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Abstract

For a positive integer d, a set S of positive integers is difference
d-freeif |z—y| # d for all z,y € S. We consider the following Ramsey-
theoretical question: Given d,k,r € Z*, what is the smallest integer
n such that every r-coloring of [1,n] contains a monochromatic k-
element difference d-free set? We provide a formula for this n. We
then consider the more general problem where the monochromatic
k-element set must avoid a given set of differences rather than just
one difference.
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1 Introduction

For d a positive integer, a set S of integers is called difference d-free if
for all z,y € S, |z — y| # d. Interesting results concerning the number
of difference d-free subsets of [1,n] = {1,2,...,n} and some generalizations
and variants are given in [2-6,9]. In this work, we consider, for a given
d, the Ramsey-theoretical question (posed in [7]) of how large n must be
to guarantee that under any partition of [1,n} into r subsets, some subset
must contain a k-element difference d-free set. Ramsey problems with a
somewhat similar flavor may be found in [1] and [8].

Denote by Fy(k;r) the smallest integer n such that every r-coloring of
[1,7] contains a monochromatic k-element difference d-free set. In the next
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section, we will prove that

Fylk;r)=r(k—1)+4d [Lkd_—l—)J +1.
In Section 3 we consider a generalization of the function Fy; namely, rather
than looking for monochromatic sets that are difference d-free for a single
d, we are concerned with monochromatic sets that are free of all differences
belonging to a given set D. In Section 4, we present some open questions
and conjectures.

2 Solution to Fy(k;r)

We begin this section with some terminology.

An r-coloring x of a set S of positive integers is called (d, k)-valid (or
simply valid if d and k are understood) if it does not contain a monochro-
matic k-element difference d-free set. A (d, k)-valid coloring of an interval
[1,n] is called mazimal if there is no (d, k)-valid coloring of [1,n+1]. Given
a positive integer d, a pair of integers z and y such that |z —y| = d is called
a d-pair.

Given a coloring x of a set S of positive integers and a positive integer d,
we may build a partition of S as follows. Let mg be the least member of S.
If mo+d € S and x(mg) = x(mo +a), let So = {mo, mo +d}; otherwise let
So = {mg}. If i > 1 and S;_, has been defined and S # ;=g Sj, let m; be
the least element of S — ;.;}, S;. If m;+d € S and x(m;) = x(m; +d), let
S; = {mi, m; + d}; otherwise let S; = {m;}. Repeat this until all members
of S have been assigned to some S;. It is clear that the sets S; do, in fact,
form a partition of S. We shall denote by pa(x,S) the number of i such
that |S;| = 2, and by ga(x, S) the number of ¢ such that |S;| = 1. If x is
monochromatic on a set S, we will denote these numbers simply as p4(S)
and g4(S); that is, p4(S) is the number of disjoint pairs of elements of S
with difference d, and g4(S) = |S| — 2pa(S). Note that for any x and S,
2pa(x, S) + 9a(x, S) = |S|.

Lemma 1 Let S C Z* and d € Z+. The largest difference d-free subset of
S has size p4(S) + qa(S).

Proof. Let p = pg(S) and let m = p+ gq(s). Let A, Az, ..., Ap be disjoint
d-pairsin S. Let M = § — {max(4;) : 1 < i < p}. Note that |M| = m. For
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any z,z +d € S, then there is some i for which either 4; = {z — d,z} or
A; = {z,z +d}. Hence, one of z and z + d equals max(4;),so z and z+d
are not both in M. Thus M is difference d-free.

If T is a subset of S with more than m elements, then by the pigeonhole
principle, some A; contains more than one element of 7. But then T
contains a d-pair, so T is not difference d-free. Thus, the largest difference
d-free set has size m. O

Lemma 2 Let d,k,r € Z* and let n = Fy(k;r) — 1. If x is a (d,k)-valid
r-coloring of [1,n], then

pa(x; [1,n]) + ga(x, [1,n]) = r(k ~ 1).

proof Let x be a (d, k)-valid r-coloring of [1,n]. For each color i, let S; =
{z € [1,n] | x(z) =4}, pi = pa(5:), and g; = g4(S;). Let

p= Zp: Pa(x, [1,n]) and ¢ = Zq, = qa(x 1, 7))

i=1

Since x is a maximal valid coloring, the largest difference d-free subset of
each S; has size k — 1, and therefore by Lemma 1, p; + ¢; = k — 1 for each
i. Summing this equation over i, 1 < i < r, we have that p+ g =7(k - 1)
as desired.

Lemma 3 Let d,k,r € Z*, let n = Fy(k;r) — 1. If x is a (d,k)-valid
r-coloring of [1,n}, then

pal, [1,7]) = l’”(k )J

Proof. Let x be a (d, k)-valid coloring of [1,n], and let p = pa(x;, [1,7]),
g = ga(x, [1,7]).

First, suppose d < n < 2d. Let ¢g = x(n — d + 1). If we extend x to
(1,7 + 1] by assigning n + 1 the color cg, then [1,7 + 1] does not contain
a monochromatic k-element difference d-free set, for if A were such a set,
then clearly it would be in color ¢o, and its largest element would be n+ 1.
But then n+1—d ¢ A, and hence (A — {n + 1}) U {n + 1 — d} would
also be difference d-free (since n + 1 — 2d < 0) contradicting the meaning
of Fy(k;r). Hence, it is not possible that d < n < 2d.

13



If n < d, then no d-pairs can exist in [1,n], 80 p =0, and r(k - 1) =
g =n < d by Lemma 2, so d lﬂ'i;—llj = 0 and we have the desired result.

Thus, we assume that n > 2d. We will construct another maximal
valid coloring x’ from x. Note that n = 2pa(x/, [1,7]) + g4(x’, [1,7]), and
therefore p = p4(x’, [1,n]) by Lemma 2.

Let m be the largest integer such that (2dym+2d < n. Let I; = [(2d)z+
1, (2d)z+d] and J; = [(2d)z+d+1, (2d)z+2d] for all z € [0, m]. Notice that
there is at least one such pair of intervals since n > 2d. Define x’ as follows.
Let x'(i) = x(¢) for each i € I,. Now define x'(j) = x(j—d) for each j € J;.
Then {i,i + d} is a monochromatic d-pair under x' for each i € I, and
therefore, since there are no d-pairs in I, we have ps(x’,I; U J;) = d and

(X, Iz UJz) =0.

Ifn > 2d(m+1), let H = [(2d)m+2d+1, min((2d)m+3d, n)); otherwise,
let H = @. Define x'(h) = x(h) for all h € H. We claim that x' is
(d, k)-valid on [1,max(H)). To see this, let I = (Ujolz) U H and let
J =Un o Js- Assume A is a difference d-free set that is monochromatic
under x'. Since x(i) = x/(i) for all ¢ € I, x’ is valid on I, and hence
|AN1I| < k. By the way X’ is defined on J, and the fact that A contains at
most one member of {%,% + d} for each i, we have |A| < k. This proves the

claim.

Note that n < 2dm + 3d, so that x’ is valid on [1,n]. If this were not
the case, then by coloring each
j € [(2dym + 3d + 1, (2d)m + 4d] by X'(§) = X'(§ — @)

we would be extending x' to a valid coloring of [1,2dm + 4d)], which is not
possible by the meanings of m and n.

Notice by the way x’ is defined that p = pa(x’, [1,7]) = d(m + 1). This
implies that ¢ = | H| and hence, by the previous paragraph, g < d. Hence,
since d divides p, by Lemma 2 we have

=l -5 o[

Theorem 4 For all positive integers d, k, and r,
r(k—1)

Fy(kir) =r(k—1)+d [TJ +1.
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Proof. Let n = Fy(k;r) — 1, let x be a valid coloring of [1,n], and let
p=pi(x,[L,n]), 9= gd(x, [1,n]). Then

n=2p+q=(p+q)+p=r(k—1)+d‘_r(kd;1)J

by Lemmas 2 and 3, proving the result. O

3 Avoiding a Set of Differences

Having solved the problem for a single d, we now consider the more gen-
eral problem of finding, for a given set of positive integers D, the Ramsey
numbers for sets which avoid all differences d € D.

Given a set D of positive integers, denote by Fp(k;r) the smallest in-
teger n such that every r-coloring of [1,7n] contains a monochromatic k-
element set that is difference d-free for each d € D. We will say that this
k-element set is difference D-free. For r = 1, we denote the function by
Fp(k); that is, Fp(k) is the least n such that [1,n] contains a k-element
difference D-free set.

The next theorem provides an upper bound for Fp(k;r) for a large class
of sets D, in particular for all finite D.

Proposition 5 Let D be a set of positive integers. If there is a least pos-
itive integer m such that m {d for all d € D, then for all positive integers

k andr,
Fp(kir) <mr(k-1)+1.

Proof. We need to show that any r-coloring of [1, mr(k—1)+1] contains a k-
element difference D-free set. By the pigeonhole principle, an 7-coloring of
(1, mr(k—1)+ 1) must have some color ¢ with more than m(k —1) elements.
Likewise, among the elements with color ¢, there is some congruence class
modulo m to which at least & integers belong. Since no pair of these k
integers have difference in D, there is a monochromatic k-element set that
is difference D-free. a

Corollary 6 For all k,r € Z*, if [1,n] C D C Z* and (n+ 1) t d for all
de D, then Fp(k;r)=(n+1)r(k—-1) + 1.
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Proof. Let t = (n + 1)r(k — 1). By Proposition 5, Fp(k;r) <t +1.

Foreachi,1<i<r let S;i=[(i-1)(n+1)(k—1)+1,i(n+1)(k-1)],
so that |Ji_, Si = [1,t]. Define the r-coloring x on [1,t] by x(S;) = i for
each i. Let A be any monochromatic difference D-free subset of S. Hence,
for some j, A C S;, and therefore, since each consecutive pair of elements
of A must differ by at least n + 1,

(r+1)(k-1)-1
< =k-1.
Al €1+ 1 l=k-1
Thus x is (d, k)-valid on [1,¢] for all d € D, which proves that Fp(k;r) >
t+ 1. O

As a special case of Corollary 6, we have the following.
Corollary 7 For alln, k, r € Z*, Fjy n)(k;7) = (n+ 1)r(k - 1) + 1.

Unlike the situation with the classical Ramsey-type numbers, such as
van der Waerden or Schur numbers, the threshold function for difference
D-free sets is not trivial in the setting of only one color. In fact, Fp(k;r) <
Fp(r(k —1) +1) for all D, k, and r, which follows immediately from the
following simple proposition since, for a given D, the family of all D-free
sets is hereditary (i.e, every subset of a difference D-free set is difference
D-free).

Proposition 8 Let S be a hereditary family of sets. Let R(S,k;r) be the
least positive integer n such that every r-coloring of [1,n] has @ monochro-
matic k-element member of S. Then R(S,k;r) < R(S,r(k—-1)+1;1).

Proof. Let m = R(S,r(k — 1) + 1;1). So [1,m] contains an (r(k — 1) + 1)-
element set S where S € S. Suppose, for a contradiction, that R(S, k;r) >
m. So there is a valid r-coloring x of [1,m), i.e., no color contains a k-
element member of S. Foreach i, 1 <i <7, let S; = {z € S: x(z) = i}.
Since &S is hereditary and S € S, each S; € S. Since x is valid, |S;| < k-1
for each 7. Then .
S| =Y ISl < r(k - 1),
i=1

a contradiction. O

We are able to give exact values for Fp(k) for certain choices of D.
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Proposition 9 Let k,n € Z* and let D = {1,n}. Then

2k -1)+1 if n is odd
Fp(k) = 20k —1) + l_(_lJ +1 ifn is even.

Proof. If n is odd, Fp(k) > Fi(k) = 2(k — 1) + 1 by Theorem 4, and
Fp(k) < 2(k—1) + 1 by Proposition 5.

Now let n be even. Let b = g?z J To show that Fp(k) > 2(k -

1) + b+ 1, we show that in [1,2(k — 1) + b] there is no k-element difference
D-free set. If b= 0, this is obvious, so assume b > 1.

Let X={z1<z2<--- < zr} C [l 2(k-1) +b], and let d; = x4 —z;
for1 <i<k-1. We mayassumed, # 1 for all 4. Since Zk"ld <
2(k — 1)+ b~—1, there are at most b — 1 of the d;’s that are greater than 2.
Hence, by the pigeonhole principle, somewhere within the sequence {d; },_l ,

there must exist at least
k-1-(-1)
b
consecutive 2’s. Now,

- 3 )

Therefore there exist at least n/2 consecutive d;’s that equal 2. Thus, X is
not difference n-free.

Finally, we show that Fp(k) < 2(k — 1) + b+ 1 for n even. Let

S= {2z+l2J+l 0<z<k—1}

It is easy to check that S is a k-element difference D-free set. Hence, since
SC(1,2(k—1)+ b+ 1], we have Fp(k) < 2(k—1) + b+ 1. O

Proposition 10 Let b > a > 1, let k € Z*, and let D = [a,b]. Then
Fp(k) =k+b|%2].

Proof. Let t = | E=1|. If t = 0, it is easy to see that Fp(k) = k, so we may
assume ¢t > 1.
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Let A; = [(a+b)i + 1, (a+b)z+a] for each i, 0 < i <t -1, and let
Ar = [(a+b)t+1,k+bt]. Let A=JiyA: Then |A] = ta + |4 = k.
Clearly, A is difference D-free, and hence Fp(k) < k + bt.

We claim that for each 7, 1 < i < ¢, there is no difference D-free subset
of S; = [(a+b)(i—1) +1, (a+b)i] with more than a elements. If this is true,
then since t is the largest integer such that (a+b)t < k—1+bt, the size of any
difference D-free set in [1, k— 1+ bt] is at most (at)+(k—1+4bt)—(a+b)t =
k — 1, thereby proving Fp(k) > k + bt.

To prove the claim, let X = {z; < 22 < -+ < z¢} be a difference D-free
subset of S;. We may assume z; = (a + b)(¢ — 1) + 1, since otherwise a
translation would produce another £-element difference D-free set whose

first element is (@ + b)(i —1) + 1. Let Y = [z; + a,z1 + b]. Clearly, no
member of Y belongs to X. Also,

z+a~-1
Si-Y={z}U ( U {j,j+b}) .

j=z1+1

Since for each j € [z1,21 + a — 1], at most one member of {j,5 + b} can
belong to X, at most a members of S; — Y belong to X. [}

4 Remaining Questions

Based on computer calculations, we believe the following conjecture is true,
which would generalize Theorem 4, Corollary 7, and Proposition 10.

Conjecture 1 If D = [a,}], then

Fp(k;r) =r(k—1) +b l’(’“ )J

We also suspect that the inequality of Proposition 8 is actually an equal-
ity when S is the family of D-free sets, i.e., that the following holds.

Conjecture 2 For any set of positive integers D and for each k, r € Z+,

Fp(k;r) = Fp(r(k — 1) + 1).
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When |D| =1 or D = [1,n] for some positive integer n, then Conjecture 2
holds by Theorem 4 and Corollary 7, respectively.

Let us say that two sets D and E are F-equivalent if Fp(k;r) = Fg(k;r)
for all k,7 € Z*. The following result provides one example of an F-
equivalence.

Proposition 11 Let a € Z%, let S be a set of odd positive integers with
1€ S, and let D = {as | s € S}. Then for all k,r € Z*

Fp(k;r) = Fo(k;r).

Proof. Since a € D, it suffices to show

Fp(k;r) < Fa(k;r). (1

for all k and r. We first show (1) for r = 1. Consider the following k-element
difference a-free set in [1, Fo(k)):

I=[1,aU[2a+1,3d]U...U [(2 lﬁg—lJ —2)a+ 1, (2 lf—;-lJ —1) a]
o[C)ern [T o (e 52

(Note: this is the set I from the proof of Lemma 3.)

It is easy to see that for any pair of elements of I with difference ma,
m must be even. Since D contains only odd multiples of a, I is difference
D-free. So (1) holds when r = 1.

Since the proposition holds for = 1, by using Theorem 4 we have

Fo(r(k—1)+1) = Fa(r(k—1) + 1) = Fa(k;) @
for any r. By Proposition 8, Fp(k;r) < Fp(r(k — 1) + 1) which, together
with (2), gives (1). ]

We would like to know what the minimal F-equivalent subsets of a
given set D are; in other words, which subsets S of D have the property
that S is F-equivalent to D but no proper subset of S is F-equivalent to
D? Particularly, can we describe the minimal F-equivalent subsets of [a, b]?
Moreover, we would like to determine all non-F-equivalent subsets of [1, 7],
i.e., to find the equivalence classes of 2/1™! under this equivalence relation.
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