$$

(Outer cycle)

$$f(u_i w_i) = \begin{cases} n/2 + i - 1 & \text{if} \quad 1 \le i \le n/2 \\ n/2 + i & \text{if} \quad n/2 + 1 \le i \le n \end{cases}$$

$$f(w_i u_{i+1}) = \begin{cases} -3n/2 + i - 1 & \text{if} \quad 1 \le i \le n/2 \\ -3n/2 + i & \text{if} \quad n/2 + 1 \le i \le n \end{cases}$$

The edge labeling f produces the following SEGL for $T(C_{20})$.

It is straightforward to check that f is a SEGL for $T(C_n)$ for $n \equiv 4 \pmod{8}$, $n \ge 12$.

3.6 Case $n \equiv 5 \pmod{8}$

For n = 5 and 13 see the following SEGLs.

A super edge-graceful labeling for $T(C_5)$:

Inner cycle:
$$-5$$
 5 -1 -4 4

Outer cycle: 2 -7 3 -6 0 1 6 -3 7 -2

A super edge-graceful labeling for $T(C_{13})$:

Inner cycle:
$$-13$$
 13 -5 -1 -3 3 1 -6 4 2 -2 -4 6

Outer cycle: 7 -19 8 -18 9 -17 10 -16 11 -15 12 -14 5 0 14 -12 15 -11 16 -10 17 -9 18 -8 19 -7

For $n \ge 21$ define $f: E(T(C_n)) \to \{0, \pm 1, \pm 2, \dots, \pm (3n-1)/2\}$ by (Inner cycle)

$$f(u_i u_{i+1}) = \begin{cases} -n & \text{if} \quad i = 1\\ n & \text{if} \quad i = 2\\ 3 & \text{if} \quad i = 3\\ (n-3)/2 & \text{if} \quad i = 4\\ (-1)^{i+1}((n+9)/2 - 2i) & \text{if} \quad 5 \le i \le (n-1)/4\\ -(n-7)/2 & \text{if} \quad i = (n+3)/4\\ 1 & \text{if} \quad i = (n+7)/4\\ -3 & \text{if} \quad i = (n+11)/4\\ (-1)^i((n+6)-2i) & \text{if} \quad (n+15)/4 \le i \le (n+1)/2\\ 2 & \text{if} \quad i = (n+3)/2\\ -2 & \text{if} \quad i = (n+3)/2\\ (-1)^{i+1}((3n+13)/2 - 2i) & \text{if} \quad (n+7)/2 \le i \le (3n+5)/4\\ (-1)^{i+1}(2i-(3n+1)/2) & \text{if} \quad (3n+9)/4 \le i \le n \end{cases}$$

(Outer cycle)

$$f(u_i w_i) = \begin{cases} (n+1)/2 + i - 1 & \text{if} \quad 1 \le i \le (n-1)/2 \\ -1 & \text{if} \quad i = (n+1)/2 \\ (n-1)/2 + i & \text{if} \quad (n+3)/2 \le i \le n \end{cases}$$

$$f(w_i u_{i+1}) = \begin{cases} (-3n+1)/2 + i - 1 & \text{if} \quad 1 \le i \le (n-1)/2 \\ 0 & \text{if} \quad i = (n+1)/2 \\ (-3n-1)/2 + i & \text{if} \quad (n+3)/2 \le i \le n \end{cases}$$

The edge labeling f produces the following SEGL for $T(C_{29})$.

It is straightforward to check that f is a SEGL for $T(C_n)$ for $n \equiv 5 \pmod{8}$, $n \geq 21$.

3.7 Case $n \equiv 6 \pmod{8}$

A super edge-graceful labeling for $T(C_6)$:

Inner cycle: 7 -8 9 -9 8 -7

Outer cycle: 1 -3 5 -2 6 -4 -1 -5 2 4 -6 3

A super edge-graceful labeling for $T(C_{14})$:

Inner cycle:
$$-15$$
 15 1 -3 3 5 -4 -1 -5 2 -2 4 -6 6

Outer cycle: 7 -21 8 -20 9 -19 10 -18 11 -17 12 -16 13 -14 14 -13 16 -12 17 -11 18 -10 19 -9 20 -8 21 -7

Now let $n \geq 22$. Define $f: E(T(C_n)) \to \{\pm 1, \pm 2, \dots, \pm 3n/2\}$ by (Inner cycle)

$$f(u_{i}u_{i+1}) = \begin{cases} -(n+1) & \text{if} \quad i = 1\\ n+1 & \text{if} \quad i = 2\\ (-1)^{i+1}(2i-5) & \text{if} \quad 3 \le i \le (n-6)/4\\ n/2 - 8 & \text{if} \quad i = (n-2)/4\\ (-1)^{i+1}(2i-n/2) & \text{if} \quad (n+2)/4 \le i \le n/2 - 5\\ n/2 - 2 & \text{if} \quad i = n/2 - 4\\ -(n/2 - 4) & \text{if} \quad i = n/2 - 3\\ (n/2 - 6) & \text{if} \quad i = n/2 - 2\\ -(n/2 - 6) & \text{if} \quad i = n/2 - 1\\ -(n/2 - 2) & \text{if} \quad i = n/2 - 1\\ (n/2 - 4) & \text{if} \quad i = n/2 + 1\\ (-1)^{i}((3n/2 + 1 - 2i)) & \text{if} \quad n/2 + 2 \le i \le (3n - 2)/4\\ (-1)^{i}(2i - (3n - 2)/2) & \text{if} \quad (3n + 2)/4 \le i \le n - 1\\ (n - 2)/2 & \text{if} \quad i = n \end{cases}$$

(Outer cycle)

$$f(u_i w_i) = \begin{cases} n/2 + i - 1 & \text{if} \quad 1 \le i \le n/2 + 1 \\ n/2 + i & \text{if} \quad n/2 + 2 \le i \le n \end{cases}$$

$$f(w_i u_{i+1}) = \begin{cases} -3n/2 + i - 1 & \text{if} \quad 1 \le i \le n/2 - 1 \\ -3n/2 + i & \text{if} \quad n/2 \le i \le n \end{cases}$$

The edge labeling f produces the following SEGL for $T(C_{30})$.

It is straightforward to check that f is a SEGL for $T(C_n)$ for $n \equiv 6 \pmod{8}$, $n \geq 22$.

Case $n \equiv 7 \pmod{8}$

A super edge-graceful labeling for $T(C_7)$:

A super edge-graceful labeling for $T(C_{15})$:

A super edge-graceful labeling for
$$T(C_{15})$$
:

Inner cycle: 0 15 -5 3 -3 -1 1 5 -4 6

2 -2 4 -6 -14

Outer cycle: 7 -22 8 -21 9 -20 10 -19 11 -18

12 -17 13 -16 14 -15 16 -13 17 -12

18 -11 19 -10 20 -9 21 -8 22 -7

Let $n \geq 23$. Define $f: E(T(C_n)) \rightarrow \{0, \pm 1, \pm 2, \dots, \pm (3n-1)/2\}$ by (Inner cycle)

$$f(u_{i}u_{i+1}) = \begin{cases} 0 & \text{if } i = 1\\ n & \text{if } i = 2\\ (-1)^{i}((n+7)/2 - 2i) & \text{if } 3 \le i \le (n+1)/4\\ 1 & \text{if } i = (n+5)/4\\ -3 & \text{if } i = (n+9)/4\\ -(n-9)/2 & \text{if } i = (n+13)/4\\ (n-5)/2 & \text{if } i = (n+17)/4\\ -1 & \text{if } i = (n+21)/4\\ (-1)^{i}(n+6-2i) & \text{if } (n+25)/4 \le i \le (n+1)/2\\ -(n-7)/2 & \text{if } i = (n+3)/2\\ (n-3)/2 & \text{if } i = (n+5)/2\\ (-1)^{i+1}((3n+3)/2 - 2i) & \text{if } (n+7)/2 \le i \le (3n-1)/4\\ (-1)^{i+1}(2i - (3n-1)/2) & \text{if } (3n+3)/4 \le i \le n-1\\ -(n-1) & \text{if } i = n \end{cases}$$

(Outer cycle)

$$f(u_i w_i) = \begin{cases} (n-1)/2 + i - 1 & \text{if} \quad 1 \le i \le (n+1)/2 \\ (n-1)/2 + i & \text{if} \quad (n+3)/2 \le i \le n \end{cases}$$

$$f(w_i u_{i+1}) = \begin{cases} (-3n+1)/2 + i - 1 & \text{if} \quad 1 \le i \le (n+1)/2 \\ (-3n+1)/2 + i & \text{if} \quad (n+3)/2 \le i \le n \end{cases}$$

The edge labeling f produces the following SEGL for $T(C_{31})$.

It is straightforward to check that f is a SEGL for $T(C_n)$ for $n \equiv 3 \pmod{8}$, $n \geq 23$.

Now we are ready to state the main result of this section.

Theorem 4. The total cycle $T(C_n)$ is super edge-graceful for $n \geq 3$.

References

- S. Cichacz, D. Froncek, A. Khodkar and W. Xu, Super edge-graceful paths and cycles, Bulletin of the Institute of Combinatorics and its Applications 57 (2009), 79-90.
- [2] S.P. Lo, On edge-graceful labelings of graphs, Congressus Numerantium 50 (1985), 231-241.
- [3] A. Khodkar, R. Rasi and S.M. Sheikholeslami, Super edge-gracefulness of complete graphs, Utilitas Mathematica (to appear).
- [4] A. Khodkar, S. Nolen and J.T. Perconti, Super Edge-Graceful Labelings of Complete Bipartite Graphs, Australasian Journal of Combinatorics (to appear).
- [5] S.-M. Lee and Y.-S. Ho, All trees of odd order with three even vertices are super edge-graceful, JCMCC 62 (2007), 53-64.
- [6] S.-M. Lee, L. Wang and E.R. Yera, On super edge-graceful Eulerian graphs, Congressus Numerantium 174 (2005), 83-96.
- [7] J. Mitchem and A. Simoson, On edge-graceful and super-edge-graceful graphs, Ars Combin. 37 (1994), 97-111.