Coloring the square of products of
cycles and paths
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Abstract

The square G2 of a graph G is a graph with the same ver-
tex set as G' in which two vertices are joined by an edge if
their distance in G is at most two. For a graph G, X(G?),
which is also known as the distance two coloring num-
ber of G is studied. We study coloring the square of grids
P,,0P,, cylinders P,,0C,, and tori C,,00C,,. For each m
and n we determine X ((Pn0P,)?), X((PnOCn)?), and in
some cases X ((CrmOC,,)?) while giving sharp bounds to the
latter. We show that X ((Cr,0Cr)?) is at most 8 except when
m = n = 3, in which case the value is 9. Moreover, we con-
jecture that for every m (m > 5) and n (n > 5), we have,
5< X((CmDOCR)?) < 7.
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1 Introduction

We use standard terminology of graph theory. G is a simple graph.
By V(G) and E(G) we denote the vertex set and the edge set of
G, respectively. A (proper vertex) k-coloring of a graph G is a
mapping ¢ : V(G) — {0,1,...,k — 1}, with the property that
c(u) # c(v) whenever {u,v} € E(G). The smallest k for which
there exists a k-coloring of G, is called the chromatic number
of G and is denoted by X(G). The square G2 of a graph G is a
graph with the same vertex set as G in which two vertices are joined
by an edge if their distance in G is at most two. For a graph G,
X(G?), which is also known as the distance two coloring num-
ber of G, is of great interest (see for example [6] and [7]). In [4]
they consider the interaction between coding theory and distance
k colorings of Hamming graphs H(q,n) = K,0OK,O---0OK, and

q
find some bounds for X (H*(g,n)). In [3], the d-dimensional infinite
grid graph G is considered. They use a simple construction to show
that X((G4)?) = 2d + 1 for all > 1. They discuss an important
application of this result in steganography.

Note that in a distance two coloring of G every vertex v of G
is a rainbow, i.e. the set of all neighbors of v consists of distinct
colors. Also we note that: A +1 < X(G?) < A%+ 1, where A is
the maximum degree of G.

Example 1 For the path P, and the cycle C, we have,

1 n=1, 3 n=3k,
X(PH={2 n=2 X(C¥=4{4 n#3kandn#5,
3 n>3. 5 n=5.

For the graphs G and H assume that [V(G)| = mand |V (H)| =
n. We refer to the vertices of GOH, the cartesian product of G and
H,as anm x n array [v;;], where in each row we have a copy of H
and in each column a copy of G.
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Example 2 The following is a 5-coloring of (Cs0Cs)2.
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In 1977, G. Wegner [11] conjectured that:

Conjecture 1 (Wegner 1977) Let G be a planar graph. Then
if4<A(G) <7,

X(G*) < {

A(G) +5
13A(G)/2+1] if AG) > 8.

This conjecture, in general, remains open. For a progress on this
conjecture see ([10], [9], [7], [6], [2], [S]). In this paper we study
coloring of the square of cartesian products of cycles and paths,
namely grids P,,,0F,, cylinders P,,0C,, and tori C,,,0C,. The ob-
tained results are summarized in the following table.

(m,n) # (3,3)

Graph |G X(G?) Reference
Grid P,0P, 4ifm=2 Lemma 1
2<m<n |[5ifm>3 Theorem 1
Cylinder | A,0OC, 6ifn=3o0r6 Lemma 4
4 if 4|n Lemma 3
5 otherwise Theorem 2
P,0C, 5 iff 5|n Corollary 1
m>3 6if5tn Theorem 3,4,5
Torus Cn0OC, 9ifm=n=3 Subsection 4.1
5iff 5|/m A 5|n Corollary 4
< 6if 6jmn Theorem 7,8
<Tif3lmA24n Theorem 8
< 8 for any m and n, | Theorem 9
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In [1], X((P0C,)?) is determined. In Section 2 and 3 we intro-
duce some colorings of (P,,0P,)? and (P,,0C,)2, and use them in
subsequent section.

2 P,oF,

In this section we determine X ((P,0OF,)?). The pattern of colorings
given in this section will be applied to other cases in next sections

too.
Lemma 1 For anyn (n > 2), we have: X ((P,0OP,)%) = 4.

Proof, We have X((F;0P,)?) > A(PsOP,)+1 = 4. The following
is a 4-coloring of (P,0F,)%.

¢ V(BOP)) — {0,1,2,3)
c(vij) = (F+2(—1)) (mod 4). .

Theorem 1 For every m (m > 3) and n (n > 3) we have:
X((PnOP,)?) = 5.

Proof. We have X ((P,0F,)?) > A(P,0OF,) + 1 = 5. The follow-
ing is a 5-coloring of (P,0P,)%.

¢: V((PnOP,)?) = {0,1,2,3,4}
c(vij) = (j + 2(i— 1)) (mod 5). .

3 P,oC,

In this section we find X ((P.0C,)?) by starting with some special
cases which will be used throughout the paper.

Lemma 2 X((P:0C,)?) =5 ifandonlyif n=0 (mod 5). Fur-
thermore for every l, there exists a unique 5-coloring of (P;0Cs;)?
up to some permutation of colors.
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Proof. Let ¢ be a partial 5-coloring of (P30C,,)?, where vg, and its
neighbors are colored as in the following.

L] ®
® -+ @
® c @

o w e

2
4
1

e O e

We must have, c(v1;) € {1,0}, c(v13) € {1,3}, c(va1) € {2,0},
c(vss) € {2,3}. We show, that each choice of color for v33 from its
list may be extended uniquely to a color function c on V' (( P0C,,)?),
using a set of 5 colors.

Suppose for example c(vs3) = 2.

e 2 o o °
3 4 0 ® -+ @
e 1 2 o ™

It forces c(va;) = 0, then c(v11) = 1 and c¢(v13) = 3. Then
the color vy is forced to be 1, and the color of other vertices are
determined by the following function.

c(vij) = (f+2(:-1)) (mod 5).

It is clear to see that c is a 5-coloring of (P30C;, )?, if and only if
n=0 (mod 5). The case of c(vs3) = 3 is similar.

Also in the first coloring of (P;,0C,)? by interchanging the col-
ors 1 and 2, and then the colors of row 1 and row 3, we obtain the
second coloring. So there exists a unique 5-coloring of (P0Cs;)?
up to some permutation of colors. ]

Corollary 1 For every pair m (m > 3) and n, X((Pn0C,)?) = 5
ifandonly ifn =0 (mod 5), and there exists a unique 5-coloring
of (PmOC3;)? up to some permutation of colors.

Proof. If n is a multiple of 5, Lemma 2 results to a 5-coloring c
of (P30C,)%. Now, we extend this coloring to a 5-coloring ¢’ of
(PmOC,)? as in the following.

For i>4 let c(vy)=(j+2(i—-1)) (mod5).
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Conversely, if X((P,0C,)?) = 5, then 5 < X((P0Cr)?) <
X((P»OC,)?) = 5, so we have X((Ps0C,)?) = 5, and by Lemma
2,n=0 (mod 5). n
Corollary 2 For every m andn (m > 3, 5t n) we have,

X((PmOCa)?) 2 6.

31 P2DCn

We note that if G is an r-regular graph with X(G?) = r + 1, then
r + 1 divides |V (G)|. So we have,
Corollary 3 Ifn is an odd number, then X((P:0Cy)?) > 5.
Lemma3 X((PROC,)?) =4 <= n=0 (mod4).
Proof. We have X ((P0C,)?) > A(P0C,) +1 = 4. Let co be
a 4-coloring of (P,0P,)2. This coloring may be extended uniquely
to a color function ¢ on V((P,0C;)?) only using colors of co. It is
clear to see that c is a 4-coloring of (P,0C,)? if and only if n = 0
(mod 4). The following is a 4-coloring of (P,0C:)>.

c: V((P2D0n)2) - {05 1) 2, 3}

c(vi) = (j+2(i—1)) (mod 4). ]
Lemma 4 X((P0Cs)?) = X((P0Cs)?) = 6.
Proof. We know (P,0C3)? = K, so X((P20C3)%) = X(Ks) = 6.
Since o((P,0Cs)?) = 2, we have X((P.0Cs)?) > 6, The following
is a 6-coloring of (P;0Cs)>.

123123
4 50450

Figure 1: A 6-coloring of (P;0Cs)? n
Theorem 2 If4{nandn # 3,6, then, X((P0C,)?) = 5.
Proof. For this n, by Corollary 3 and Lemma 3, X ((P.0C,)?) > 5.
We can obtain a 5-coloring of (P,0Cy141)?, (P.0Cu42)(l > 1) and
(P,0Cy43)? by combining the coloring given in Lemma 3 and the
colorings shown in Figure 2. n
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Figure 2: Some 5-colorings of (P,0C10)2,(P,0Cs)?, and ( P,0C7)?

3.2 PmEIC 3l

Theorem 3 For each m (m > 3) and [, we have:

5 < X((PnOCa)%) < 6.

Proof. Clearly X((P,,0C3)?) > 5. The followmg is a 6-coloring of

(PmDC3[)2
¢: V(PnOCu) — {0,1,2,3,4,5)
(1+(¢—-1)) (mod6) j=1 (mod 3)
c(vij) {

(3+(i—1)) (mod6) jF=2 (mod 3)
(64+({—1)) (mod6) 3F=0 (mod 3).

3.3 PmI303l+1

Theorem 4 For every m (m > 3) and l, we have:

5 < X((PnDCa1)?) <

Proof. The lower bound is clear. The following is a 6-coloring of

(PmD031+1)2'
Cc: V(PmDC3z+1) — {0, 1, 2, 3, 4, 5}
(1+(i—-1) (mod6) j=1

(24+(—-1)) (mod6) j=1 (mod3)j#1,3[+1

c(vg)={ 4+(—-1)) (mod6) j=2 (mod3)
(i—1) (mod6) j=0 (mod3)
B+(—-1) (mod6) j=3l+1.
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34 P,0C549

Theorem 5 For each m (m > 3) and [, we have:
5 < X((PnOCs142)%) < 6

Proof. The lower bound is clear. The following is a 6-coloring of
(PrnOCa142)*.

¢: V(Pn0OCa42) — {0,1,2,3,4,5}

(1+(-1)) (mod6) j=1
(2+(i—1)) (mod6) j=1 (mod3)j#1
c(vij) =4 (4+(@—1)) (mod6) j=2 (mod3)j#3l+2
(i—1) (mod6) j=0 (mod 3)
(5+(i—1)) (mod6) j=3l+2. [

4 C,,o00,
First we prove a direct construction theorem.

Theorem 6 Ifthere exists a k-coloring of (C0OChr)?, then for every
Land ! there exists a k-coloring of (Cry0Crr)2.

Proof. Let c be a k-coloring of (Cr,00C,)?, then the following is a
k-coloring of (Cny0OChy ).

c C c
cC C c
! :
cc + C -

Now we prove a necessary and sufficient condition for X ((C,n0Cr)?)
to be equal to 5.
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Figure 3: An 8-coloring of (C,0C;)?

Corollary 4 For all m andn, X((CnOC,)?) = 5 ifand only if both
m and n are multiple of 5.

Proof. If both m and n are multiple of 5, then by Example 2
and Theorem 6 we can generate a 5-coloring of (C,,0C,)2. For
the converse, let c be a 5-coloring of (C,,0C;,)% Then c is also a
5-coloring of (P,,0C,,)? and by Corollary 1,n =0 (mod 5),and ¢
is also a 5-coloring of (C,,0F,)?, thus again by Corollary 1, m = 0
(mod 5). [

G. Matthews informed us that they also have the result of Corol-

lary 4 [8].

4.1 x((C,oC,)?) for small n

In this subsection we find X((C,OCy)?), for some small values of
n.

. X((CaDCa)z) =9, for (CaDCs)2 = K.

o X((C,OCL)?) = 8.

We have a((C40C4)?) = 2, so X((C40C4)?) > 8. In Figure
3, we present an 8-coloring of (C,0C,)2.

e X((Cs0Cs)?) = 5. See Example 2.

e X((Cs0Cs)?) = 6. By Corollary 4, X((Cs0Cs)?) > 6. In
Figure 4, we present a 6-coloring of (Cs0Cs)2.

® X((C7DC7)2) =17. By Corollary 4, X((C7DC7)2) > 6. As-
sume c is a 6- coloring of (C70C+)?, so there exists a color

109



12345090
345012
50123 4
123450
345012
501234

Figure 4: A 6-coloring of (Cs0Cs)*

class of size at least [%9—] = 9in c. If in a row of (C;0OC7)?
two independent vertices are chosen in a class, then there can
be at most one vertex from the previous or the next chosen
row in that class. So in any color class of (C-0C%)? there are
4 consecutive rows with at most 4 independent vertices. But
in the 3 remaining rows of (C;0C?7)?, we can not choose other
5 independent vertices. In Figure 5, we present a 7-coloring
of (071:107)2.

X((Cs0Cs)?) = 7. By Corollary 4, X((Cs0Cs)?) > 6. As-
sume c is a 6-coloring of (Cs0C3)?, so there exists a color

class of size at least |'—] = 11 in ¢. Also in any color class

of (Cs0Cs)? there are 4 consecutive rows with at most 6 in-
dependent vertices. But in the 4 remaining rows of (Cs0Cs)2,
we can not choose other 5 independent vertices. In Figure 5,
we present a 7-coloring of (Cs0Cs).

X((Cs0Cs)?) = 7. By Corollary 4, X((Co0Cs)?) > 6. Let
¢ be a 6-coloring of (Cy0Cy)?, so there exists a color class
of size at least [—] = 14 in c. Also in any color class of

(CoOCq)? there are 4 consecutive rows with at most 6 inde-
pendent vertices. But in the 5 remaining rows of (Co0Cs)?,
we can not choose 8 independent vertices. In Figure 5, we
present a 7-coloring of (Co0Cy)>.
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1234560 12463406
4 015065 2
3 456012
35642341
5 6 012 3 4
6 13061235
012345€6
4 052456 3
2345601
23610340
4 560123
6012345 6 405 6 215
05321534
103456023
561234514
2456123¢630
103456023
561234514
245612360
103456023
561234514
2456123¢60

Figure 5: Some 7-colorings of (C70C%)? , (Cs0Cs)? and (Co0C))?

e X((C100C10)?) = 5. By Corollary 4.

¢ X((C120C12)?) = 6. By Corollary 4, X((C;20C)5)?) > 5.
Now it follows by X ((Cs0Cs)?) = 6 and Theorem 6.

4.2 Some bounds for x((C,,0C,)?)

In this subsection, we give more precise bounds for products of some
particular cycles.

Theorem 7 For all k and n(n > 3), we have:

5 < X((CexDCy)?) < 6.
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Proof. The lower bound is trivial. For the upper bound, all of the
colorings given in Subsections 3.2, 3.3 and 3.4 for (P,0C3:4:)%
i=0,1,2, also works for (CexOCai:)2 i =0,1,2. m

Theorem 8 For all k and [, We have:

1. X((Cs0Cs)?) =8,

2. 5<X((CxOC2)?) < 6,

3. X((CsOCy41)?) > 6,

4. 5< X((CaOCus1)?) <7, (1 2 3).
Proof.

1. We have o(C30Cs)? = 2, so X((C30C5)?) > 7. The follow-
ing is an 8-coloring of (C50Cs)>.

2. We consider two cases for [.

e [is even,l = 2I' for some I'. By Theorem 6, it is suffi-
cient to find a 6-coloring of (C30C;)2. The following is
a 6-coloring of (C30C,)2.

1425
2530
3014

e lisodd, ! = 2!’ + 1 for some /. Let c be a 6-coloring of
(C3x0Cs)?, obtained by combining the following

6-coloring of (C30Cs)?.
1425320
253014
301425
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Also let ¢’ be a 6-coloring of (C30Cy(y—1))? obtained
in the previous case. The following is a 6-coloring of

(CskD021)2.
L ((CakOCyw-1))*) | c((Csx0C6)?) |

3. If there exists a 6-coloring of (C30Cx;.;)?, then there exists at

least one color class of size at least [3—(2l6+—1)] =1+1 We
can choose at most 1 independent vertex from two consecutive
columns of (C30C5;;)?. So the maximum size of each color
class of (C30Ca:41)? is I. Therefore X ((C30C41)?) > 6.

4. For ! = 3 by Theorem 6, it is sufficient to consider the follow-
ing 7-coloring of (C30Cy)2.

1234560
3456012
56 01234

For | > 4, let ¢ be a 6-coloring of (C3;0C5-2))? obtained in
the second item of this theorem. The following is a 7-coloring
of (C3x0Ca2141).

L((CakOC0-2))%) | ¢(CarOCs) |

where, c is obtained by combining the following 7-coloring of
Cs0Cs5 as follows:

O N =
W O i
= o o
gt N
= oo

Based on the results above we make the following conjecture:
Conjecture 2 For all m and n, we have:

5< X((CuOCr)*) <6 <= 6|mn.
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Finally in this section we find an upper bound for X ((Crn0C»)?).
For this purpose we use some 4-colorings of K4. First we introduce
6 of them as follows.

1 2 3 4 2 1 5 6 0 6 5
3 4 1 2 4 3 70 6 07

A R C A R’ c’

Theorem 9 For all m and n, (m,n) # (3, 3), we have:
5 < X((CmOCr)?) < 8.

Proof. The lower bound is trivial. We prove the upper bound with
introducing an 8-coloring in each of the possible cases and subcases.

(1) CuOC,

o CaDCy
An 8-coloring of (C4xOCy)? can be obtained by repeti-
A A
tion of the following pattern: A’ A ,ie.

7
5

o Cy0Cy4

An 8-coloring of (Cyx0Cy41)? can be obtained by repe-
tition of the following pattern:

A al|a al

O OV

'R’ R'-an’ RI
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o Cy:OCa42
An 8-coloring of (CymOCyn+2)? can be obtained by rep-
etition of the following pattern:
A A|l---|A AR
A Al---|A AR
o CyOCu143
An 8-coloring of (CyOCy+3)? can be obtained by repe-
tition of the following pattern:

’A A"m‘A AR

N RO O

fA’ A’W’A’ AR
2) Cu+10C,
o Cue10Cy+1

An 8-coloring of (Cyx+10C441)? can be obtained by re-
peating the following pattern:

lA Al a A’IA A";l

A A --~lA yavs R';

and adding them to the top of the following:
a4 al| A ala 4|,
G HE
53 1 7] |53 17|53 1770

® Cu+10Cy42
An 8-coloring of (Cyx+10C42)? can be obtained by re-
peating the following coloring:
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A A|...|A A|A A|G

A C|---|A C|A H|I

and adding them to the top of the following:
A A A A A A G
A C A C | A M| N
4 31 2|---14 31 2|4 31 2|05

where G, H, I, M and N are the following colorings:

3 7 3 5 70 3 5 4 0
1 2 1 2 4 6 4 7 6 3
G H I M N

¢ Cir4+10Cyu43
An 8-coloring of (Cyx+10Cy+3)? can be obtained by re-

peating the following:
IA A ~--|A A’IA yare 2
lA' c‘ A C'A’ H‘I ;

and adding them to the top of the following:

A Al la ala a 2
4 clla cla M|N ;
I3 12143 1243 12(51 0

(3) Cur420C,

o Cup20Cq142
An 8-coloring of (Cyx+20C4142)? can be obtained by re-

peating the following:
A Al|l---|A AR
A Al---|A A|R
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and adding them to the top of the following:

A Al-| A Al A A | R

5 6 5 6 5 6

07 4" lo7 407 4| B
, 6 5|07

c C c ol o S0

o Cary20Cy43
An 8-coloring of (Cyx+20Cy43)? can be obtained by re-
peating

’A A’,---’A A’lA

O ™

'A’ A,---‘A’ A|A

1S

and adding them to the top of the following:

1

c c ---C ccC 3
4) Ca430Cy,

® Cir430Cy43
An 8-coloring of (Cyr+30C4+3)? can be obtained by re-

peating

4 a] |4 a]a

=~ o

‘A’ A’u-,A’ AlA

w

and adding them to the top of the following:

’A A".--, A A
[50 12[---|50 12

12 6
3 5 7
70 4
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Conjecture 3 For every m (m > 5) and n (n > 5), we have:

5 < X((CmDCR)?) < 1.
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