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Abstract

A fall coloring of a graph G is a color partition of the vertex set of
G in such a way that every vertex of G is a colorful vertex in G (that
is, it has at least one neighbor in each of the other color classes).
The fall coloring number xs(G) of G is the minimum size of a fall
color partition of G (when it exists). In this paper, we show that the
Mycielskian u(G) of any graph G does not have a fall coloring and
that the generalized Mycielskian pm(G) of a graph G may or may
not have a fall coloring. More specifically, we show that if G has a
fall coloring, then uam(G) has also a fall coloring for m > 1, and that

xf(#3m(G)) £ x5(G) + 1.
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1 Introduction

Let G = (V, E) be a non-trivial simple graph which is undirected and con-
nected. A proper coloring of a graph G is a partition Il = {W}, V,...,Vi}
of the vertex set V of G into independent subsets of V. Each V; is called a
color class of II. A vertex v € V; is a colorful vertex with respect to II if it
is adjacent to at least one vertex in each color class V},j # i. A k-coloring
I={W,Va,...,Vi} of G is a fall coloring of G [2] if each vertex of G is a
colorful vertex with respect to II. In this case, IT is called a k-fall coloring
of G. The least positive integer k for which G has a k-fall coloring is the -
fall chromatic number of G and denoted by x;(G). A graph G may or may
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not have a fall coloring. For example, the cycle Cp has a fall coloring iff
n is a multiple of 3 or n is even [2]. All complete graphs have a fall col-
oring; in fact, xs(Kn) = n. It is clear that if G has a k-fall coloring, then
8(G) > k-1 (where §(G) denotes the minimum degree of G) and therefore

5(G) +12 x4(G) 2 x(6).

In the mid 20t* century there was a question regarding the construction
of triangle-free k-chromatic graphs, where k > 3. In this search, Mycielski
[4] developed an interesting graph transformation known as the Mycielskian
as follows. For a graph G = (V, E), the Mycielskain of G is the graph
(G) with vertex set consisting of the disjoint union V U V! U {u}, where
V1= {z!:z €V} and edge set EU {z'y : zy € E} U {z'u : 2! € V}.
Figure 1.1 gives the Mycielskian u(Ps) of P3, the path on three vertices.
For | > 2, y!(G) is defined iteratively by setting p'(G) = p(u!=1(G)). The
generalized Mycielskian [3] pm(G) of G is the graph whose vertex set is

m
the disjoint union V U (|J V¥) U {u}, where Vi = {z* : z € V} is an
i=1

m
independent set, 1 < i < m, and edge set E(um(G)) = EU (U {v* 1= :
i=1

=

zy € E}) U {g™u : 2™ € V™}, where 2° = z and 3° = y. Figure 1.2
describes the construction of the generalized Mycielskian pm(Ps) of Ps.
For z € V and for i, 1 < i < m, &' is the vertex of V* that corresponds
to the vertex z of V. For a subset S of V and for i,1 < i < m, let S*
be the subset of V* that corresponds to S. A graph G is chordal if every
cycle C of length at least 4 in G has a chord, that is, an edge joining two
nonconsecutive vertices of C. A graph G is split if its vertex set can be
partitioned into a clique (a complete subgraph) and an independent set.
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In an earlier paper [1], the authors have settled two problems on fall coloring
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of graphs proposed by Dunbar et al. [2]: (i) Determination of smallest non-
fall colorable graphs with prescribed minimum degree é, and (ii) Existence
of graphs G with x¢(G) — x(G) equal to any preassigned number. The
present paper deals exclusively with the fall coloring of Mycielskians of
graphs and is independent of [1].

2 Fall coloring of Mycielskians

While considering the generalized Mycielskian, it is easy to observe that
x(G) £ x(4m(G)) < x(G) + 1 and that §(um(G)) = 6(G) + 1 for any
m > 1. In this section, we show that x(G) has no fall coloring for any
graph G.

Theorem 2.1:
For any graph G, u(G) has no k-fall coloring for any k(> 2).

Proof. Suppose u(G) has a k-fall coloring for some graph G and some
integer k(= 2), say, V(u(G)) = Uf=1 Vi. Without loss of generality, let
u € Vi. Since u is a colorful vertex of u(G), V; N V! # @ for each i,
2<i<kand V;NV! =0. Hence no vertex of V! receives color 1. Let z!
be any vertex of V1. Then z! € V; for some i in 2 <i < k.

Consider z! € V;, for some i where 2 < i < k, thenz € UV (because
if z € V;, j # 4,1, then (as z! is a colorful vertex), z! must have a neighbor
in V;. But then z and z! have the same neighbors in V. This contradicts
the fact that V; is an independent set in u(G)).

Suppose z € V;. Since z is a colorful vertex in p(G), £ must be adjacent
to a vertex in V;. Clearly, this vertex can not belong to V, because z and
z! have the same neighbors in V. Therefore this vertex must belong to V1;
call it z!. Then (as seen in the case of z) z € VU V,. If z € Vi, then
both z and z are in V;. If z € V;, then both z! and z are in V;. These
are impossible since zz and 'z are edges of u(G). Thus z must be in V;.
As this is true for any z! in V1, V; NV = 0, and hence no vertex of V is
adjacent to a vertex with color 1. Therefore no vertex of V is a colorful
vertex. This contradicts the assumption that y(G) has a fall coloring. W

Corollary 2.2:
For any graph G, the iterated Mycielskian y'(G) of G has no fall coloring

for any !l > 1.
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Suppose a and b are two positive integers with 3 < @ < b. Consider now
a graph H with x(H) =a—1 and §(H) = b— 1. Then if G = pu(H), G has
no fall coloring with x(G) = a < §(G) = b. One way of constructing the
graph H is to take H = K,OK,0...0K3 OK,_1, where O is the Cartesian
(b-a+;)r—timea
product. Then x(H) =a—1and §(H)=(b—a+1)+(a—2)=b—-1. We
state it as a corollary.

Corollary 2.3:
For any positive integers a,b with a < b, there exists a graph G such that

G has no fall coloring and x(G) = a and §(G) = b.

Next we prove that for any k > 2, u2(G) has no k-fall coloring for some
families of graphs. But before establishing this result, we show that p2(G)
has no 3-fall coloring for any graph G.

Theorem 2.4:
For any graph G, pa(G) has no 3-fall coloring.

Proof. Suppose x(u2(G)) = 4, then po(G) has no 3-fall coloring (because

Xs = Xx). So we assume that x(u2(G)) < 3. Since p3(G) is not bipartite,
x(p2(G)) = 3. Suppose uz(G) has a 3-fall coloring, say, V(u2(G)) = V1 U
Vo U V3. Without loss of generality, let « € V3. Then no vertex of V2 can
receive color 1. Moreover, as u is a colorful vertex in u2(G), both the colors
2 and 3 must be present in V2.

Let z € V and z!, z2 be the corresponding vertices of z in V! and V?,
respectively. Without loss of generality, let z2 € V,. Since z and z? have
the same neighbors in V1, z € V; U V,. We now show that z! also belongs
to V4 U Vo. Suppose z! € V3; as 2 is a colorful vertex, it is adjacent to a
vertex in Vi, say, y!. Then, as per the definition of u(G), z! is adjacent
to 2 in pa(G). Hence y? cannot receive color 3 (as z! is also colored by 3).
Therefore y2 € V, which implies that z,y € V; UV, and zy € E(u2(G)).
Without loss of generality, let z € V; and y € V,. Since z! is a colorful
vertex, z! should have a neighbor in V;. Since V; N V2 = §, this neighbor
must be in V, a contradiction, because z and z! have same neighbors in V.
Thus z! € V; UV, (Already = € V1 U Vp).

Claim 1 z € V5.

If £ € Vi, = must be adjacent to a vertex w in V2 and this vertex
must belong either to V or V!. If w € V, then w,w!,w? € V2, and
z?w! € E(u(G)), & contradiction, because z?,w! € V;. Similarly, we get



a contradiction when w € V. Therefore z € V5.
Claim 2 z! eV,

If 2! € V;, z! must be adjacent to a vertex, say y, in V5 and y can
belong either to V or to V2. If y € V, then zy € E(u2(G)) and both z and
y receive color 2, a contradiction. If y = 22 € V2, then zz € E(u2(G)) and
both z and z receive color 2 (by the above argument), again a contradiction.
Thus 2! ¢ V; and so z; € V5.

A similar argument can be given when z2 € V. Since z is an arbitrary
vertex in V, VNV; = VNV, = 0. Therefore no vertex of V is a colorful
vertex, a contradiction. Therefore u2(G) has no 3-fall coloring. [ |

In 1985, Tuza and Radl [6] observed that the graph p., (Kx) is (k + 1)-
critical for all m > 1. Thus, we have the lemma.

Lemma 2.5:
If G is a graph with x(G) = w(G), then x(um(G)) = x(G) + 1 for any
m2>1.

Proof. By hypothesis, G 2 K, (¢), and hence ptn(G) 2 pim (K. x(@))- There-
fore x(1m(G)) = x(um(Ky(c))) = x(G)+1, by the result of Tuza and Rodl
[6]. Since x(um(G)) < x(G) +1 always, we have x(um(G)) = x(G)+1. W

Corollary 2.6:
If G is & graph with x(G) = w(G), then pm(G) has no x(G)-fall coloring
for any m > 1.

We next show that for graph G having a simplicial vertex, generalized
Mycielskians p2(G) do not have a fall coloring. For this we need a lemma.

Lemma 2.7:

Let G be a graph with minimum degree 6(G). Then x;(u2(G)) < 6(G) +1

Proof. Suppose for contradiction that this is not the case, and there exists
k

a k-fall coloring (where k = §(G) + 2), V(2(G)) = |J V;i. Without loss of
=

generality, let u € Vi, and let v; be a vertex of mini;num degree in G.

We first note two facts about each vertex in G. Suppose that V2 € V.
(1) The vertex v; € V1 UV}, so that if v; ¢ V1, v; and v? are in the same
color class.



(2) If v; € Vi, then v} € V4, because no vertex in N(v}) N V? is contained
in Vi and no vertex in N(v}) NV is contained in V;.

If v; and v? are in the same color class, then v; must be adjacent to
some vertex in V U V! which is contained in V;. The second fact implies
that at least one neighbor of v; in V! is in V;. In this case v is adjacent
to two vertices in V}, and can no longer be a colorful vertex.

If v; and vf are not in the same color class, then both v; and v} are in
class V;. This implies that every vertex v; € N(v1) NV is not in V;, and
so vj and v? are in the same color class. In this case, v} is adjacent to at
most §(G) color classes and is therefore not a colorful vertex.

Therefore, there can be no (6(G) + 2)-fall coloring of u2(G). [ |

Theorem 2.8:
If G is a graph having a simplicial vertex, then p2(G) has no k-fall coloring

for any k > 2.

Proof. We prove by contradiction. Suppose p2(G) has a k-fall coloring.
Let z; be a simplicial vertex of G and let N[z;] = {z1,2Z2,...,2p}. Then
N{z1) is a clique in G. Recall that x(u2(G)) = x(G) or x(G) + 1.

Now consider the case when x(u2(G)) = x(G) + 1. Here 6(G) +2 <
p+1 S w(G)+1 £ x(G)+1 = x(p2(G)) < x5(42(G)) < k < 8(ua(G)) +1 =
5(G)+2sothat k=6(G)+2=p+1.

Next consider the case when x(u2(G)) = x(G). Then §(G)+1<p <
w(G) < x(G) = x(12(@)) < x5(42(G)) < k < 6(p2(G)) +1 = 8(G) + 2,
and hence k is either §(G) +1 or §(G) +2. If k = §(G) +1 = x(G), then by
Corollary 2.6, u2(G) has no (§(G) + 1)-fall coloring. Hence k = §(G) + 2.
If p=6(G) + 1, then k = p+ 1. In case §(G) + 1 < p, then p = §(G) +2
and this implies that x(12(G)) = x(G), a contradiction to Lemma 2.5.

This shows that if u2(G) has a k-fall coloring, then k = p+1 = §(G) +2.
But this violats Lemma 2.7. |

Since any chordal graph has a simplicial vertex, we have the following
immediate corollary.

Corollary 2.9:
If G is a chordal graph, then p2(G) has no k-fall coloring for any k > 2.
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3 Fall coloring of split graphs

In this section, we discuss the fall coloring of split graphs and their gener-
alized Mycielskian. In addition, we show that if G has a fall coloring, then
#3m(G), m > 1, has a fall coloring. To start with, we consider split graphs.

Theorem 3.1:
A split graph G has a fall coloring iff §(G) = x(G) — 1.

Proof. Assume that G is a split graph and that G has a k-fall coloring,
then 6(G) + 1 2 x4(G) 2 x(G). Since G is split, 6(G) < x(G) — 1. Thus
(@) =x(G) - 1.

Conversely, let us assume that G is a split graph with 6(G) = x(G) - 1.
Without loss of generality, let G = K U I, where (K) is a x(G)-clique and
I is an independent set in G. Let K = {z,,...,z}, where k = x(G), and
I={y,...,u}. Since §(G) = x(G) — 1, every vertex y; € I is adjacent to
all vertices of K except one. Define c: V(G) — {1,2,...,k} by ¢(z;) =1,
c(y;j) = c(z;), if y; is not adjacent to z;. Then c is a proper coloring and
every vertex of G is a colorful vertex. Thus G has a k-fall coloring. ]

We now look at um(G). Suppose that y,,(G) has a fall coloring with
x(G) = w(G) and §(G) < x(G)—1, then by Lemma 2.5, §(um(G)) = §(G)+
1 < x(G) = x(pm(G)) = 1 < xf(4m(G)) — 1 < 8(pm(G)), & contradiction.
Therefore, for any graph G with x(G) = w(G) and §(G) < x(G) -1, um(G)
has no fall coloring, for any m > 1. Using this observation, we prove the
next theorem.

Theorem 3.2:
If G is a split graph and m is not a multiple of 3, then p,,(G) has no fall

coloring.

Proof. Let m = 3l — 1 or 3/ - 2, where | > 1. If §(G) < x(G) — 1, then
there is nothing to prove. Therefore assume that §(G) > x(G) — 1. Since G
is a split graph, 6(G) < x(G) —1 and hence §(G) = x(G)—1. Ifl = 1, then
by Theorems 2.1 and 2.8, the result follows (Recall that any split graph has
a simplical vertex). Therefore assume that [ > 2. First, we prove the result
when [ = 2 and then extend the argument for I > 3.

Suppose pm(G) has an r-fall coloring, say V(um(G)) = U, Vi, then
r = x(G) + 1 [because, x(G) = w(G) and by Lemma 2.5, x(um(G)) <
Xf(#m(G)) S 7 < 6(um(G)) +1=6(C) + 1+ 1 = x(G) + 1 = x(um(G))].
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Let x(G) = k so that r = k+ 1. Since G is a split graph, V = KU, where
(K) is a k- clique and I is an independent set in G. As K is a clique in
pm(G), all vertices of K receive distinct colors. Without loss of generality,
we assume that no vertex of K receives the color k + 1. Let z € K with
z € V;, then z! € V; U Vjy;. Clearly, no vertex of I belongs to Vi41. Thus
VN Viyr = 0. As every vertex of V is a colorful vertex, VNV #0.
Moreover, as I U I! is an independent set and each vertex of I is a colorful
vertex, we conclude that K1 NV # 0.

Claim: V" C Vk-l-l-

We first consider the case when |[K*NVi41| = 1 and the common vertex
is z!. In this case, there exists y! € I' such that y! € Vi41 and z adjacent
to y!. This is because z is a colorful vertex with color, say, s. Since y! is
adjacent to all vertices of K except one, say z, with z € V;, t # s,k +1,
y! is not a colorful vertex. Therefore, at least two vertices z*,3* of K!
must belong to Viy1, and as a consequence V2N Viqy = 0. If 2! € V!
with 2! ¢ Vi41, then 2! is not a colorful vertex, a contradiction. Therefore,
V! C Vi1 and hence V2N Viy =0.

Fact 1. Suppose 22,32 € K2 with 22,92 € V;, then V; N V3 = 0 and if
there is a vertex 22 € V2 with 22 ¢ V;, then 22 is not a colorful vertex.
Therefore V2 C V;, which implies that at least one vertex of V! is not a
colorful vertex. Thus no two vertices of K2 receive the same color (that is,
no two vertices of K? belong to V;, for any j, 1 < j < k). — (a).

Hence, if 2 € K? with z2 € V}, then z3 € V; U Vp41.
We now prove that V3N Vi, = 0. Suppose V3N Viyq # 0.

Case 1. There is a vertex z3 € K3 such that z3 € V4.
Then we have z2 € V;, for some 7, j # k+1. We now consider two subcases.

Subcase 1. There exists a vertex y2 € I2 such that y? is not adjacent to
3
3.
Thus z2 is not adjacent to y3, and hence y® € V; U Viyy. If 33 €V,
then 3 is not a colorful vertex, because y° is not adjacent to any vertex
of Viep1 N K4, Therefore y® € Vi41. Since 32 is a colorful vertex and y® is
not adjacent to 2, there is a vertex z4 € K* such that z* € V; and 33 is
adjacent to z4. By (a), 22 € V;,i # j,k+ 1. As 22 is a colorful vertex, there
is a vertex w3 € I® with w® € V; and 2? is adjacent to w3, which implies
that w? is adjacent to z%, a contradiction to the fact that w3, 24 € V;.
Subcase 2. Every vertex of I2 is adjacent to z3.

Suppose there is a vertex y? € I? with y? € Vj, then y? is adjacent to z3
and y? is adjacent to all vertices of K3 except one, say z3, with 23 € V,,



8 # j,k+ 1 and hence y? is not a colorful vertex. Hence I2NV; = §.
But then no vertex of I? is a colorful vertex, because Vin V3 = ﬁ Thus
K3 Viyr = 0 and therefore, if 22 € K? with 22 € V}, then eV,

Case 2. There is a vertex z3 € I® such that 2% € Vj4;.

Then we have z2 is not a colorful vertex, as x3 is adjacent to all vertices of

V2 except one, say, y? with color s # k + 1. Therefore I3 N Vi.yy = 0.
Hence by Cases 1 and 2, we have V3N Vi, = 0.
Nowifl=2,m=4or5.

Fact 2. Let m=4. AsV2NViy1 =0and V3NV, =0, we conclude
that V4N Vk+1 # 0, and hence u ¢ Viyq. If there is a vertex y* € V*
such that y* ¢ Vi, then y* is not a colorful vertex, because u ¢ Viy; and
V3N Vis1 = 0. Therefore V4 C Vi1, which implies that u is not a colorful
vertex. Hence p4(G) has no fall coloring.

Fact 3. Let m = 5. As V2NVyy =0, V3NViy1 = 0 and every vertex of V3
is a colorful vertex, V4N V41 # 0. Suppose KN Vi1 = 0, then no vertex
of I3 is a colorful vertex, because V2N Vi1, = @. Therefore, K4NViy1 # 0.
By an argument similar to that given for Claim 1, V4 C Viy;. Thus
V3N Viyr = 0, and no vertex V3 is a colorful vertex, a contradiction.
Hence p5(G) has no fall coloring.

If m =30 —2,1 > 3, we apply the same arguments as in Fact 1 and
Fact 2, and get a contradiction and if m = 3/ -1, ! > 3, we apply the same
arguments as in Fact 1 and Fact 3, and get a contradiction. Therefore, for
any split graph and any m that is not a multiple of 3, x,,(G) has no fall
coloring. [ |

Finally, we look at the case when m is a multiple of 3. In this case, we
show that if G has a fall coloring, then so does usm(G).

Suppose G has a k-fall coloring, with V(G) = U;— Vi. Let V‘ denote
the subset of V* that corresponds to V; in V. We show that usm(G') has
a (k + 1)-fall coloring. We divide the 3m sets of pus,,(G) that correspond
to V, namely, V1, V2,..., V3™ into blocks of size 3 as in Figure 3.1 (which
corresponds to the case when m = 3). In V! of the first block, we give the
color k +1 to all the subsets V}!, 1 < j < k, and the colors 2,3,...,k1
to the sets V2, VZ,..., Vi in order, and to the sets V3, V3,..., V2 in order
(that is, repeat the colors of V2 for V3). For the next block we give the
color k + 1 to all subsets V corresponding to V;, and the colors 1,2,...,k
in order to the sets V§, V2 ye V5 and the sets V§,V, , V€, in order
(that is, repeat the colors of V5 for V6). We repeat thls colormg until we
exhaust all the 3m blocks in order.
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In symbols: Define ¢ : V((p3m(G))) — {1,2,...,k,k + 1} as follows: For
1<j<kands>1,setc(V;) =7 (that is, all the vertices of V; in p3m(G)
are given the color j), c(V; %=5) = k+1and foreach i, 1 <i < k-1,
(VP =i+1, (Ve ™) = 1 and for each i, 1 < ¢ < k, o(V*7°) =

C(Vjﬁa—4).

Next for j, 1< j<kands>1, c(Vje"z) =k+1, c(Vf”l) =¢(Vf) =
c(V;), and c(u) = k + 1.

Then c is a proper coloring of pusm(G) and every vertex of usm(G) is a
colorful vertex. Therefore we have the following theorem.

Theorem 3.3:
If G has a fall coloring, then p3.,(G) has a fall coloring and x ¢ (pam(G)) <

x;(G') + 1.

Equality holds in the statement of Theorem 3.3 whenever G satisfies the
condition that w(G) = x(G) = x5(G). Our results lead naturally to the
following two problems.

Problem 3.4
Does there exist a fall colorable graph G for which x ¢ (13m (G)) < x5(G)+17?

Problem 3.5
Find some new families of graphs G for which the generalized Mycielskian

wm(G) has a fall coloring for some m.
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