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Abstract

Let G be a connected graph. A vertex r resolves a pair u,v of
vertices of G if u and v are different distances from r. A set R of
vertices of G is a resolving set for G if every pair of vertices of G is
resolved by some vertex of R. The smallest cardinality of a resolving
set is called the metric dimension of G. A vertex r strongly resolves
a pair u, v of vertices of G if there is some shortest u — » path that
contains v or a shortest v—r path that contains u. A set S of vertices
of G is a strong resolving set for G if every pair of vertices of G is
strongly resolved by some vertex of S; and the smallest cardinality
of a strong resolving set of G is called the strong dimension of G.
The problems of finding the metric dimension and strong dimension
are NP-hard. Both the metric and strong dimension can be found
efficiently for trees. In this paper, we present efficient solutions for
finding the strong dimension of distance-hereditary graphs, a class of
graphs that contains the trees.

Key words: metric dimension, strong dimension, distance-hereditary graphs
AMS Subject Classification Codes: 05C12, 05C85

1 Introduction

For graph theory terminology not defined here we follow [4]. A vertex r of a
graph G resolves two vertices u and v of G if the distance, d(r,u), from r to
u does not equal the distance, d(r,v), from 7 to v. A set R of vertices of G
is a resolving set for G if for every pair u,v of vertices of G, there is some
T € R that resolves u and v. The minimum cardinality of a resolving set for
G is called the metric dimension of G and is denoted by dim(G). A minimum
resolving set is called a metric basis for G. So, for example, for the complete
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graph K., dim(K,) = n — 1; for the path P, of order n, dim(P,) = 1 and
for the cycle Cn of order n, dim(Cr) = 2. Alternatively, an (ordered) set R =
{r1,72,...,7} is a resolving set for G if for every two distinct vertices v and v
of G, the two k — vectors r(v|R) = (d(v,m1),d(v,72),...,d(v, 7)) and r(u|R) =
(d(u,r1),d(u,72),...,d(u, 7)), called the representations of v and u with respect
to R, are distinct.

Slater in [14] and {15] and independently Harary and Melter in [10] introduced
and studied this in variant, although resolving sets in hypercubes were studied
earlier under the guise of coin weighing problems (see [2]). Slater referred to
the metric dimension of a graph as its location number and motivated the study
of this invariant by its application to the placement of a minimum number of
sonar/loran detecting devices in a network so that the position of every vertex
can be uniquely described in terms of its distances to the devices in the set. It
was noted in [7] that the problem of finding the metric dimension of a graph is
NP-hard. Khuller, Raghavachari and Rosenfeld [12] gave a proof of this result.
Their interest in this invariant was motivated by the navigation of robots in a
graph space. A resolving set for a graph corresponds to the presence of distinctly
labeled ‘landmark’ nodes in the graph. It is assumed that a robot navigating
a graph can sense the distance to each of the landmarks, and thereby uniquely
determine its location in the graph.

Several other applications of the metric dimension of a graph are discussed in
[2] and [3]) and an integer programming formulation is described and studied in
[6].

A more restricted invariant than the metric dimension was introduced in [16).
The authors of this article considered the following problem:

Problem: Suppose H is an isometric subgraph of G, i.e., du(u,v) = dg(u,v)
for all pairs of vertices u,v in H. Under what conditions does H allow us to
determine all distances in G?

Figure 1: Nonisomorphic graphs with the same metric basis

Even though a metric basis uniquely determines the vertices of a graph it
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does not uniquely determine the graph. For example, the graphs of Fig 1(a) and
Fig 1(b) both have metric basis B = {e, f} and corresponding vertices have the
same 2-vectors with respect to B but these graphs are not isomorphic.

The following definitions give rise to sets of vertices that are sufficient to
guarantee the sought after uniqueness. A vertex r strongly resolves a pair u, v of
vertices in a connected graph G if there is a shortest u — » path that contains v
or a shortest v — 7 path that contains u. A set S of vertices of G strongly resolves
G if every pair of vertices is strongly resolved by some vertex of S. The smallest
cardinality of a strong resolving set of G is called the strong dimension of G and
is denoted by sdim(G). Clearly if a vertex r strongly resolves u and v of G, then
7 resolves 4 and v. Hence dim(G) < sdim(G). It was shown in [13] that the
problem of finding the strong dimension of a graph is NP-hard.

Both the metric dimension and strong dimension can be found efficiently for
trees. Indeed it is not difficult to see that the strong dimension of a non-trivial
tree is one less than the number of leaves. Efficient procedures for finding the
metric dimension of trees were described independently in [3], [10], [12], and [14].
The metric dimension of a path is 1 since a leaf resolves the path. Suppose now
that T contains a vertex of degree at least 3. A vertex v of degree at least 3 is an
exterior vertez if there is some leaf u in T' such that the u — v path in T contains
no vertices of degree exceeding 2 except v. In that case u is an erterior leaf of
v. Let ez(T') denote the number of exterior vertices of T and I(T') the number of
leaves (vertices of degree 1) of T. It turns out that a metric basis for a tree can
be found by selecting, for each exterior vertex, all but one of its exterior leaves.

Hence
dim(T) = I(T) — ex(T).

1.1 Distance-Hereditary Graphs

In this paper we develop an efficient algorithm for finding the strong dimension
of distance-hereditary graphs, a class of perfect graphs that properly contains all
trees. A graph G is distance-hereditary if every connected induced subgraph H
of G is isometric, i.e., if for every pair u,v € V(H), duy(u,v) = de(u,v). Howorka
[11) first defined and studied these graphs.

Several polynomial recognition algorithms for distance-hereditary graphs ex-
ist. To describe one of these that we will use we define two vertices v and v’ to
be true (false) twins if they have the same closed (respectively, open) neighbour-
hood. (The open neighbourhood of a vertex v is defined as N(v) = {u|uv € E(G)}
and the closed neighbourhood of v is defined by N[v] = N(v)U{v}.) Vertices that
are either true or false twins will be referred to as twins. False twins that are not
leaves will be referred to as proper false twins. The following characterization of
distance-hereditary graphs was discovered independently in [1] and [9).

Theorem 1.1 A graph G is distance-hereditary if and only if every induced sub-
graph of G contains an isolated vertez, a leaf, or e pair of twins.

Suppose G is a graph and that v’ is some vertex of G. If we add a new vertex
v to G and join it to: .
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1. only v/, we say v was added as a leaf to v';

2. every vertex in the open neighbourhood of v’, we say v was added as a false
twin of v'; ‘

3. every vertex in the closed neighbourhood of v’, we say v was added as a
true twin of v'.

From Theorem 1.1, it follows that a connected graph G of order n is distance-
hereditary if and only if there is a sequence of graphs G2, Gs, ..., G, such that

(i) Ga & Ko, =2 G and

(ii) for i = 3,4,...,n, G; is obtained from G;_1 by adding some vertex v; as
a leaf, true twin or false twin of some vertex v} in Gi-1.

Let v; and v2 be the vertices of G2 and for ¢ > 3, let v; be as described in
(ii). Then we call v1,v2,...,vn 8 DH sequence of G.

Another useful characterization of distance-hereditary graphs due to Howorka
{11] states:

Theorem 1.2 A graph G is distance-hereditary if and only if every cycle of length
at least 5 contains a pair of crossing chords.

1.2 Background on the Strong Dimension

It was shown in [13] that the problem of finding the strong dimension of a graph
can be transformed to the vertex covering problem. A vertex cover of a graph is
a set S of vertices of G such that every edge of G is incident with at least one
vertex of S. The vertez covering number of G, denoted by a(G), is the smallest
cardinality of a vertex cover of G. We say a vertex u is marimally distant from v
(denoted by u M D v) if for every w € N(u), d(v,w) < d(u,v). If u is maximally
distant from v and v is maximally distant from u, we say that « and v are mutually
mazimally distant and denote this by u MMD v,

Let G be a connected graph. Then the strong resolving graph Gsr of G has
the same vertex set as G and uv € E(Gsr) if and only if u MMD v. The
following result was established in [13].

Theorem 1.8 For any connected graph G, sdim(G) = a(Gsr). Moreover, o
minimum vertez cover of Gsr is a minimum strong resolving set of G.

We use this result when developing an efficient algorithm for finding the strong
dimension and a strong resolving graph for G.

2 Algorithm for Finding the Strong Dimen-
sion of a Distance-Hereditary Graph

Let G be a distance-hereditary graph of order n. Let v1,v2,...,va be a DH
sequence for G and let Gi = ({v1,v2,...,v}) for 1 < i < n. Then v; is a leaf,
proper false twin or a true twin of some vertex v; in G; 1 £j <.
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To describe the algorithm, we will distinguish five types of vertices in a
distance-hereditary graph:

1. leaf

ok W o

true twin

. proper false twin

cut-vertex
. other (if it does not belong to any of the above four types)

The algorithm begins with G2, which necessarily is isomorphic to Kj. It
proceeds by adding at each step the next vertex in the DH sequence until all
vertices are added. After the addition of the next vertex in the DH sequence, the
strong resolving graph Gsr is modified and the minimum strong resolving set
Ssr is modified. The algorithm also keeps track of the vertex type of each vertex
after each step is completed. Moreover, if a vertex belongs to a set of proper false
twins or true twins, then the algorithm keeps record of these sets.

Algorithm (for finding the strong dimension of a distance-hereditary graph
G = (V, E) with vertex set V and edge set E.)

1. Initially Gsr consists of v, v2 and the edge viv2 and Ssg = {v1}. Assign
type leaf to both v; and v..

2. Fori=

3,...,m

(a) If v; is a leaf in G; with neighbour v} then assign type leaf to v; and
type cut-vertex to v{.

.
|8

ii.

jii.

If v; is of type leaf in Gi_1, then add v; to Gsg and for every u in
G'sr such that uv; € E(Gsr) delete uv! and add uv;. If v} € Ssp,
let Ssp — (Ssr \ {v{}) U {v:}; otherwise, Ssg is unchanged.

If v} is of type proper false twin or a true twin in G;..q, let Sy be
the collection of twins to which v} belongs in Gi-1. If |S,,:| =2,
then the vertex of S \ {vi} is assigned type other; otherwnse,
the vertices of Sy \ {v{} retain their proper false twin status
and S, \ {v}} is the set of proper false twins for each of the
vertlces contained in it. Determine & BF'S tree T rooteéd at v; in
Gi. Add v; to V(Gsgr). For every leaf u # v; in T such that no
neighbour of u in G; is further from v; than u, add uv; to E(Gsg).
For every vertex w in Gsr such that wv € E(G’sn) delete wv]
from Gsr. Let Gsgr be the result;mg graph. If v{ € Sgg, let
Ssr — (Ssr \ {(¥})U {w}. If v} ¢ Ssp, let v € Sy \ {v{} and
let Ssr ~ (Ssr \ {u}) U {v:}.

If v} is of type cut-vertex in G_,, determine a BFS tree T rooted
at v; in G;. Add v; to Gsr and for every leaf u # v; of T such
that no neighbour of « in G; is further from v; than u, add uw; to
E(Gsgr). If every neighbour of v; in Gsg belongs to Ssg, then
Ssr is unchanged; otherwise, Ssr «— Ssr U {u}.
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iv.

If v! is of type other in Gi_1, construct a BFS tree T rooted at
v; in Gi. For every u in Gsg such that wv] € E(Gsr) (if any)
delete uv) from Gsr. Add v; to V(Gsr). If u is a leaf of T such
that no neighbour of u in G; is further from v; than u add uv;
to E(Gsr). If v; € Ssr, Ssr «— (Ssr\ {vi}) U{w:}. If o] & Ssr,
and every neighbour of v; in Gsr belongs to Ssr, then Ssa is
unchanged; otherwise, Ssp — Ssr U {vi}.

(b) If v; is a true twin of v} in Gi, then both v; and v; are assigned type
true twin.

i.

ii.

jii.

iv.

If v} is a leaf, then add v; to Gsr and join v; to vj, as well as
to all the neighbours of v} in Gsgr and let Gsr be the resulting
graph. Let Ssgp «— Ssr U {v:}. Let {vi,v{} be the set of true
twins for v; and v}.

Ifvisa proper false twin, then let S,; be the collection of false
twins of v; in Gi-1. If |Sy;| =2, then ‘the vertex of Sy \ {vi} is
assigned type other; otherwxse, the vertices of S,; \ {'u,} retain
their false twin status and S‘,: \ {vi} is the set of proper false
twins for each of the vertices conta,med in it. Let {v}, v} be the
set of true twins for v; and v}. Add v; to Gsgr and join v; to v
and to all the neighbours of v} in Gsg. Let Ssr «— Ssp U {v:}.
If v} is a true twin, then add v; to Gsr and join v; to v} and all
the neighbours of v} in Gsr. Let Ssr — SsrU {v:}. Add v; to
the set of true twins that contains v;.

If v} is a cut-vertex, then add v; to Gsr and join v; to v; and let
Ssp — SsprU{vi}. Let {vi, v}} be the set of true twins for v; and
v}. If v} is adjacent with exactly one leaf in Gi_1, then that leaf
is assigned type other. If v is adjacent with two or more leaves
in Gi_1, then those leaves become a set of proper false twins.

If v/ is of type other, then add v; to Gsgr and join v; to v and
to every neighbour of v} in Gsg (if any). Let {vi,v;} be the true
twin set for v; and v{. Let Ssr «— SsrU {u:}.

(¢) If v is a proper false twin of v} in G, then both v, and v} are assigned
type proper false twin. (Note that in this case v; is not a leaf.)

i.

ii.

If v} is a proper false twin, add v; to Gsr and join v; to v} and
all the neighbours of v{ in Gsr. Let Gsr be the resulting graph.
Let Ssr «— SsrU {v:} and add v; to the set of twins containing
v},

If v} is a true twin in Gy_i, then let S,,: be the collection of true
twins in Gi_; to which v{ belongs. If |S,;| = 2, then the vertex
of Sy \ {vi} is assigned type other; otherwme, the vertices of S,;
retain their true twin status and S, \{v,} is the set of true twins
for each of the vertices conta.med m it. Let {vi,v}} be the set of
proper false twins for v; and v}. Add v; to Gsr and join v; to v}
and all neighbours of v; in Gsr that do not belong to S,;. For



every u € S,/ \ {v{}, delete the edge uv} from Gsg. Let Gsgr be
the resulting’graph.
Suppose Nggp (vi) \ {vi} € Ssr. If v € Ssg, then Ssgr remains
unchanged. If v; ¢ Ssr, let u € S,y \ {v{} and let Ssp ~
(Ssr\ {u}) U {u:}.
Suppose Nogp(v) \ {vi} € Ssr. Then Nogn(ui) \ {of} # 0. If
|Nggp(vi) \ Ssr| > 2, then Ssp — Ssr U {w:}. If [Nggp(wi) \
Ssr| =1, let u € Sy \ {vi} and Ssr «— (SsrU Nagp(vi) \ {u}.
iii. If v} is & cut-vertex in Gi—i, add v to Gsp and join v; to v}
by an edge and let Ssg «— Ssp U {v}. If v} is adjacent with
exactly one leaf in Gji.1, then that leaf is assigned type other. If
v} is adjacent with two or more leaves in G;_, then those leaves
become a set of proper false twins.
iv. If vj is of type other, add v; to Gsg and join v; to ¥} by an edge
and for every neighbour u of v} in Gsg add the edge viu to Gsrg.
Let Ssp — Ssa VU {v}.

3. Output Ssg as it is a minimum strong resolving set of G.

Theorem 2.1 The set Ssr output by the Algorithm is a minimum strong resolv-
ing set for G = (V, E).

Proof: To simplify the proof, we will let Gisr be the ‘strong resolving’ graph
of G; constructed by the algorithm and Sisr the ‘strong resolving’ set for G
constructed by the algorithm for 2 <i < n.

We proceed by induction on i > 2 to show that after v; is added to G;_;
to produce G;, the algorithm correctly modifies Ssg so that it is a minimum
strong resolving set for G;. Moreover, Gsr is correctly modified to be the strong
resolving graph of G; and the vertex types are correctly described.

For i = 2 the algorithm correctly specifies a minimum strong resolving set of
G2 and correctly describes the strong resolving graph Gasg for Gz and the vertex
types of v; and vz in Ga.

Suppose now that ¢ > 3 and that the algorithm correctly determines a min-
imum strong resolving set, namely S(;-1)sr, for Gi—1, that G;_1ysg correctly
describes the strong resolving graph of Gi—1, and that the algorithm correctly
describes the vertex types of all vertices in G;_;.

Case 1: v is added as a leaf to v!.

Clearly v;'s type is a leaf and v} is a cut-vertex. Moreover, if v} has exactly
one proper false twin or exactly one true twin, then that twin is of type other in
G; and the vertex types of all other vertices remain unchanged. Since G;—, and
G:; are connected induced subgraphs of a distance-hereditary graph, dg,_, (z,y) =
de(z,y) for all z,y € V(Gi-1). Moreover, if z,y € V(Gi-1)\{v}}, thenz MMDy
in Gi_; if and only if z MM D y in G;. Since, for all u € V(Gi-1), dg, (vi,u) =
dg,(v{,u) + 1 = dg,_, (vi,u) + 1, v{ is not incident with any edges in the strong
resolving graph for G; and since v; is maximally distant from all vertices of Gi_,
it is mutually maximally distant with those vertices that are maximally distant
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from v; in G;. If v} is a leaf, these vertices are precisely the neighbours of v} in
the strong resolving graph G(i-1)sr for Gi—1. If v} is a twin, cut-vertex or of type
other in G;_i, the vertices maximally distant from v; can be determined using a
BFS tree rooted at v; in G;. Hence G;sr is the strong resolving graph of G; in
this case. It remains to be shown that S;sg is a minimum strong resolving set
for G;.

Subcase 1.1: . Suppose v} is a leaf in Gi—1. Note that v} is isolated in
the strong resolving graph for Gy. Moreover, v; MMD u in G; if and only
if v, MMD wu in Gi-1. So the neighbours of v} in G;_1)sa are precisely the
neighbours of v; in Gisr. Hence, Gisp & G(i—1)sr U K1, and thus a minimum
vertex cover S;sp of Gisr can be obtained from a minimum vertex cover of
G(i-1)sr, namely S_1)sr, by either replacing v; with v; in Su_yysr if v €
S(i-1)sr or by letting Sisr = S-1sr if v; € Si-1)sr. By Theorem 1.3, Sisr
is thus a minimum strong resolving set for G;.

Subcase 1.2: Suppose v; is a proper false twin or a true twin in G;—;. Then
v} is no longer a twin in G;. The neighbours of v; in Gisr contain as a subset
the neighbours of v} in G(;_1)sg. From an earlier observation, G(;-1)sr — vi =
Gisr\ {vi,v}}. By assumption, S(;_1)sr is a minimum vertex cover of Gi_,, and
by the algorithm, v} is isolated in Gisr. From these observations, it follows, if
S(i-1)sr contains v{, that Sisr = (S-1)sr \ {v{}) U {v:} must be a minimum
vertex cover of Gisr. Hence, by Theorem 1.3, Sisr is a minimum strong resolving
set for Gi. If v € S(;_1)sr, then necessarily all the twins of v} in G;_1 belong to
S(i-1)sr since twins of Gi_ are pairwise adjacent in G(;—1)sRr-

If  is a twin of v}, then §' = (S—1ysr \ {u}) U {v{} is still a vertex cover of
G(i-1)sr, since u and v; have the same closed neighbourhood in G(;—1)sr. So, as
in the previous situation, (S’\ {v{})U{%} = (Si-1)sr\ {u})U{w} is 8 minimum
strong resolving set of G;.

Subcase 1.3: Suppose ] is a cut-vertex of Gi—1. Then v is isolated in
G(i-1)sr and Gisr. So all the edges of G(i_1)sr are also edges of Gigr. In
addition, v; is incident with some edges of Gisgr. Clearly, if all neighbours of v;
in Gisr are in S(;_1)sr, then S(;_1)sr is & minimum vertex cover of Gisr.

Suppose now that some neighbour of v; in Gisr does not belong to S(;—1)sr.
We will show that S(;—1ysr U {%:} is a minimum cover for GisRr.

The set S;;—1)sr U {v:} is certainly a vertex cover for Gisr. If it is not a
minimum cover, then there is a minimum vertex cover Ti—1 of G(i-1)sr that
contains all the neighbours of v; in Gisr. Since Ti-1 is a minimum vertex cover
of G(i-1)sr, each ¢ € Ti_; has a neighbour z' in G(;-1)sr that is not adjacent
with v; in Gisr. So ' is not maximally distant from v} in G;—1. (Note z and
=’ belong to the same component of Gi—; — vj.) Hence z’ has a neighbour 1
in Gi—; such that dg,_, (¥1,v},) > de_,(z,v{). If =’ is not maximally distant
from v} in Gi-1, it has a neighbour y; such that dg,_, (¥2,v!) > dg,_, (v1,%).
Let £’ = yo. We continue in this manner constructing a sequence yo,¥1,¥2,...
of distinct vertices such that dg,_, (yj,v!) < dg;_,(yj+1,vi) for j > 0. This
sequence must terminate with some y, such that y, is maximally distant from V).

Note that if H is any z’ — v} geodesic, then y;y;-1...y1H is a y; —v; geodesic
for 1 < j < 8. Since z' = yo is maximally distant from z in Gi-1, ' cannot



lie on any v; — & geodesic in G;_;. Hence y; can also not belong to any = — v}
geodesic for 1 < j < s. Let Q : (vi =)uous...u4(= z) be a v} — z geodesic in
Gi—1. Let P : (v =)wows ... wx(= z’) be a v — 2’ geodesic in Gi—; that has
a maximum number of vertices in common with Q. Let I > 1 be the smallest
integer such that w; does not belong to Q. Since ' = wy is not on @, such
an ! exists. Also by our choice of P, u; = w; for 0 < j < . We now show
that { = k. Observe that the subgraph induced by the vertices on the path
X : (z =)uqug-1 ... di—awwis ... wi{= 2')y1 must contain a z — y; geodesic.
Since z’ is M D from z, X is not a z — y; geodesic.

Since P’ : wy_ywy ... wikyr and Q' : wi—1wr ... ug(= x) are both geodesics, the
only edges of (V{X)) that are not on X must join vertices of P’ — w1 and
Q' — w;—1. For an integer j (I < j < min{d, k + 1}), the only vertices of Q' to
which w; can possibly be adjacent are u;41,u; and u;_; (since dg;_, (v}, u;) =
de;_, (vi,w;)). But if wju;_1 is an edge, we have a contradiction to our choice of
P unless j = I. Also 2’ = wy, is not adjacent with uix41 (if k+1 < d); otherwise, =’
lies on an z — v} geodesic which is not possible. So the only vertex of Q' — {u1—,}
to which 2’ is possibly adjacent is ux. Since z’ is on no z — v} geodesic, the
only vertices to which y; is possibly adjacent are ur41 and ux. If yrury; € E,
then {({wi_1,%,...,ux41} U {wr,..., wk,11}) contains a cycle of length at least
five without crossing chords; this is not possible in a distance-hereditary graph.
Hence yi1ux+1 ¢ F and the only vertex of Q' to which z' may be adjacent is
ug. Since dg;_, (y1,%) < de;_,(2',z) it is necessarily the case that yux € E.
So ux # =z; otherwise, z is not maximally distant from v;. Hence k < d. Also
Y : wwigr .. Wi UkUk—1 .. . iy wi } I8 & cycle of length at least four without
crossing chords. Since G;_; is distance-hereditary, ¥ must contain exactly four
vertices, namely y1, 2, wg—1,ux. Hence l = k.

Observe that for 2 < j < s, y; is not adjacent with any vertex of Q', otherwise
if y; is adjacent with a vertex of Q' then it is adjacent with one of uk;, Uk+j+1
or uk4;—1. But then it is not difficult to see that G;-; contains a 5-cycle without
crossing chords. Hence the following is an induced subgraph of G;_i.

We know that for every vertex z that is adjacent with v; in Gisg there is
a vertex z’ not in Ng,p[vi] \ {z} adjacent with z in Gisr that is not in Ti—;.
Among all such pairs (z,z’) of vertices in G; let (z1,2}) be a pair for which
d(v{,z) is as large as possible. Suppose (v =)uou1...us(= z1) is a shortest
v; — z1 path. By the previous observation there is a vertex z1; adjacent with
zj such that d(z11,v;) > d(z},vi). Moreover, if k = d(v{,z}), then 1 < k <
d and zjug—1, znux € E. If 11 is not maximally distant from v} in Gi-1,
it has a neighbour 12 such that d(z12,v}) > d(z11,v]). We continue in this
manner constructing a sequence (] =)z10,%11,Z12,... of distinct vertices such
that dg,_, (15,v]) < dg,_, (Z1(j+1),v!) for § > 0. This sequence will terminate
with some z1,, where z1,, is M D from v]. Also the paths P : ziZ11...21,, and
Py : up_1uk ... ua(= z) are internally disjoint and the only edges from vertices of
P{ to vertices of P} are x11u, jur—1 and possibly z}uy.

Let 22 = z14,. Clearly z2 # z'. From an earlier observation, there exists a
vertex 2z that is MM D from z2 but not M D from v;. Among all such vertices z let
3 be one furthest from v}. So there is a neighbour z2; of =4 such that d(za1,v!) >

67



M
= Wy u (Theedgeuvxm@yonnaynotbeinE.)
: uk-l
Uy
u 0=v’i

Figure 2: A configuration in Subcase 1.3

d(z5, v}). Continuing in this manner we construct a sequence 21, Z22 . .. such that
dg,_, (v}, z25) < dey_, (v, Zaj+1)). This sequence must terminate w1th some
T2s,. It is not difficult to see that the path Pj : (x5 =)z20221 . .. T24, is internally
dxsjomt from both ur_1 P and the path Pi’ : ug_1usZ11%12...21s,. Using the

— 2 geodesic (v =)uou1 ... Uk—1ULT11T12 - . . T15y (= T2), it follows as for r1, )
a.nd 11 and by the choice of the pair (zl,a:l) that there is some j (1 < j < k)
such that zhu;_1, mzluj and possibly z5u; are edges and d(zh,v}) = d(uj,v}).
Apart from the edges z5u;-1, T21u; and possibly Thu; there are no edges between
vertices of P} and those on uj_1u;... uk—1 P’ or uj_1u;...uk-1P;.

Suppose first that j = k. As before we see that P; is vertex disjoint from the
two geodesxcs uouy . uk_n:la:n :1:1,l and uoui ... Uk—1UkZ11 ... Z1s;. More-
over, Thux—1 and z2;z] and possnbly THT) a.re the only edges joining vertlces of
P} and the first of these two geodesics and z3ux—1, 21ux and possibly Thuy are
the only edges joining vertices of the second uo — 15, geodesic (see Fig 3).

We now show that Pj is vertex disjoint from ug41 ... uq4. First of all observe
that 221 # uk+1, since 221z} e E but up41r) € E. We show next that uk+1:c2 ¢
E. If not, then zguk.,.;ukxnxluk 12:2 is a 6-cycle without chords unless z}z5 €
E However, then Thuk4iuxz112125 is & 5-cycle without crossing chords. So
zhur+1 € E. Now it follow that z21ur+1 ¢ E; otherwise, T21 Ukt 1 Uk Uk—1T2T21
is a 5-cycle without crossing chords. It is now not difficult to see that Pj does
not intersect the path uk.+1uk+2. .. uq; otherwise, G contains a cycle of length at
least 5 without crossing chords. Moreover, no vertex of P; is adjacent with any
vertex of Ug41Uk+2 .- Ud. SO T2,y 7 T1 OF T2.

Ifj<k-1, then one can argue as before that P; is internally disjoint from the
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Figure 3: Another configuration in Subcase 1.3

path uj_1u;...ux—1 P and from the path u;_1u;...ux—1 P{’ and the only edges
between vertices of P; and those on u;j—1%;... uk—1 P{ or uj—1u;...ux—1 P{’ are
Z21u; and zaouj—1 and possibly zhu;. Also one can argue since G; is distance-
hereditary that the geodesics u;_1u;...uqd and 25221%22 ... 225, are disjoint and
that the only edges between vertices from these two geodesics are zhu;—1 T21u;
and possibly zhu;. So z2,, # 1 or Ta.

Let 3 = 22,,. Hence there exists a vertex z3 & Ng,sp [vi] that is MM D with
z3 but that is not MD from v;. So there is a neighbour z3; of =} in G such that
dg(vi,31) > do(v,x3). Again we construct a finite sequence x31,Z32,..., T3,
such that x3,; is MD from v;. Let £4 = Z3s;. We can argue as before that z4
is not equal to z1,z2, or zs. Continuing in this manner we construct an infinite
sequence 1, Zz, ... of distinct vertices of G which is not possible as G; is a finite
graph.

Subcase 1.4: Suppose v; is of type other in G;—;. It can be argued
similarly as in Case 1.3, that the set Sisr constructed by the algorithm is indeed
a minimum resolving set of Gi.

Case 2: v; is added as a true twin of v} in G;_;.

Clearly v; and v; are both of type true twin. As in Case 1, we see that if
z,y € V(Gi-1) \ {vi}, then £ MMD y in G;_, if and only if z MMD y in
Gi. Since for all u € V(Gi-1) \ {vi}, do;(vi,u) = deg,(vi,u) = dg,_, (v}, u),
vi MMD u if and only if v; MMD u. Moreover, v; is MMD with v} in G;.
Thus »; and v{ have the same closed neighbourhood in Gisg and this closed
neighbourhood consists of v, v; and all the neighbours of v in G(;_1)sr. Hence
Gisr is constructed correctly and contains Gisr as an induced subgraph.

We now show that S;sg is a minimum strong resolving set for G;. Note
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that in all cases the algorithm lets Sisr «— Si—1)sr U {vi}. By the inductive
hypothesis S;_1)s R is a minimum resolving set for G;_1, i.e., & minimum vertex
cover of Gi—1. If v} is an isolated vertex in G(i_1)sr, i.e., if v} is not MMD
with any vertex in G;—_1, then v;v] is the only edge incident with v} in G;sr and
Si-1)sr U {v:} is thus a minimum vertex cover of Gisr and hence a minimum
strong resolvmg set of G;. Suppose now that v is not isolated in G(;_1)sr. Then
either v} or all its neighbours in Gisa belong to S(;_1)sr but not both. In order
to cover all the edges incident with v; in Gisr we must necessarily add one more
vertex to S(i—1)sr to obtain a minimum vertex cover of Gisr, and adding v; to
S(i-1)sr produces a (minimum) vertex cover for Gisr.

Case 3: v; is added as a proper false twin to v} of Gi~1 (i.e. v; is a false twin
of v} that has degree at least 2).

Clearly v; and v} are correctly assigned type false twin. As in Cases 1 and
2, we see that if z,y € V(Gi—1) \ {vi} then z MMD y in G;_, if and only if
z MMD y in Gi. Moreover, since for every u € V(Gi-1) \ {vi}, dg,(vi,u) =
de,(vl,u) = do,_, (¥},u), vs MMD u in G; if and only if v; MMD u. Also
v;i MMD 9! in Gi. For the remainder of the proof, we consider several cases
depending on v!’s type in Gi—1. From the case we are in degg,_,v; > 2. Hence
v} is not a leaf in Gi-1.

Subcase 3.1: Suppose v} is a proper false twin.

Since v; is added as a proper false twin to v, it needs to be added to the set
of proper false twins to which v} belongs. So Ng, (v:) = Ne,(v;) = Ng,_, (¥) =
Ng,_, (u) for all u in the set of proper false twins containing v; in Gi—1. So
v; MMD v} in G; and for z € V(Gi-1) \ {vi}, vi MMD z in G;-, if and only
if ! MMD z in G if and only if vs MMD z in Gi. Thus Gisr is constructed
correctly in this case.

Let S,,; be the collection of false twins of v; in Gi—1. Then Sy, = S,; U{wi} is
the collection of false twins of v; in Gi. Then the subgraph induced by the vertices
of Sy, in Gisr is a complete graph. Let S be the neighbours of v; in Gisr that
do not belong to Sy,. Then every vertex of Sy, is adjacent with every vertex of
S in Gisr. So a minimum vertex cover of Gisr either contains all vertices of S
and exactly |Sy;| — 1 vertices of Sy, or if it does not contain all the vertices of
S, it must contain all the vertices of S,;. Similarly, 8 minimum vertex cover for
G(i-1)sr must contain all vertices of S and exactly S, | — 1 vertices of S,;, or
if it does not contain all the vertices of S, it must contain all the vertices of S,_,r
So Sisgr U {v:} is 2 minimum vertex cover of Gisr and thus & minimum strong
resolving set for G;.

Subcase 3.2: Suppose v} is a true twin in Gi-;.

Let S, be the collection of true twins of v} in G;_1. Since v; is a proper false
twin each vertex of S, v, has degree at least 2 in G;—1. Then v; is adjacent with
every vertex of Sy \ {v{}, but v;v; & E(G:). So v; is no longer a true twin of
any vertex of S \ {v{} in G;. If |Sy;| > 3, then the vertices of S, ¢ \ {v} remain
true twins in G’. If |Sy| = 2, then the vertex of Sy; \ {v}} becomes a vertex
of type other in Gi-1 since it is not a twin and not a ‘cut-vertex. So the vertex
types of Gisr are described correctly by the algorithm. Since viu € E(G;) for all
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u € Sy \ {vi} and uv; € E(G;) but viv; € E(G), neither v/ nor v; is MMD with
u in G;. However, if z € V(Gi-1) \ S,;, then z is MM D with v} in G;-,, if and
only if z is MM D with v{ in G;. Since v; is a false twin of v in Gj, it follows
that if z € V(G:-1) \ S,;, then z MMD v; in G if and only if 2 MMD v} in G;
if and only if £ MMD v} in G;—;. Hence Gispy is correctly constructed in this
case.

It remains to show that Sisg is a minimum vertex cover for Gisr. Let S be
the set of neighbours of v; in Gisr — vi. Then S is also the set of neighbours of
v; in Gisr — v} and the set of neighbours of v in G;_1)sr — (Sy; \ {vi}). Soa
minimum vertex cover of Gisr either contains all vertices of S and exactly one
of v; and v; and all but one of the vertices of S,/ \ {v{}, or it contains at most
|S| — 1 vertices of S and all the vertices in S, U {v:}.

Suppose first that S C S(;_1)sr. Since S@-;)sg isa mlmmum vertex cover of
G(i-1)sR, S(i-1)sr contains |S,/ l— 1 vertices of S‘,: Ifvf e S(:-1)sa, then by the
above observation, S(;_1)sr is a minimum vertex cover of Gisr. If v{ & Si_1)sr,
then S, \ {vi} € S(i-1)sr. In this case if u € Sy \ {v{}, then Sisr = (Sii-1)sr \
{u}) U{v.} for some u € S,; \ {v{} is a vertex cover for Gisr and since S(;_1)sr is
a minimum vertex cover for G(i-1)sr, Sisr is a minimum vertex cover of Gisg.

Suppose next that S € Si_1)sr. Then by the above observation Sy €
S(i-1)sr. Soif |S N Si—1ysr| < |S|-2, then Sisp = Si_1)srU{wi} is a minimum
vertex cover for Gisr. Moreover, if |SN S(i_l)sal |S|—1, then S;_1ysrU(S\
{u}) for some u € S, ¢\ {vi} must be a minimum vertex cover of G.

Subcase 8.3: v} is a cut-vertex of G;—1.

It is straight forward to observe that in this case Gisr can be obtained from
G(i-1)sr by adding the edge v;v} since v; MMD v} in G;. Since v! is an isolated
vertex of G(;—1)sr, 8 minimum vertex cover for Gisr can be obtained from a
minimum vertex cover for G(;_1)sr by adding either v; or v} but not both. So
Sisr = S—1)sr U {w:} is a minimum vertex cover for Gisr.

Subcase 3.4: v is of type other in G;—;.

It is a straight forward observation that v; MMD v} in G;. Thus vv] €
E(Gisr). Moreover, if v} is MMD with a vertex « in Gi_;, then v; is MMD
with « in G; and conversely. It is now easily seen that G;sr is constructed
correctly in this case. It remains to show that S;sg is a minimum vertex cover of
Gisgr. Let S be the set of neighbours of v/ in G(i—1)sp. A minimum vertex cover
for Gisr must contain either all the vertices of S and exactly one of v; and v/, or
at most |S| — 1 vertices of S and both v; and v{. It is now readily verifiable that
Sisr = S(i~1)sr U {v:} is a minimum vertex cover for Gisgr. O

3 Concluding Remarks

We developed a O(|V||E|) algorithm for finding the strong metric dimension of
a distance-hereditary graph. In [8] it is shown that distance-hereditary graphs
have clique width at most 3 and that a 3-expression defining it can be obtained
in linear time. Moreover, in (5] it is shown that every graph problem expressible
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in LinEMSOL(m1,.) (a variation of Monadic Second Order Logic) is solvable on
graphs with bounded clique width k if the input graph is given with a k-expression
defining it.

1
2
1
G:
4 6 9 13
4 5
l 8 10 9
12 13 Aninducedsubgraph
ofthestrongresolving
graphofGthatisnot
A distancehereditarygraph distancehereditary
@ ®)

Figure 4: A distance-hereditary graph whose strong resolving graph is not
distance-hereditary

Several graph problems such as vertex cover, maximum weight stable set,
maximum weight clique, Steiner tree and domination are LinEMSOL(7,L) ex-
pressible. Since distance-hereditary graphs have bounded clique width, it is nat-
ural to ask if the strong dimension problem is Lin M SOL(71,1) expressible. Since
the strong dimension problem for a graph G reduces to a minimum vertex cover
problem for the strong resolving graph Gsg this question has an affirmative an-
swer if the strong resolving graphs of distance-hereditary graphs have bounded
clique width and if a k-expression for these graphs can be found in polynomial
time. In particular it is natural to ask if the strong resolving graph of a distance-
hereditary graph is also distance-hereditary. The graph of Fig 4(a) illustrates
that this is not the case. Since 3,5,6,8,7,4,10,11,2,1,9,12,13 is a DH sequence
for G it is indeed distance-hereditary. Moreover, the graph shown in Fig 4(b) (a
3-fan) is an induced subgraph of the strong resolving graph Gsr of G. Since the
3-fan is not distance-hereditary, Gsg is not distance-hereditary.
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