MAXIMAL STRONGLY INDEXABLE GRAPHS
B.D. Acharya' and Germina K.A.?

Abstract

Given any positive integer &, a (p, ¢)-graph G = (V, E) is strongly k-indezable
if there exists a bijection f : V — {0,1,2,...,p — 1} such that f*(E(G)) =
{k,k+1,k+2,...,k+q— 1} where f+(uv) = f(u) + f(v) for any edge uv € E;
in particular, G is said to be strongly indezable when k = 1. For any strongly
k-indexable (p, g)-graph G, ¢ < 2p— 3 and if, in particular, g = 2p — 3 then G is
called a mazimal strongly indezable graph. In this paper, necessary conditions for
an Eulerian (p, g)-graph G to be strongly k-indexable have been obtained. Our
main focus is to initiate a study of maximal strongly indexable graphs and, on
this front, we strengthen a result of G. Ringel on certain outerplanar graphs.
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1. INTRODUCTION

Unless mentioned otherwise, by a graph we shall mean in this pa-
per a finite, undirected, connected graph without loops or multiple
edges. Terms not defined here are used in the sense of Harary (12).
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Acharya and Hegde (2; 3) introduced the concept of an ‘indexer’ of
a graph as a special case of arithmetic numberings. A numbering of a
graph G = (V, E) is an assignment f of distinct nonnegative integers
to the vertices of G; it is an additive numbering of G if the induced
‘edge function’ f* : E(G) — N, from E(G) into the set N of natural
numbers, defined by the rule: f+(uv) = f(u) + f(v), V wv € E(G),
is also injective. It is known that every finite graph has an additive
numbering (2); in fact, using Sidon sequences (see (11; 15)) it can
be shown that every countable graph has an additive numbering.
Hence, an additive numbering f is said to be optimal if f[G] :=
maz,cv(c){f(v)} attains the least possible value v(G) amongst all
the additive numberings of G. Clearly, v(G) 2 |V(G)| for any graph
G with a countable number of vertices. For any given positive integer
k, an additive numbering f of G is called an arithmetic k-indexer if
fHEG)) == {f*(w) : w € E(G)} = {k,k+1,k+2,...,} and
G is arithmetically k-indezable if it admits an arithmetic k-indexer.
Not every graph is arithmetically k-indexable as indicated by the

following theorem for finite graphs.

Theorem 1.1. (2): Let G = (V, E) be any (p,q)-graph and f be
any arithmetic k-indezer of G, where k is odd. Then, there ezists an
‘equitable partition’ of V into two subsets V, and V. such that there
are ezactly [ gﬂé'—l] edges each of which joins a vertex of V, with one

of V., where [.] denotes the least integer function.

In the above theorem, an equitable partition of a nonempty finite
set X is defined as a partition {X7, X2} of X such that the cardi-
nalities of X; and X differ by at most one, that is, if [| X1]|—|X2|| < 1.
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Next, as in (2), if G is a (p, g)-graph then v(G) > p — 1 and,
hence, an additive numbering f of G is called a strong k-indezer
of G if f(V(Q)) = {f(v) : v € V(G)} = {0,1,2,...,p— 1} and
fHE@G) ={k,k+1,k+2,...,k+q— 1} for some positive integer
k. Further, G is said to be strongly k-indezable if it admits a strong
k-indezer. While, as mentioned already, every graph has an additive
numbering, not every graph is arithmetically k-indexable for a given
positive integer k. If V(G) is countably infinite, then any bijection
f from V(G) onto the set N U {0} of nonnegative integers such that
FY(E(G)) = {k,k+1,k+2,...,} is defined as a strong k-indexer
of G. In particular, if £ = 1 in these definitions, then f is called a
strong inderer of G and the graph G is said to be strongly indezable
if it admits a strong indexer.

As in (13), a (p, ¢)-graph G = (V, E) is edge-magic if it admits an
edge-magic labeling of G, which is defined as a bijection f : V(G) U
E(G) — {1,2,...,p + q} such that there exists a constant s, called
the magic number of f, with f(u) + f(v) + f(uwv) = s, Vuv € E(G).
An edge-magic labeling f of G is super-edge-magic if f(V(G)) =
{1,2,...,p} and f(E(G))={p+1,p+2,...,p+q} and G is super-
edge—rﬁagz'c if it admits a super-edge-magic labeling (6) (also see (8;
14)). It has been recently proved in (4) that the class of strongly
indexable graphs is a proper subclass of super-edge-magic graphs as
also that every connected graph can be extended to be an induced
subgraph of a strongly indexable graph, strengthening a result in (7).

It has been noted in (2; 3) that for any strongly indexable (p, g)-
graph G, ¢ < 2p—3, calling G a mazimal strongly indezable graph if
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g = 2p—3. The main aim of this paper is to study maximal strongly
indexable graphs, particularly, such outerplanar graphs. Our moti-
vation for this comes from the well known fact that if G is a mazimal
outerplanar (p,q)-graph then ¢ = 2p — 3 (see (12)). However, not
all such graphs are strongly indexable as, for instance, the graph
depicted in Figure 5 is not strongly indexable. In general, deter-
mination of maximal strongly indexable graphs is an open problem.
Hence, we look for special classes of graphs satisfying ¢ < 2p — 3,
which are strongly indexable (e.g., see (4)).

As mentioned already, while the general question about maximal
outerplanar graphs being strongly indexable is open, we report in
this paper some progress made in this direction. We shall need the
following known results for this purpose.

Theorem 1.2. (2):  Every strongly indezable finite graph has

at most one nontrivial component which is either a star or has a

tr‘iangle.

Thus, according to Theorem 1.2, excepting stars K », no connected
triangle-free (in particular, such outerplanar) graph is strongly index-

able. However, there could be such super-edge-magic graphs.

Theorem 1.3. (2): Let G = (V,E) be any (p,q)-graph and f be
any strong indezer of G. Then, there exists an equitable partition of
V into two subsets V, and V. such that there are ezactly [$] edges
each of which joins a verter of V, with one of Ve.
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2. STRONGLY k-INDEXABLE EULERIAN GRAPHS

The following is a new result for any ‘additive labeling’ of vertices
of a graph, which will also provide us a tool for further progress in

our investigation.

Theorem 2.1.  Let G = (V, E) be any graph, not necessarily finite,
f be an arbitrary assignment of integers to the vertices of G and let
FH(wv) = f(u) + f(v) for each edge uv in G. Then in every cycle of

G there are an even number of edges with odd f*-values.

Proof. Let G = (V, E) be a graph not necessarily finite. Then any
cycle Z of G is finite. Then, as pointed out in (2), Zyyep(z)f 1 (uv) =
2%:ev(2)f(x) and hence, [{f*(uv) : wv € E(Z) A ft(uv) is odd}| is

even. O

Remark 2.2. The following alternative proof of Theorem 2.1
shows its connection with number theory and electrical network the-
ory: The result follows from the number-theoretic congruence a+b =
a — b for any two integers a and b, applied to f*-values around any
cycle Z in G and then by applying the well known Kirchhoff’s Volt-
age Law (KVL) treating the set Z of integers as an additive ‘voltage
group’ on the network (G, f U f*) (cf.: (1)).

Corollary 2.3. Let G = (V,E) be any Eulerian (p,q)-graph. If
G is strongly k-indezable then q # 2(mod 4). Purther, exactly one of
the following congruences holds
(i) g=0(mod 4),
(i) g = 1(mod 4) and k = 0(mod 2), and
(iii) ¢ = 3(mod 4) and k = 1(mod 2).
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Proof.  Since G is Eulerian, its edge set E(G) can be partitioned
into edge-disjoint cycles 2y, Zs, ..., Z¢. Therefore, since f*(E(G)) =
{k,k+1,k+2,...,k+ g —1} Theorem 2.1 yields

RLEDI S FHB(Z3) = 0(mod 2),

z€E(G) j=0

from which the result follows. O

Remark 2.4. Corollary 2.3 can be used to rule out the possibil-
ity of certain classes of Eulerian graphs from their being strongly
indexable. In this way, for instance, the cycles C, for values of
n =1 or 2(mod 4) cannot be strongly indexable. Of course, in gen-
eral, Cy, is not strongly indexable for any value of n > 4 by virtue
of Theorem 1.1, thus demonstrating that the converse of Corollary
2.1 does not hold. A more complex example of an Eulerian graph
that is not strongly indexable by this argument is the complement
of K (which is also isomorphic to the ‘shadow graph’ of K3; it is a
maximal outerplanar graph too as seen from its depiction in Figure
5), where G* in general is the graph obtained by adjoining a new
pendant vertex (or a ‘leaf’) v’ to each vertex v of G.

An infinite class of Eulerian graphs that are not strongly indexable
is the class of Husimi trees (viz., connected separable graphs in which
every block is a triangle) in which the number of blocks is m =
3(mod 4) since, in such a graph H, |E(H)| = 1(mod 4). One such
well known class is that of “friendship graphs” F; := tKs+ K, which
consists of ¢ triangles glued at one common vertex whence F; consists
of g = 3t edges, so that t = 2 or 3(mod 4) yielding ¢ = 2 or 1(mod 4)

in the respective cases.
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Conjecture 2.5. Any Husimi tree with ¢ = O(mod 4) triangles is

strongly indexable.

A particular case of Conjecture 2.5 is F; with ¢ = O(mod 4); a
strong indexer of F} is displayed in Figure 1 below; a solution of this
problem is not yet known for higher admissible values of t.

. FIGURE 1

The following argument shows that Fy is not strongly indexable:
By the very definition of a strong indexer f of such a (11, 15)-graph
F5, {1,2,...,15} is the set f*(E(Fs)) of edge labels. Here, the
edge labels 1 and 2 are uniquely expressed as sums of two distinct
nonnegative integers on an adjacent pair of vertices respectively as
1=0+41; 2=0+2; and the numbers 0, 1,2 should necessarily be
assigned to the vertices of one of the triangles which in turn implies
that the central vertex say, u at which the five triangles are glued to-
gether should receive one of these numbers, 0,1 or 2. Also, values in
pairs are to be assigned to the non-central vertices that are adjacent
and these pairs of numbers cannot be made adjacent to any other
non-central vertex labels. For instance, the possible ‘2-partitions’ of

81



Edge | Possible pairs of numbers

labellings i

S .(z;q)

FIGURE 2

numbers in f¥(F5) into distinct ‘parts’ are tabulated in Figure 2.
We prove that it is not possible to distribute these pairs of numbers
among the vertices of Fs so that Fj is strongly indexable. There are

three cases to be considered for the purpose.

Case (i) f(u) =0: To obtain the highest edge weight 15, we may
choose any pair of numbers of the 2-partition from the first row of
the table. Let us start with (10, 5). Now, to have the edge weight 14,
the only possibility is to choose the pair (8,6) from the second row,
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since the other two pairs in the row contain the numbers 10 and 5.
Now, to have the edge weight 13, the only possibility is to choose the
pair (9,4) from the third row. We have no choice to label any vertex
to have the edge weight 12 as the maximum possible vertex value is
10 and f(u) = 0 (the maximum edge weight that is expected with
the central vertex is 10). By a similar argument we can show that it
is not possible to have a strong indexer by starting with any of the
pairs (9,6) and (8,7) in the first row.

Case(ii) f(u) =1: Again, let us start with (10, 5) in the first row
of the table. Now, to have the edge weight 14 the only possibility
is to choose the pair (8, 6) from the second row, since the two other
pairs in the row contain the numbers 10 and 5 respectively. Now,
to have the edge weight 13, the only possibility is to choose the pair
(9,4) from the third row. We have no choice to label any vertex to
have the edge weight 12 as the maximum possible vertex value is 10
and f(u) =1 (the maximum edge weight that is expected with the
central vertex now is 11). By a similar argument we can show that
it not possible to have a strong indexer by starting with any of the
pairs (9,6) and (8,7) in the first row.

Case (iii) f(u) =2: Lastly, let us start with (10,5) in the first
row of the table. Now, to have the edge weight 14, the only possibil-
ity is to choose the pair (8,6) from the second row, since the other
two pairs in the row contain the numbers 10 and 5 respectively. Now,
to have the edge weight 13, the only possibility is to choose the pair
(9,4) from the third row. Then, the only choice to label any vertex
to have the edge weight 12 is with the central vertex . Hence, we
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need not choose any pair from the the row of edge weight 12. To
have the edge weight 11, the only possibility is to choose the pair
(6,5) from the fifth row. The edge weight 10 already exists with the
vertex labeled 8 and the central vertex. Now, we go for the edge
weight 9. In this case, we are left with no pair to choose from the
row of the weight 9 as at least one of the numbers of each other pairs

in that row is already chosen.
Thus, we conclude that Fy is not strongly indexable.

In general, it appears that the ‘equitable partition theorem’ (viz.
Theorem 1.3) should be useful to establish that F; is not strongly
indexable for t = 1(mod 4).

3. MAXIMAL STRONGLY INDEXABLE GRAPHS

In this section, we report results of our investigation on the maximal
strongly indexable graphs. By the very definition of a strong indexer
f of such a (p,q)-graph G, {1,2,...,2p — 3} is the set f*(E(G))
of edge labels. Here, the edge labels 1,2,2p — 4 and 2p — 3 are
uniquely expressed as sums of two distinct nonnegative integers on
an adjacent pair of vertices respectively as 1 =0+ 1; 2 =0+ 2;
p—-4=(p-1)+(@—3)and 2p—3 = (p—1) + (p — 2), since
f[G] = p— 1. That is, for any strongly indexable (p, ¢)-graph G, in
any strong indexer f of G, the following pairs of vertex labels must
be adjacent: (0,1);(0,2);(» —1,p - 2);(p — 1,p — 3). Every edge
label from 3 to 2p — 5 can be obtained by more than one choice of
adjacent vertex pairs and whether there exists a strong indexer in

which the given pair of these numbers appear as end-vertex labels
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of an edge in G is an open question to examine. For instance, the
possible ‘2-partitions’ of p = 4 and p = 5 with distinct ‘parts’ are

tabulated in Figure 3.

Weig | Pairs Weig | Pairs

FIGURE 3

For a maximal strongly indexable graph of order 5 and size 7 there

are 8 ways to select the pairs to determine a strong indexer; these

strong indexers are shown in Figure 4.

For order p = 6, one can see that there are 48 distinct such 2-
partitions of 2p — 3 = 9. How many of these are ‘realizable’ as labels
of pairs of adjacent vertices in a maximal strongly indexable graph
of order six? In general, it seems to be a hard problem to determine
for a given integer p > 5 exactly how many 2-partitions of 2p — 3
with distinct parts are realizable as pairs of labels on adjacent pairs

of vertices in a maximal strongly indexable graph of order p.
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FIGURE 4

Remark 3.1. If G is a maximal strongly indexable graph of order
p, then G can be extended to a maximal strongly indexable graph of
order p + 1. This can be done by adjoining a new vertex with label
p and making it adjacent to the vertices with labels p —2 and p - 1,
so that we get a graph of order p + 1 and the new edge labels will
be 2p — 2 and 2p — 1, yielding a maximal strongly indexable graph
of order p+ 1.

4, MAXIMAL OUTERPLANAR STRONGLY INDEXABLE GRAPHS

Since K is a maximal outerplanar graph of order two, having a
strong indexer that assigns 0 and 1 to its vertices, the construction
mentioned in Remark 3.1, applied recursively, implies that for ev-
ery integer p > 2 there exists a maximal outerplanar graph of order
p that is strongly indexable. In this section, we embark on deter-
mining connected maximal outerplanar graphs, which are strongly
indexable. We begin by determining the small order cases first.

Lemma 4.1. Let G = (V, E) be a (p, q)-graph which is a mazimal
outerplanar graph with p < 7. Then, G is strongly indezable if and
only if G is not isomorphic to the graph given in Figure 5.
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Proof. That the graph given in Figure 5 cannot be strongly index-
able is noted already in Remark 2.4. The other maximal outerplanar
graphs of orders p < 7 are shown in Figure 6 along with a strong

indexer for each of them. O

FIGURE 5

FIGURE 6

Lemma 4.2. Let G be a mazimal outerplanar (p,q)-graph with
mazimum degree A(G) = p — 1. Then, G is strongly indezable if and
only if p<T.

Proof. If p <7 then all the maximal outerplanar graphs with max-
imum vertex degree p — 1 are contained in the set of graphs shown
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in Figure 6 along with a strong indexer in each case.

For the converse, let G be a maximal outerplanar graph with p > 7
and A(G) = p— 1. Suppose, if possible, there exists a strong indexer
f of G. By hypothesis, there exists a vertex v; € V(G) such that
d(v1) = p—1= A(G). Since G is maximal outerplanar, every trian-
gle in G contains the vertex vy (cf. (12)) so that f(v1) € {0,1,2,3}
since otherwise the induced edge labelling f* can be shown to pro-

duce nonconsecutive numbers.

Since G is maximal outerplanar, G contains a Hamilton cycle Z
such that G has a plane embedding in which all the edges not on Z,
called chords of Z, are within the region of the plane bound by Z
(cf.: (12))). Now, suppose f(v1) = 0. All the neighbors of v; are
labeled in f with the consecutive numbers 1,2,3,...,p — 1 so that
all the chords of Z together with the edges vyv2 and vvp have the
labels 1,2,3,...,p — 1 so that the remaining edges in Z should get
p,p+1,p+2,...,2p—3 in a one-to-one manner. It is necessary that
the labels p — 1 and p — 2 must be adjacent to get the label 2p — 3.
Without loss of generality, assume f(v;) =p—1and f(viy1) =p—2.
Also, v; should be adjacent to the vertex with label p—3 so as to have
an edge with label 2p —4. That is, f(vi—1) = p— 3. Now, because of
the maximal outerplanarity of G, v; cannot be adjacent to v;—; and
vi41. Also, vy cannot be adjacent to v;—; so that there cannot be
an edge with label 2p — 5. So, f(v1)# 0, a contradiction. Therefore,
f(v1) = 1. Let v; be the vertex such that f(v;) = 0. That is, all
the neighbors of v; are labeled with the numbers 0,2,3,...,p—1 so
that all the chords together with viv; and v1vp have the edge labels
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from the set {1,2,3,...,p — 1,p}. It is necessary that the vertex
labeled p — 1 and p — 2 are adjacent since otherwise there would be
no edge with label 2p — 3. By a similar argument as above, there is
no edge with label 2p — 5. That is, f(v1) # 1, a contradiction. A
similar contradiction may be arrived at when we assume f(v;) = 2
or f(v1) = 3. Thus, the proof follows by contradiction. O

The following theorem is crucial in the proof of the main result
of this section, where A(G) denotes as usual the maximum vertex

degree in G.

Theorem 4.3. Let G = (V, E) be a mazimal outerplanar graph
withp > 7. Let H = (u1,u2,us,...,4p) be a Hamiltonian cycle in
G. Then, there exists an equitable partition {Vi,Va} of V(G) such
that no chord of H has both its ends in V} or V3 if and only if A(G)

= |&] + 2 and there exist ezactly two vertices of degree 2.

Proof. Let Vi = {ul,uz,ug,.. .,ultzzj} and Vo = {ul§]+1,ul§1+2,
U243, -+ ,Up} constitute an equitable partition of the vertex set of
G such that no chord of H has both its ends in V; or V5. Clearly
)2} has degree 2 (¢f. (12)) and A(G) = |§] + 2. Since G is max-
imal outerplanar U )42 is adjacent to Uy Now, let ¢ be the least
positive integer such that 1 <7 < [£] and u|z)42 is adjacent to u;.
Since G is maximal outerplanar, u ) is adjacent to u; for each j
with i < j < |£]. If i =1, then u; is adjacent to u; for every j with
5] +3 <j < p—1and in this case up has degree 2. If i > 1, let i,
be the least positive integer such that u;, is adjacent to u; for each
j with |§] +3 < j < p. If i; = p then u; has degree 2. Otherwise
let i3 be the least positive integer such that 1 < i; <i—1 and u;, is
adjacent to u;,. Repeating this process, we conclude that either Up
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or u; has degree 2.

Conversely, let G be a maximal outerplanar graph such that A(G)
= | ] + 2 and let there exist exactly two vertices of degree 2. Let u;
be a vertex of degree 2 so that u; is adjacent to uz and u,. Let i be
the largest integer such that ¢ < I_P—"z-lj and u, is adjacent to u;. Then,
since G is a maximal outerplanar graph we see that u, is adjacent to
each of the vertices ug, us,...,u;. If i < |§]+1 and v; is adjacent
to u; for some j with 41 < j < |§] + 1, then we get a vertex u,
i < k < |§), of degree 2 and in this case u; must be adjacent to
Uj41, Uj42, - - - , Up—1 Whence d(u;) > | 5] +2, a contradiction. Hence,
1= {ul,uz,us,...,ulgj} and V5 = {uL§J+1’uL§J+2>ul§J+3’ ceey Up}
gives the required partition of the vertex set of G. O

Remark 4.4. G is a maximal outerplanar graph of order p with
exactly two vertices z and y of degree 2 and A(G) = |§] + 2, then
the distance dy(z,y) between z and y on the Hamiltonian cycle H
in G is either |E] or |§] - 1.

Ringel (16) has established the following theorem.

Theorem 4.5. (16): IfG is a mazimal outerplanar graph of order
p with ezactly two vertices a,b of degree 2 and whose distance dg(a, b)
on the Hamiltonian cycle H in G is either |§] or |§] — 1, then G is

supermagic.

Theorem 4.3, Remark 4.4 and Theorem 4.5 imply the following
result which, of course, is subsumed by the more general result that

every strongly indexable graph is super-edge-magic established in

(4)-



Corollary 4.6. Let G = (V,E) be a mazimal outerplanar (p,q)-
graph with p > 7. If G is strongly indexzable then G is super-edge-

magic.

Proof. Let G be strongly indexable and let f be a strong indexer
of G. Let H = (uj,uz,us,...,up) be a Hamiltonian cycle in G.
Then, by Theorem 1.3, there exists an equitable partition of V(G)
into two subsets V, and V. such that there are exactly [2] edges
each of which joins a vertex of V,, with one of V. This very partition
of V(G) satisfies the condition on chords of H as specified in the
statement of Theorem 4.3. Therefore, G is a maximal outerplanar
graph of order p with exactly two vertices a, b of degree 2 and whose
distance dg(a,b) on the Hamiltonian cycle H in G is either |£} or
|£] — 1 and hence by Theorem 4.5 the result follows. O

As noted in (4), not every super-edge-magic graph is strongly index-
able in general. Therefore, the following main result of this section

may be seen as stronger than Theorem 4.5.

Proposition 4.7. Let G be any maximal outerplanar graph of
order p > 7 with A(G) = [£] + 2 and exactly two vertices of degree

2. Then G is strongly indexable.

Proof. Let H = (uj,uz,u3,...,up) be a Hamiltonian cycle in G.
Then, by Theorem 4.3, we have the sets V; = {u;,up,us,... YU 1}
and V, = {ul%J+1’"l§J+2’”l§J+3"“’UP} constituting an equitable
partition of the vertex set of G such that no chord of H has both
vertices in V; or V5. Let the function f : V — N be defined as follows:

flu))=0

flu)=2(i -1} 2<i<[%]

flu))=p—2+1;ifpiseven, j=§+i, 1<i<B&.
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f(uj) =p—2; if pis odd, j = [B] +4, 1<i<|B).
Clearly, f(V(G)) = {0,1,2,...,p—1}.
Now, f*(z) # f*(y) for any two edges z and y for, otherwise, we

have
f(uiu;) = f(ueuk), where,j,k and £ are all distinct

and u;,u; € Vi and up,ux € V3, contrary to our first derivation
above. Let j < k and i < £. Then, f(u;) < f(ux) and f(u;) < f(ue)

whence
fluiug) = f(w) + f(ug) < flux) + fue) = furue).

The result is obvious when ¢ = k or j = k.

Thus, it follows that f is indeed a strong indexer of G and the proof

is complete. O

5. CONNECTION WITH FIBONACCI SEQUENCES

For the vertices of a clique in a graph to be labeled so that no edge
label is repeated, the labels must be chosen from a set of positive
integers in which the sums of the pairs of distinct vertex labels are
all distinct. Such a set is called a weak Sidon set (see (14), Ch.6),
but we shall call it here just a Sidon set. When the members of
the Sidon set are placed in ascending order, the resulting sequence is
called a Sidon sequence(see (9; 10; 11; 15) for various directions of re-
search on these sequences). Choose a Sidon sequence (sy,52,...,5y)
in which the largest element s, is as small as possible. If s(r) de-
notes the smallest possible value of s, taken over all Sidon sequences
of length r then, a Sidon sequence of length r with largest element
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s(r) must have 0 as the smallest element. Note that the Fibonacci
sequence (f,), defined by fi = 1,fo = 2 and fo = fa—1 + fn-2, is
a Sidon sequence. Hence, Fibonacci numbers provide a reasonably
good upper bound for the function o whose values are all elements

of a Sidon sequence.

Let Uz denote the set of all unicyclic graphs with C3 as their unique
cycle (5). Acharya and Germina (4), while establishing the charac-
terization of strongly indexable unicyclic graphs, noted that a strong
indexer f generated by the algorithm contains the first n terms f;
of a Fibonacci sequence augmented with an extra term fo = 0 be-
fore its first term also brings out the following converse part of this

statement.

Corollary 5.1.  For any integer n > 3, given the set An(F) of

the first n terms fi, fa, fa,..., fa of a given Fibonacci sequence F
with fi = 1 and fo = 2 and o zero term augmented before its first

term (i.e., f, =0), there exists a graph in Us together with a strong
indezer which uses all the elements of An(F). However, a graph in
Us having a strong indezer f such that A,(F) C f(G) may not be

unique.
They raised the following interesting problem.

Problem 1. (4): Given the set An(F) of the first n terms of a
given Fibonacci sequence F with an augmented zero before its first
term, determine the class of all minimal non-isomorphiec strongly
indexable graphs in Us for which A,(F) C f(G) for some strong

indexer f.

We can now prove the following:
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Theorem 5.2. Given a Fibonacci sequence (fr) with fi =1, fo =
2 there exists a connected mazimal strongly indezable graph of order

fr +1 and size 2f, — 1 that contains a clique of order r.

Proof. Label the vertices of the clique with the members of the
Fibonacci sequence with f; = 1, fo = 2. Add a new vertex with
label zero, make it adjacent to the vertices labeled 1 and 2 on the
clique, and other new vertices labeled with the remaining positive
integers smaller than f, that are not appearing as edge labels in the
clique and join them to the vertices on the clique as follows: All the
vertices whose labels lie between f,_; and f; are joined to the vertex
labeled f, on the clique. All the vertices whose labels lie between
fi—1 and f; are joined to f; whenever j > 4. Clearly, this construction
gives a connected maximal strongly indexable graph, of order fr +1

and size 2f, — 1 that contains a clique of order 7, as claimed (see

Figure 7). O

Remark 5.3. From the construction of the maximal strongly in-
dexable graph in Theorem 5.2 it is clear that there could exist a
disconnected strongly indexed graph G of smaller size with clique
number w(G) = r, but then it would not be a maximal one (see

Figure 8).

Corollary 5.4. There erist mazimal strongly indezable graphs of

arbitrarily high chromatic numbers.



FIGURE 7

- FIGURE 8

6. CONCLUSIONS AND SCOPE

Acharya & Hegde (3) proved in the case of finite graphs that
the only regular graphs that are strongly indexable are either K3 or
K3 x K. It is not known whether there are regular infinite outerpla-
nar graphs that are strongly indexable. However, there are infinite
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FIGURE 9

2 4 6 8

FIGURE 10



FIGURE 11

classes of strongly indexable finite nonregular maximal outerplanar
(p, q)-graphs as illustrated in Figure 9. Also, there are such infinite
graphs as is evident from the example shown in Figure 10. Further,
there are planar nonregular graphs which are not outerplanar but

strongly indexable as depicted in Figure 11.

Next, in view of Corollary 5.4, given an arbitrary integer n > 2,
it might be of specific interest to find maximal strongly indexable
graphs having chromatic number n and with least possible order
(i.e., the number of vertices) P(n) or with least possible size (i.e.,
the number of edges) Q(n); such connected graphs might be useful
for specific applications. Since such graphs must be finite in number,
apart from their enumeration, their determination for specific values
of n could be of further interest.



Lastly, if not least, in general it may now be seen that given a
strongly indexed graph (G, f) one can look at various Sidon se-
quences generated by the cliques in G and hence seek to minimize
the ‘Sidon numbers’ s¢(rg) over the set of all strong indexers f of
G, where Q varies in the set K¢ of all cliques of G, in the sense that
¥ tezoT0exsSf(rg) is minimum, where Zg denotes the set of all
strong indexers of G. This optimization problem, even if restricted
to the class of maximal strongly indexable (planar or outerplanar)

graphs, appears quite challenging.
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