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Abstract

An efficient method for generating level sequence representations of
rooted trees in a well-defined order was developed by Beyer and
Hedetniemi. In this paper, we extend Beyer and Hedetniemi'’s ap-
proach to produce an algorithm for parallel generation of rooted trees.
This is accomplished by defining the lexicographic distance between
two rooted trees to be the number of rooted trees between them in
the ordering of trees produced by the Beyer and Hedetniemi algo-
rithm. Formulas are provided for the lexicographic distance between
rooted trees with certain structures. In addition, we present algo-
rithms for ranking and unranking rooted trees based on the ordering
of the trees that is induced by the Beyer and Hedetniemi generation
algorithm.
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1 Introduction

The work presented in this paper is motivated by the problem of generating
all trees of a specified type in order to evaluate some tree parameter for all
trees of that type. For example, when the problem of determining an op-
timal value among all trees for a particular parameter is very complicated
or is NP-complete, it may be necessary to list all trees under consideration,
compute the value of the parameter for each tree, and then select the op-
timal value. Various researchers have addressed the problem of generating
all trees of a specified type by representing the trees with different kinds of
finite sequences. The general approach is to define a feasible sequence for
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each tree and then devise an efficient method for producing the feasible se-
quences for the trees under consideration in lexicographic order. Although
the number of trees under consideration is exponential in the number of ver-
tices, the various methods are efficient because, in each method, all trees
are produced in constant amortized time [9], i.e., the average number of
steps required to produce the sequence for the nezt tree is bounded by a
constant.

The different sequence representations used by the various authors en-
code different structural features of the trees. For example, Ruskey and
Hu [15] applied this general approach for binary trees with m leaves; they
represented such a binary tree with the sequence of the level numbers of its
leaves from left to right. Ruskey [13] generalized their approach to k-ary
trees. Ruskey [14] also went on to use sequence representations to list all
subtrees of an ordered tree. Zaks [22] used sequences which result from
performing a pre-order traversal of the tree and recording the number of
children of each vertex. Zaks and Richards [24] generalized Zaks’ sequences
to k-ary trees and other combinatorial objects and Zaks [23] has also ex-
tended his approach to the case of a general tree. A number of other authors
have used sequences to represent and generate trees (see Klarner [5); Gupta
and Lee [2]; Gupta, Lee and Wong (3}; Li [10]; Ruskey and Proskurowski
[16]; Trojanowski [18]; Vajnovszki [19}; Wilf and Yoshimura [20]; Yoshimura
(21)).

The method under consideration here uses level sequences to represent
and generate unlabeled rooted trees. Level sequences were first defined by
Scions [17] and were used by Beyer and Hedetniemi [1] to generate rooted
trees in constant time per tree. The level sequence for an unlabeled rooted
tree on n vertices is defined as follows. The root of the tree is assigned
the level 1 and each child of a vertex of level k is assigned the level k& + 1.
A sequence of length n is obtained by performing a pre-order traversal of
the tree and recording these levels. To obtain a unique level sequence for
each rooted tree, an ordering is imposed on the subtrees consisting of a
vertex and its descendants. The subtrees are ordered recursively from left
to right in nondecreasing order lexicographically by their level sequences.
This ordering of the subtrees results in an ordered rooted tree, which is
called the canonical ordering of the underlying rooted tree. Note that the
canonical ordering is the ordering of the rooted tree that produces the lex-
icographically largest level sequence. This level sequence is the canonical
level sequence of the underlying rooted tree. In Figure 1.1, T* is the canon-
ical ordering of the underlying rooted tree T and produces the canonical
level sequence. Throughout this paper, the canonical level sequence is re-
ferred to simply as the level sequence of the rooted tree.

34



L(T) = (123323445532) L(T*)= ( 12345]5432332)

Figure 1.1

Beyer and Hedetniemi developed concise, straightforward rules for gen-
erating all rooted trees on n vertices in decreasing lexicographic order, i.e.,
starting with the largest level sequence (1,2,...,n), which corresponds to
the path P, rooted at an end-vertex, and ending with the smallest level se-
quence (1, 2, 2, ..., 2), which corresponds to the star Ky ,_; rooted at its
center. For the level sequence L = (a; ...an) of a rooted tree, let p denote
the largest integer such that a, > 2 and let g be the largest integer such
that ¢ < p and a, = a, — 1. Note that a, is the level of v, the rightmost
vertex in the tree that is at a level greater than 2 and a, is the level of its
parent, v,. In general, we use v; to denote the vertex whose level is given by
the j** entry of the level sequence L. Then the level sequence immediately
following L and called its successor, SF(L) = (s;...s,) is given by:

for1<i<
o= Juforlsi p 1)
Si—prgforp<i<n

Note that the effect of the successor function is to replace the vertices
Ups Up+1,---,Un Dy 8s many copies of the subtree consisting of v, and its
descendants vg41,...,Vp—1 8S necessary to result in a tree with n vertices.
For example, in the level sequence L = (1,2,3,4,4,2,2),p = 5,9 = 3, and
SF(L) = (1,2,3,4,3,4,3). To illustrate further, the level sequences of all
twenty rooted trees of order six are listed below in the order in which they
are generated by the Beyer and Hedetniemi algorithm.

C(1,2,3,4,56) 6. (1,23,4,44) 11. (1,2,3,432) 16. (1,2,3,32,3)
C(1,2,34,55) 7. (1,23,4,43) 12, (1,2,34.23) 17. (1,2,332,2)
C(1,2,34,54) 8. (1,2344,2) 13, (1,2,34,22) 18. (1,2,3,2,3,2)
C(1,2,34,53) 9. (1,23,4,34) 14 (1,2,3,33,3) 19. (1,2,322,2)
 (1,2,3,4,52) 10 (1,2,3,4,3,3) 15. (1,2,3,332) 20. (1,2,22,2,2)

Gt W N =
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Beyer and Hedetniemi showed that the average number of entries scanned
and altered per tree generated is bounded by a small constant independent
of the order of the rooted trees being generated. Kubicka ([6], [7]) provided
an asymptotic limit for this average and showed that the average number of
entries scanned and altered approaches 1+ = 1.511, where p is the radius
of convergence of the generating functions for rooted and unrooted trees.

In addition, level sequences have an advantage over other sequence rep-
resentations of trees since much information about the structure of the tree
is easily obtained from its level sequence. This is because the entries of
the level sequence corresponding to the parent and the children of a vertex
are easily identified, and the level sequence of each subtree consisting of a
vertex and its descendants appears as a contiguous and easily recognizable
subsequence of the level sequence of the tree. Kubicka (6, 7] took advantage
of these characteristics of level sequences to extend the Beyer and Hedet-
niemi algorithm to generate and, simultaneously, evaluate tree parameters
for all rooted trees in constant amortized time.

In this paper we adapt the Beyer and Hedetniemi algorithm to generate
rooted trees of a given order in parallel. The basic approach is to assign
the processors approximately equal numbers of trees to generate. In order
to identify the starting level sequence (tree) and number of level sequences
(trees) to be generated by each processor, we must be able to determine
the lericographic distance between two rooted trees Ty and T3, i.e., the
number of rooted trees (level sequences) generated to reach the tree T3
when the Beyer and Hedetniemi algorithm is applied starting with T;. For
example, among trees of order six, the lexicographic distance between the
trees represented by the level sequences (1,2,3,4,4,3) and (1,2,3,4,2,2)
is 6. While the lexicographic distance is very difficult to determine in
general, we give formulas for the lexicographic distance between trees with
certain structures which are easily identified from the level sequence. This
information enables us to determine the lexicographic distance between any
two rooted trees of the same order and to determine the starting sequences
and counts for each processor in the parallel generation.

We also address the ranking and unranking problems for the Beyer and
Hedetniemi rooted tree generation algorithm. The ranking problem for a
given tree generation algorithm is to determine the position of a specified
tree in the ordering of all trees as induced by that generation algorithm.
Similarly, the unranking problem for a particular tree generation algorithm
is to determine the i*" tree in the ordering of all such trees as induced
by that particular generation algorithm. Thus, each generation algorithm
results in new ranking and unranking problems for the type of tree under
consideration. For rooted trees represented by level sequences, the ranking
problem is to determine the rank of the given rooted tree on n vertices in
the ordering of all rooted trees with n vertices as induced by the Beyer
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and Hedetniemi algorithm. Similarly, the unranking problem is to deter-
mine the i** rooted tree in the Beyer and Hedetniemi lexicographic ordering
of all rooted trees with a given number of vertices. While other authors
have addressed the ranking and unranking problems for other generation
algorithms, these problems have not previously been considered for the
Beyer and Hedetniemi generation algorithm and level sequence representa-
tion of trees. Together with known results for counting trees by height, our
method for determining lexicographic distances is used to produce ranking
and unranking algorithms relative to the Beyer and Hedetniemi generation
algorithm. The unranking algorithm is also used in the parallel generation
algorithm.

2 Definitions and Formulas

Throughout this paper, all trees are assumed to be unlabeled rooted trees.
We denote the order of a tree by n and its (canonical) level sequence by
L. Since each tree is identified with its level sequence, reference to a level
sequence will also be reference to the tree that the level sequence repre-
sents. The lexicographic distance between trees 77 and T3, where the level
sequence of T} is lexicographically larger than that of T5, is denoted by
N(T1,Ty). Equivalently, the number of level sequences generated to reach
the level sequence L from the level sequence L, is denoted by N(L;, Ly).
In order to describe the particular types of trees between which we can
determine the lexicographic distance, we need the following definitions and
notations. We use v; to denote the vertex whose level is given by the jt*
entry of the level sequence L.

As noted earlier, the level sequence of a subtree consisting of a vertex
and its descendants appears as a contiguous subsequence. If such a subse-
quence forms the end of the level sequence, then the subtree consisting of
the vertex and its descendants is called a rightmost subtree of the tree. In
the tree pictured in Figure 2.1, the rightmost subtree rooted at the vertex
v corresponds to the subsequence (2, 3, 4, 4,3, 4) and the rightmost subtree
rooted at the vertex w corresponds to the subsequence (3,4).

Figure 2.1 L(T) = (12345234434)
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Definition 1. An ancestor v; of a vertez v; is said to lie on a long enough
path (relative to v;) if there is a path with at least (n — i + 1) vertices that
begins at v; and does not include v;.

For example, the level sequence L = (1234562345533 33), the
parent v; of the vertex vo lies on a path with 4 vertices which is a long
enough path relative to v;a.

Our general approach is to start with a tree T7 in which a rightmost
subtree has one of four particular forms and end with a tree T in which
that subtree has been replaced by a star with its center at the root of T5. In
the first two cases the rightmost subtree is a star and in the other two cases
the rightmost subtree is a path. We denote the leftmost vertex changed
by v; and note that we are changing the last m = n — i + 1 entries of
the level sequence to 2’s to get the level sequence of T>. In each case the
property that a particular ancestor of v; lies on a long enough path allows
us to determine the form of the intermediate trees. This is due to the fact
that the Beyer and Hedetniemi algorithm changes the tree by replacing the
rightmost vertices of the tree with copies (full or partial) of the subtree
rooted at the parent of the leftmost vertex that is being replaced.

Definition 2. Let T} denote the tree with level sequence L = (I, 1a,...,li_1,
k,k,..., k), where the parent of v; lies on a long enough path, l;~, 2 k,
and m = n—i+ 1. Let T, denote the tree with level sequence L' =
(liylay vy biz1,2,2,...,2). Then we define S(m,k) = N(T1,T3) + 1.

T

level k-1 level k-1

< -
path with at least m vertices

Figure 2.2 S(m, k) = N(T1,T2) +1

For example, if T} has level sequence
L =(1,2,3,4,5,5,5,2,3,4,5,5,4,4,4) and T has level sequence
L' =(1,2,3,4,5,5,5,2,3,4,5,5,2,2,2), then §(3,4) = N(T1,T2) + 1.
Definition 3. Let T} denote the tree with level sequence L = (l1,13,...,li—2,
k—1,k,k,... k), where the grandparent of v; lies on a long enough path
and m = n—i+ 1. Let To denote the tree with level sequence L' =
(L, 02y lim2,k—1,2,2,...,2). Then we define §'(m,k) = N(T1,T2) +1.
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" A

level k-2

Q B
m
<pa:h with at least mvertices \.

Figure 2.3 §'(m, k) = N(T}, Ty) + 1

For example, if T} has level sequence
L=(1,234,5,,6,6234,56,4,5,5,5) and T, has level sequence
L' =(1,2,3,4,56,6,6,2,3,4,5,6,4,2,2,2), then §'(3,5) = N(T1,T>) + 1.

Definition 4. Let T} denote the tree with level sequence L = (l,1a,...,

lic1,k,k+1,...,k+m — 1), where the parent of v; lies on a long enough
path, ;1 > k, andm =n—1i+1. Let To denote the tree with level sequence
L'=(,l,...,lic1,2,2,...,2). Then we define C(m,k) = N(T1,T3) + 1.

Ty

level k-1 ‘ N>
B k+1

path with at least mvaﬁclq m\
o kim-1

Figure 2.4 C(m,k) = N(T1,T2) + 1

For example, if T} has level sequence L = (1,2,3,4,5,6,6,5,4,5,6)
and T, has level sequence L' = (1,2,3,4,5,6,6,5,2,2,2), then C(3,4) =
NT,T2) + 1.

Definition 5. Let T} denote the tree with level sequence L = (l4,1s,...,li—g,
k—-1,k,...,k+m—1), where the grandparent of v; lies on a long enough
path and m = n — i+ 1. Let Tp denote the tree with level sequence L' =
(2. lisg,k—1,2,2,...,2). Then we define C'(m,k) = N(Ty,T3) +1.
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Figure 2.5 C'(m, k) = N(T}, T3) + 1

For example, if T} has level sequence L =(12345665456) and T3
has level sequence L' = (123456 6 542 2), then C'(2,5) = N(T1, T2) +1.

Note that the four parameters S, C, S’, and C’ do not depend on the
order of the trees under consideration.

These parameters can be expressed in terms of the numbers of rooted
trees of a given order and height. Recall that the height of a rooted tree
is the length of a longest path from the root to an end-vertex. Let T'(n)
represent the number of rooted trees of order n and H(n, h) represent the
number of rooted trees with n vertices and height k. Methods for computing
T(n) and H(n, k) can be found in Harary and Palmer[4] and Riordan [12],
respectively. Formulas expressing S, S/, C, and C’ in terms of T and H
are given in the following four theorems.

Theorem 1. i) Form > 2 and k 2 3,
m
S(m,k) = ZZT(nl)T(nz)...T(nk_g) where the second sum is taken

r=0
over all ordered (k — 2)-tuples (n1,ng,...,nk—2) such thatny +n2 +... +
ngo=k-2+m-—r.

i) For allm 2 1, S(m,2) =1.

Proof. Let L and L' be level sequences representing the trees T) and T3
as described in Definition 2 and for which N(L,L’) + 1 = S(m, k). As the
Beyer and Hedetniemi algorithm is applied repeatedly to progress from T}
to Ty, the last m entries of the level sequence are modified to produce a
level sequence that is lexicographically smaller. Therefore, any rooted tree
T" of order n whose level sequence is lexicographically between L and L’
has the form pictured below. Note that r is the number of vertices in the
rightmost subtree that have not been altered and satisfies 0 < r < m. In
addition, the remaining m — r vertices have been distributed to form the
subtrees, A;, where each A; is a rooted tree of order 1 < n; < m+1,



k-2
and m =r + Z(n, —1). Since r < m, it is clear that the level sequence

i=1

corresponding to the tree in Figure 2.6 is lexicographically smaller than L.

level k-1

path with at least m vetﬁ rsm

Figure 2.6

We claim that there are no other restrictions on the A;’s, i.e., for any
set of A;’s satisfying the conditions on their orders stated above, the level
sequence of the tree in Figure 2.6 is the canonical level sequence for the
underlying tree. To verify this, remove all the vertices of the A;’s, except
for their roots from T”. The resulting tree is the canonical ordering of the
underlying rooted tree. Since the parent of v; lies on a long enough path
relative to v;, the height of B is at least m — 1. Now reattach Ay_, as
in Figure 2.6. Since Ax—2 has most m + 1 vertices, counting its root, it
has height at most m. In fact, if it does have height equal to m, Ax_»
is a path on m + 1 vertices. Therefore, since Ax_5 is attached at level
k — 2, the canonical ordering is preserved. By similar arguments, we see
that the canonical ordering is preserved when we reattach the remaining
subtrees, A;, for ¢ < k — 3. Therefore, there is a one-to-one correspondence
between all trees from T} to T3, inclusive, and the set of all (k — 1)-tuples
(K1,ry A1, A2, ..., Ar_2) where each A; ranges over all rooted trees of order
n; and K, is the star with r end-vertices. The formula in part (i) counts
the number of these (k — 1)-tuples.

Part (ii) follows directly from the definition of S(m, k). 0
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Theorem 2. i) Form > 2 and k > 4,

m+2
S'm,k) = Y [(H(nk-2,2) +1)D_ T(m)T(n2)...T(nx-3)]

ng_2=3

+ Z T(n1)T(n2)...T(nk-3)

where the second sum is taken over all ordered (k—3)-tuples (ny,ng, ..., nk—3)
such that ny +ng + ... + ng_3 = k — 1 + m — ng2 and the third sum is
taken over all ordered (k — 3)-tuples (ny,ng,...,nk-3) such that n; +na +
oot np_3=k+m-—3

i) Forallm 2 1, §'(m,3) = Hm +2,2) + 1.

iii) For allm > 1, §'(m,2) = 1.

Proof. Let L and L’ be level sequences representing the trees Ty and T
as described in Definition 3 and for which N(L,L’) + 1 = §'(m, k). The
formula in (i) follows from the observation that any rooted tree T" of order
n whose level sequence is lexicographically between L and L’ has the form

pictured below.

T OA
—
A .

A3
level k2 A< > A2

L

path with at least m verh%.

Figure 2.7

k—2
Each subtree A; is a rooted tree of order n; and m+1 = Z (n; — 1). For

—~
1<i<k-3,1<n; <m. Note that in T}, A2 is the I‘exicographically
largest tree with height 2 and m + 2 vertices and A; = K, fori=1,2,...,

k — 3. Thus, in any intermediate tree, the height of Ax_2 can be either 1 or
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2 and 2 < ng—2 < m+ 2. There are no restrictions on the Als fori < k—3
except for the condition on the order stated above. By the same argument
as in the proof of Theorem 1, the level sequence of the tree in Figure 2.7 is
lexicographically smaller than that of Tj and is the canonical level sequence
of T". Therefore, there is a one-to-one correspondence between the trees
from T3 to T3, inclusive, and the set of all (k — 2)-tuples (4, Aa, ..., Ax—2)
where, for i < k — 3, each A; ranges over all rooted trees of order n; and
A2 ranges over all rooted trees of order ng_o and height at most 2. The
formula in part (i) counts the number of these (k — 2)-tuples.

Part (ii) follows from Figure 2.7 also. However, with k = 3, only the
subtree Ax_o is present in the intermediate tree and ranges over all rooted
trees of order m + 2 and height at most 2.

Part (iii) follows directly from the definition of S'(m, k). a

Theorem 3. Form > 1 and k > 2, C(m,k) =3 T(n1)T(ng) ... T(nk—1)
where the sum is taken over all ordered (k — 1)-tuples (ny,na,...,nk—1)
such thatny +no+...+ng1=k+m-—1.

Proof. Let L and L’ be level sequences representing the trees 7} and Tb
as described in Definition 4 and for which N(L,L’) + 1 = C(m,k). The
formula for C(m, k) follows from the observation that any rooted tree T
of order n whose level sequence is lexicographically between L and L’ has
the form pictured below.

[ ———.Y

(—— 1‘;2
A .

Ao
level k-1 <> At

pathwhhatleastmvm%

Figure 2.8

Each subtree A; is a rooted tree of order 1 < n; < m+1and m =
k-1
E (n; — 1). Note that in T}, Ax—_; is a path on m+1 vertices and A4; = K;

i=1

fori =1,2,...,k—2. Thus, in any intermediate tree, there are no restrictions
on any of the A;s except for the conditions on their orders. By the same
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argument as in the proofs of the previous theorems, there is a one-to-one
correspondence between the trees from T) to T», inclusive, and the set of
all (k — 1)-tuples (Ai, Az, ..., Ax—1) where each A; ranges over all rooted
trees of order n;. The formula for C(m, k) counts these (k — 1)-tuples. O

Theorem 4. i) Form > 2 and k > 4,

m+2

Cmk)= Y > T(m)T(na)... T(ne—s)T(nk—2)
Ng-2=2
where the second sum is taken over all ordered (k—3)-tuples (ny,n,...,nk—3)

such thatny +no+...+ng_3=k+m—1-—ng_2.
i) Form > 2, C'(m,3) =T(m +2).
i) Form 2 2, C'(m,2) =T(m +1).

iv) Fork>2, C'(1,k) =k — 1.

Proof. Let L and L’ be level sequences representing the trees T; and T3
as described in Definition 5 and for which N(L,L’') + 1 = C’'(m,k). The
formula in (i) follows from the observation that any intermediate rooted
tree T" of order n whose level sequence is lexicographically between L and
L' has the form pictured in Figure 2.7. For 1 <i < k — 3, each subtree A;
is a rooted tree of order 1 < n; < m+ 1, Ax—2 is a rooted tree of order
k=2

2< g2 <m+2,andm+1= Z(m — 1). By the same arguments as in
the proofs of the previous theorémls, there is a one-to-one correspondence
between the trees from T} to T5, inclusive, and the set of all (k — 2)-tuples
(Aq, Az, ..., Ax—2) where each A; ranges over all rooted trees of order n;.
The formula in part (i) counts the number of these (k — 2)-tuples.

Part (ii) follows from Figure 2.7 also. However, with k£ = 3, only the
subtree A; is present in intermediate tree and ranges over all rooted trees
of order m + 2.

For part (iii) note that C'(m,2) = C(m,2). Part (iv) follows directly
from the definition of C'(m, k). O

Observe the following simplifications of the formulas from Theorems 1-4,
S(1,k) = S'(1,k) = C(1,k) =C'(1,k) =k — 1 and C(m,2) = T(m +1).
The formulas for S, S/, C and C’ can be represented in a more concise

manner by introducing a new function A(m, k) = Z T(n1)T(n2)...T(n)

where the sum is taken over all ordered k-tuples (n;,ng,...,nx) such that



ny+n2+...+ng=m. Then

S(m,k) =) A(k-2+m=-rk-2),

r=0

§'(m,k) = A(k +m — 3,k — 3)
m+2
+ D (Hw2,2)+ DAk -1+m—np2,k-3),
Nr-2=3
C(m,k)=Ak+m—-1,k—-1) and
m+2

C'mk)= Y T(nk-2)A(k+m—1-ng_sk-2).

Nga2=2

Since the A’s satisfy the recurrence relation

Alm,0) = 3 T(ru)Alm = e, — 1),

ng=0

the complexity of computing A(¢,j) forall0 < i <mand 1< j <k
is O(km?2). Therefore, it is easily seen that the complexity of comput-
ing S(m, k), S'(m,k), C(m,k) and C’'(m.k) is O(k(k + m)?). Tables 4-7
containing values for S, S’, C and C’ appear in the appendix. Computer
programs that compute values for S, S’, C, C’, H and T may be obtained
from the authors.

If L and L' are level sequences that have the forms described in the
definitions of S,5’, C, and C’, then we say that we apply the corresponding
parameter (S, S’, C,C’) or the successor function to jump from L to L'. We
denote the size of this jump, i.e., the number of level sequences between L
and L’ including L’ by J. If S,5',C or C' is used for the jump we set J
equal to one less than the value of the parameter (5,5’,C or C') that is
used for the jump. If the successor function is used, we set J equal to 1.
Note that any level sequence L has either a star or a path as a rightmost
subtree. If it is a star with its center at the root of the tree, then the
successor function must be used. Otherwise, one of these four parameters
may be applied to jump to some lexicographically smaller level sequence.
We identify the parameter that can be used by scanning the level sequence
from right to left. A star is a rightmost subtree if the rightmost entries of
the level sequence are equal. A path is a rightmost subtree if the entries of
the level sequence decrease by 1 moving from right to left. Thus, we can
use the parameters S, S’,C and C’ and jumps to determine the number of
level sequences between a pair of level sequences or to determine the level
sequence that is the i** sequence following a given level sequence.
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3 Parallel Generation and Processing of Trees

In this section we present an algorithm for parallel generation of trees based
on the Beyer and Hedetniemi sequential algorithm. Although the Beyer and
Hedetniemi algorithm for sequential generation of trees is as efficient as
possible (constant time per tree or constant amortized time), the number
of rooted trees of order n is exponential in n. Consequently, any gains
achieved through parallel generation of trees would be most significant for
generating trees of large order or for generating trees and simultaneously
studying certain properties of the trees.

As noted previously, Kubicka [6, 7] took advantage of the structural
information that is encoded in a tree’s level sequence and adapted the Beyer
and Hedetniemi algorithm for sequential generation of trees to evaluate
tree properties for all trees in constant amortized time. This approach is
particularly useful in cases when it is necessary to conduct an exhaustive
search of all trees, for example, when the problem of finding an optimal
value among all trees for a particular parameter is very complicated or is
NP-complete. Our algorithm for parallel generation of trees also could be
adapted to evaluate tree properties for each tree generated as Kubicka [6, 7]
did for the sequential algorithm.

For parallel generation of trees, we use the parameters S, §’,C, and C'
to compute starting sequences and counts for the number of sequences to
be generated sequentially by each processor. The main idea is to assign to
each processor approximately the same number of trees to generate. Let P
be the number of processors, n the order of the trees under consideration,
and T(n) the number of trees with n vertices. Then M = I'Zg-')-] is the
approximate number of trees that each processor will generate. Separate
processors will be devoted to assigning starting sequences and counts to
each of the other processors. We maintain a set of available, i.e., currently
not working, processors and call this set SAP. When the starting sequence
and count of number of sequences to be generated by a single processor is
determined, we assign an available processor to generate those sequences.
When the processor has completed its work, it is returned to SAP.

Since trees with the same height occur consecutively in the lexicographic
ordering of the level sequences, generation will be by height. The assign-
ment of heights to processors is done in two phases. In phase 1, a single
processor will generate all sequences for trees of several different heights,
those heights for which the number of trees does not exceed M. In phase 2,
several processors will generate the sequences for all trees of one height for
each of the remaining heights. The assignment of starting sequences and
counts for these remaining heights is done in parallel; for each such height,
one processor is devoted to computing the starting sequences and counts
for the processors that actually generate the trees of that particular height.



To make the assignments for a height h, its directing processor starts
with the first (lexicographically largest) tree of that height, L; = (1,2,3,...,
h—1,h,h,..., k). Then the maximum feasible jumps in the form of S, 5, C,
C’ or the successor function are applied successively until the sum of the
jump sizes reaches or just surpasses M. The sum of the jump sizes and the
sequence L; are the count and starting sequence that are assigned to the
first available processor P, from SAP. If the number of remaining trees of
height h is greater than M, the successor of the tree reached by the last
jump becomes the starting sequences L for the next available processor
P, from SAP and, as above, the directing processor uses the jumps to de-
termine the count for P,. This process is repeated until the number of
remaining trees of height A is at most M. Then this number and the last
starting sequence are assigned to the directing processor to generate the
remaining trees of height h.

The following theorem shows that each processor will generate its as-
signed level sequences as efficiently as possible, i.e., in constant amortized
time.

Theorem 5. (i) Generation of any N successive trees of order n by the
Beyer and Hedetniemi algorithm takes O(N) time.

(it) The average number of entries of the level sequence that are scanned
and altered by the Beyer and Hedetniemi algorithm to generate all irees of
a fized height h and order n is asymptotic to 1-1a,.’ where is o, is the radius

of convergence of the generating function for rooted trees of height h.

Proof. Part (i) follows directly from Beyer and Hedetniemi’s proof [1] that
their algorithm generates all rooted trees of a given order in constant amor-
tized time.

For part (ii), we follow the technique in Kubicka’s proof [6, 7] that
provided the asymptotic limit on the average number of entries scanned
and altered by the Beyer and Hedetniemi algorithm for all rooted trees.

Let Hp(z) be the generating function for rooted trees of height h. Then
z'Hp(z) is the generating function for rooted trees of height & with at
least i end-vertices on level 2. Thus, the expression z*~!Hy(z) — z*Hx(z)
represents the generating function for rooted trees of height A with ex-
actly ¢ — 1 end-vertices on level 2. When the Beyer and Hedetniemi algo-
rithm is applied to such a tree, exactly ¢ entries of the level sequence are
scanned and altered to produce the level sequence for the next tree. Now

[ ]
let G(z) = Z gnz" be the generating function describing the complexity

n=0
of the algorithm, i.e., g, corresponds to the number of steps the algorithm
has to perform in order to generate all rooted trees of order n. Then we
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have:

G() = (Ha(c) - cHr(x)) + 2cHn(z) - 22 Hr(a))
+ 3(z?Hp(z) — 23 Hp(z)) + . ..

=Hp(z)1+z+22+2°+...] = Hp(z)

1
1-z
Therefore, as in {7}, we can conclude that g, ~ H(n, h)l_—lﬂ-, and the
average number of steps per tree for the Beyer and Hedetniemi algorithm to
generate all trees of a fixed height k and order n is asymptotic to ;2-. O

Example 1. Now we shall demonstrate the gains in efficiency achieved
by this approach to parallel generation for trees of order 20. We assume that
one time unit is required to perform one jump or to produce the next level
sequence. Therefore, we measure the efficiency in terms of the number of
level sequences actually generated. Suppose we have 128 processors, then
M is approximately 105,000. In phase 1, one processor will generate all
trees of heights 1, 2 and 3 (44,533 trees), and another will generate all trees
of heights 13 - 19 (94, 504 trees). The data for the trees of heights 4 - 12
generated in phase 2 is summarized in Table 1.

From Table 1, 16 processors are allocated to height 5. One proces-
sor determines and assigns the starting sequences and counts to the other
15 processors that generate the trees in parallel. This processor produces
174,009 sequences in order to make these assignments. The maximum num-
ber of trees generated by one of the other 15 processors is 106,614 trees.
Therefore, the total time units required to generate the 1,599,205 trees of
height 5 is 280,623. Since this is the maximum time required to generate
the trees of one particular height, this is the total time required to gener-
ate all the trees with 20 vertices in parallel. Sequential generation takes
12,826,228 units of time to generate the 12,826,228 trees with 20 vertices.
Consequently, this method of parallel generation is approximately 45 times
faster than sequential generation for trees of order 20.

Our empirical data shows that we get greater gains in efficiency for
trees of higher order, i.e., as the order of the trees increases, the ratio of the
time for sequential generation to the time for parallel generation increases.
A theoretical analysis requires knowledge of the distribution of the jumps
made when we begin with the first tree of a particular height. This seems
to be extremely difficult to ascertain since it depends on the height and the
structure of the trees produced by the jumps.



Time for | Max # of Trees | Total Time

Ht # of # of Processor Generated for Parallel

Trees | Processors | Assignment | per Processor | Generation
4 | 495417 6 84602 99083 183685
5 | 1599205 16 174009 106614 280623
6 | 2564164 25 168343 106840 272183
7 | 2740448 27 94888 105402 200290
8 | 2256418 22 37565 107448 145013
9 [ 1530583 15 11563 109327 120890
10 | 880883 9 3285 110110 113395
11 | 435168 4 943 108792 109735
12 | 184903 1 278 184903 185181

Table 1: Data for Parallel Generation of Trees of Order 20

4 Ranking and Unranking Algorithms

As described in the introduction, the ranking problem is to determine the
rank of a specified tree in a particular ordering of all trees with a given
number of vertices and the unranking problem is to determine the it* tree
in a particular ordering of all trees with a given number of vertices. Conse-
quently, each generation algorithm that produces trees in a particular order
results in new, unsolved ranking and unranking problems. In this section,
we address the ranking and unranking problems for the ordering on rooted
trees as induced by the Beyer and Hedetniemi algorithm.

In this context, the ranking problem is: given a level sequence L of
length n, determine its rank in the (decreasing) lexicographic ordering of
rooted trees with n vertices. Note that trees with the same height occur
consecutively in the lexicographic ordering of the level sequences of trees
with a fixed number of vertices. Consequently, we determine the height of
the given tree and find its rank among the trees of the same height. The
algorithm is as follows.

Step 1. Determine the height h of the tree represented by the level se-
quence L:

e Scan the entries of L from left to right to find the smallest integer i
such that ;43 #1; + 1.

o Seth=1i—-1and L' =(1,2,3,...,h,h + 1,2,2,,2), the last tree of
height A.

e Initialize ¢t = 0,L, = L, and M = 0.
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Step 2. Determine the distance between L and L’

While L, # L', do
Begin

o Apply the largest feasible jump (S, §’, C, C’ or the successor function)
to L; to produce the level sequence Lyt with jump size J such that
L’ _<. Lt+1 < Lg.

eSet M=M+Jandt=t+1.
End {While}
Step 3. Calculate the rank of L: Rank(L) = 2 H(n,i) -

Note that the ranking algorithm can be modlﬁed to determine the lexi-
cographic distance between any two trees with the same number of vertices.
Once the ranks of the two trees are known, the lexicographic distance be-
tween the trees is the difference in their ranks.

In the context of the ordering induced by the Beyer and Hedetniemi
algorithm, the unranking problem is to determine the ih level sequence in
the decreasing lexicographic ordering of the level sequences of rooted trees
of order n for given integers i and n. The unranking algorithm is, for the
most part, a reversal of the ranking algorithm and is given below.

Step 1. Determine the height h of the it* tree and initialize variables:

n-1

e Set h equal to the smallest integer such that Z H(n,j) <i <
n—1
> H(n,3)).
j=h
e Set Lo =(1,2,3,...,h,h+1,h+1,...,h+1), the first tree of height
h.
n—1
o Set M= Y H(n,j)+1, the rank of Lo, and initialize ¢ = 0.
Jj=h+1
Step 2. Determine the level sequence with rank i:
While M < i, do
Begin

o Apply the largest feasible jump (S, S’, C, C’ or the successor function)
to L; to produce the level sequence L) such that M + J < d.
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e Set M=M+Jandt=t+1.
End {While}
Step 3. L; is the level sequence of the tree with rank i.

Note that the unranking algorithm is actually applied in the paraliel
generation algorithm. This method of unranking could also be part of an
algorithm to produce a random tree by first randomly producing an integer
corresponding to the rank of the tree and then identifying the level sequence
of the tree with that rank.

Example 2. We will use the ranking algorithm to determine the rank
of the level sequence L = (12 34 5 3 4 4 4 4) among the 719 rooted trees
with 10 vertices. From step 1, we have the height of the treeis 4 and L’ =
(1234522222). There are 542 rooted trees with 10 vertices and height
at least 4 [12]. To determine the position of L among the trees of height 4,
we produce the following intermediate level sequences and jumps.

Level Sequence Jump
Lo = (1234534444) 5'(4,4) =35,J =34, M = 34
L, = (1234532222) Successor Function,J = 1,M = 35
L, = (1234523452) Successor Function,J = 1, M = 36
Ls = (1234523444) S(2,4)=8,J =7, M = 43
L, = (1234523422) Successor Function,J =1, M = 44
Ls = (1234523333) 5'(4,3)=17,J =6,M =50

Le = (1234522222) = L'
Thus, the rank of L = 542 - 50 = 492.

The complexities of the ranking and unranking algorithms can be mea-
sured in terms of the number of jumps required to traverse the trees of the
given order or given order and height. This is extremely difficult to deter-
mine precisely since the number of jumps required to traverse a particular
set of trees depends on the structure of the starting and ending points and
the intermediate trees reached by the jumps. Clearly, the method presented
in this paper is an improvement over the Beyer and Hedetniemi sequential
generation of all trees to reach the tree of the desired rank but it is pos-
sible that the complexity of this method is exponential in n, the order of
the trees under consideration. However, the data in Tables 2 and 3 shows
that the ratio of the number of jumps required to the total number of trees
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under consideration decreases as n, the order of the trees, increases. Table
2 contains data for traversing all trees of the given order. Table 3 contains
data for traversing trees of a given order and the height with the greatest

number of trees.

Number of | Average Number of
Trees Jumps per Tree
10 119
11 .010
12 .088
13 .078
14 071
15 .065
16 .060
17 .055
18 .052
19 .048
20 .046

Table 2: Average Number of Jumps per Tree Generated

Number of Average Number of
Trees Height Jumps per Tree
10 4 111
11 4 119
12 5 .060
13 5 .070
14 5 077
15 6 .040
16 6 046
17 6 .051
18 6 .056
19 6 .060
20 7 .035

Table 3: Average Number of Jumps per Tree Generated by Height
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A Appendix of Values for S,5,C,C’

{k\m| 2] 3 4 5 6 7 8
3 4 | 8 17 37 85 200 486
4 8120 50 124 312 790 2025
5 13 ] 38 | 107 | 293 796 2149 5800
6 191 63 | 196 | 584 1700 | 4868 13806
7 26 | 96 | 326 | 1047 | 3247 | 9822 | 29207
8 34 | 138 | 507 | 1743 | 5732 | 18254 | 56789
9 43 | 190 | 750 | 2745 | 9535 | 31873 | 103525
10 53 | 253 | 1067 | 4139 | 15135 | 52967 | 179268
11 64 | 328 | 1471 | 6025 | 23125 | 84532 | 297589
12 76 | 416 | 1976 | 8518 | 34228 | 130418 | 476778
13 89 | 518 | 2597 | 11749 | 49314 | 195493 | 741027
k \m 9 10 11 12 13
3 1205 3047 7813 20299 53272
4 5239 13689 36069 95735 255875
5 15665 42413 115142 313589 856748
6 38906 109240 | 306064 856720 2397552
7 85782 | 249734 | 722379 2079929 5968749
8 173597 | 523661 | 1563557 | 4631702 13635884
9 328904 | 1027105 | 3164037 | 9641431 | 29122515
10 591092 | 1909008 | 6063376 | 18998764 | 58869604
11 1016957 | 3393281 | 11104229 | 35759816 | 113634179
12 1686438 | 5807833 | 19566443 | 64724823 | 210844713
13 || 2709719 | 9622086 | 33347338 | 113243704 | 377999239

Table 4: Values of S(m, k).
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\m | 2 3 4 5 6 7 8 |
3 3| 5 7 11 15 22 30

4 7116 [ 35 78 175 403 949

5 12| 33 | 86 220 558 1417 3616

6 18] 57 | 168 | 476 | 1318 [ 3603 9785

7 25| 89 | 290 | 895 | 2668 | 7773 | 22305

8 33130 | 462 | 1537 | 4892 | 15095 | 45560

9 42 | 181 | 695 | 2474 | 8358 | 27190 | 86020

10 52 | 243 | 1001 | 3791 | 13532 | 46244 | 152919
11 63 | 317 | 1393 | 5587 | 20993 | 75136 | 259077
12 75 | 404 | 1885 | 7976 | 31449 | 117583 | 421884
13 88 | 505 | 2492 | 11088 | 45754 | 178303 | 664465
\m 9 10 11 | 12 13
3 42 56 (i 101 135
4 2291 5650 14205 36294 94005

5 9298 24107 63030 166126 441115
6 26507 71800 194760 529507 1443566
7 63369 178875 | 502889 1410527 | 3951683
8 135329 | 397319 | 1156596 | 3345899 | 9635280
9 266476 | 812355 | 2445981 | 7294196 | 21588831
10 492999 | 1558114 | 4847381 | 14891352 | 45283087
11 867610 | 2838713 | 9115318 | 28825776 | 90017650
12 1465114 | 4956067 | 16409159 | 53376055 | 171081121
13 2389326 | 8345983 | 28464337 | 95165860 | 312892475

Table 5: Values of S'(m, k).
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k\m| 2| 3 4 5 6 7 8

2 2| 4 9 20 48 115 286

3 41 9 20 48 115 286 719

4 8 [ 21 54 140 363 949 2495

5 131 39 | 112 | 315 875 2416 6651

6 19| 64 | 202 | 613 | 1815 | 5287 | 15235

7 26 | 97 | 333 | 1084 | 3407 | 10447 | 31475

8 341139 | 515 | 1789 | 5947 | 19150 | 60233

9 43 [ 191 | 759 | 2801 | 9816 | 33117 [ 108571

10 53 | 254 | 1077 | 4206 | 15494 | 54649 | 186445

11 64 | 329 | 1482 | 6104 | 23575 | 86756 | 307544

12 76 | 417 | 1988 | 8610 | 34783 | 133303 | 490292

13 89 [ 519 | 2610 | 11855 | 49989 | 199174 | 759032

k \m 9 10 11 12 13 |

2 719 1842 4766 12486 32973
3 1842 4766 12486 32973 87811
4 6608 17604 47190 127167 344426
5 18298 50359 138771 383019 1059165
6 43586 124095 | 352209 997673 2822788
7 93618 | 275821 806894 2347988 6805135
8 186112 | 567251 | 1710595 | 5115362 15195448
9 348137 | 1097036 | 3409249 | 10476902 | 31604173
10 619715 | 2017436 | 6457994 | 20389756 | 63647254
11 1058408 | 3556580 | 11720199 | 38003523 | 121577131
12 1745071 | 6047662 | 20502793 | 68245527 | 223679514
13 2790972 | 9966642 | 34737986 | 118635645 | 398223824

Table 7: Values of C’'(m, k).
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