Coloring the square of products of cycles and paths

E. S. Mahmoodian* and F. S. Mousavi†

Abstract

The square G^2 of a graph G is a graph with the same vertex set as G in which two vertices are joined by an edge if their distance in G is at most two. For a graph G, $\chi(G^2)$, which is also known as the distance two coloring number of G is studied. We study coloring the square of grids $P_m \square P_n$, cylinders $P_m \square C_n$, and tori $C_m \square C_n$. For each m and n we determine $\chi((P_m \square P_n)^2)$, $\chi((P_m \square C_n)^2)$, and in some cases $\chi((C_m \square C_n)^2)$ while giving sharp bounds to the latter. We show that $\chi((C_m \square C_n)^2)$ is at most 8 except when m=n=3, in which case the value is 9. Moreover, we conjecture that for every m ($m \ge 5$) and n ($n \ge 5$), we have, $m \ge 5 \le \chi((C_m \square C_n)^2) \le 7$.

Key words: Distance coloring, square of graphs, grids, cylinders and tori.

^{*}Department of Mathematical Sciences, Sharif University of Technology, P. O. Box: 11155-9415 Tehran, Iran (emahmood@sharif.edu).

[†]Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran. (fmousavi@iasbs.ac.ir)

1 Introduction

We use standard terminology of graph theory. G is a simple graph. By V(G) and E(G) we denote the vertex set and the edge set of G, respectively. A (proper vertex) k-coloring of a graph G is a mapping $c:V(G)\to\{0,1,\ldots,k-1\}$, with the property that $c(u)\neq c(v)$ whenever $\{u,v\}\in E(G)$. The smallest k for which there exists a k-coloring of G, is called the chromatic number of G and is denoted by $\chi(G)$. The square G^2 of a graph G is a graph with the same vertex set as G in which two vertices are joined by an edge if their distance in G is at most two. For a graph G, $\chi(G^2)$, which is also known as the distance two coloring number of G, is of great interest (see for example [6] and [7]). In [4] they consider the interaction between coding theory and distance k colorings of Hamming graphs $H(q,n) = \underbrace{K_n \square K_n \square \cdots \square K_n}_{G}$ and

find some bounds for $\chi(H^k(q,n))$. In [3], the d-dimensional infinite grid graph G_d is considered. They use a simple construction to show that $\chi((G_d)^2) = 2d + 1$ for all $d \ge 1$. They discuss an important application of this result in steganography.

Note that in a distance two coloring of G every vertex v of G is a rainbow, i.e. the set of all neighbors of v consists of distinct colors. Also we note that: $\Delta + 1 \le \chi(G^2) \le \Delta^2 + 1$, where Δ is the maximum degree of G.

Example 1 For the path P_n and the cycle C_n we have,

$$\chi(P_n^2) = \begin{cases} 1 & n = 1, \\ 2 & n = 2, \\ 3 & n \ge 3. \end{cases} \chi(C_n^2) = \begin{cases} 3 & n = 3k, \\ 4 & n \ne 3k \text{ and } n \ne 5, \\ 5 & n = 5. \end{cases}$$

For the graphs G and H assume that |V(G)| = m and |V(H)| = n. We refer to the vertices of $G \square H$, the cartesian product of G and H, as an $m \times n$ array $[v_{ij}]$, where in each row we have a copy of H and in each column a copy of G.

Example 2 The following is a 5-coloring of $(C_5 \square C_5)^2$.

In 1977, G. Wegner [11] conjectured that:

Conjecture 1 (Wegner 1977) Let G be a planar graph. Then
$$\chi(G^2) \leq \left\{ \begin{array}{ll} \Delta(G) + 5 & \text{if } 4 \leq \Delta(G) \leq 7, \\ \lfloor 3\Delta(G)/2 + 1 \rfloor & \text{if } \Delta(G) \geq 8. \end{array} \right.$$

This conjecture, in general, remains open. For a progress on this conjecture see ([10], [9], [7], [6], [2], [5]). In this paper we study coloring of the square of cartesian products of cycles and paths, namely grids $P_m \square P_n$, cylinders $P_m \square C_n$, and tori $C_m \square C_n$. The obtained results are summarized in the following table.

Graph	G	$\chi(G^2)$	Reference	
Grid	$P_m \square P_n$	4 if m = 2	Lemma 1	
	$2 \le m \le n$	$5 \text{ if } m \geq 3$	Theorem 1	
Cylinder	$P_2\square C_n$	6 if n = 3 or 6	Lemma 4	
		4 if 4 n	Lemma 3	
1		5 otherwise	Theorem 2	
]				
	$P_m \square C_n$	$\int 5 \inf 5 n$	Corollary 1	
	$m \geq 3$	6 if $5 \nmid n$	Theorem 3,4,5	
Torus	$C_m\Box C_n$	9 if m = n = 3	Subsection 4.1	
		$5 \text{ iff } 5 m \wedge 5 n$	Corollary 4	
		$\leq 6 \text{ if } 6 mn$	Theorem 7,8	
		$\leq 7 \text{ if } 3 \mid m \wedge 2 \nmid n$	Theorem 8	
		≤ 8 for any m and n ,	Theorem 9	
		$(m,n)\neq (3,3)$		

In [1], $\chi((P_m \square C_n)^2)$ is determined. In Section 2 and 3 we introduce some colorings of $(P_m \square P_n)^2$ and $(P_m \square C_n)^2$, and use them in subsequent section.

$P_m \square P_n$

In this section we determine $\chi((P_m \Box P_n)^2)$. The pattern of colorings given in this section will be applied to other cases in next sections too.

Lemma 1 For any $n (n \ge 2)$, we have: $\chi((P_2 \square P_n)^2) = 4$.

Proof. We have $\chi((P_2 \square P_n)^2) \ge \Delta(P_2 \square P_n) + 1 = 4$. The following is a 4-coloring of $(P_2 \square P_n)^2$.

$$c: V((P_2 \square P_n)^2) \to \{0, 1, 2, 3\}$$

$$c(v_{ij}) = (j + 2(i - 1)) \pmod{4}.$$

Theorem 1 For every $m \ (m \ge 3)$ and $n \ (n \ge 3)$ we have:

$$\chi((P_m \square P_n)^2) = 5.$$

Proof. We have $\chi((P_m \Box P_n)^2) \ge \Delta(P_m \Box P_n) + 1 = 5$. The following is a 5-coloring of $(P_m \Box P_n)^2$.

$$c: V((P_m \square P_n)^2) \to \{0, 1, 2, 3, 4\}$$

$$c(v_{ij}) = (j + 2(i - 1)) \pmod{5}.$$

$P_m \square C_n$

In this section we find $\chi((P_m \square C_n)^2)$ by starting with some special cases which will be used throughout the paper.

Lemma 2 $\chi((P_3 \square C_n)^2) = 5$ if and only if $n \equiv 0 \pmod{5}$. Furthermore for every l, there exists a unique 5-coloring of $(P_3 \square C_{5l})^2$ up to some permutation of colors.

Proof. Let c be a partial 5-coloring of $(P_3 \square C_n)^2$, where v_{22} and its neighbors are colored as in the following.

We must have, $c(v_{11}) \in \{1,0\}$, $c(v_{13}) \in \{1,3\}$, $c(v_{31}) \in \{2,0\}$, $c(v_{33}) \in \{2,3\}$. We show, that each choice of color for v_{33} from its list may be extended uniquely to a color function c on $V((P_3 \square C_n)^2)$, using a set of 5 colors.

Suppose for example $c(v_{33}) = 2$.

It forces $c(v_{31}) = 0$, then $c(v_{11}) = 1$ and $c(v_{13}) = 3$. Then the color v_{24} is forced to be 1, and the color of other vertices are determined by the following function.

$$c(v_{ij}) = (j + 2(i-1)) \pmod{5}$$
.

It is clear to see that c is a 5-coloring of $(P_3 \square C_n)^2$, if and only if $n \equiv 0 \pmod{5}$. The case of $c(v_{33}) = 3$ is similar.

Also in the first coloring of $(P_3 \square C_n)^2$ by interchanging the colors 1 and 2, and then the colors of row 1 and row 3, we obtain the second coloring. So there exists a unique 5-coloring of $(P_3 \square C_{5l})^2$ up to some permutation of colors.

Corollary 1 For every pair $m \ (m \ge 3)$ and $n, \chi((P_m \square C_n)^2) = 5$ if and only if $n \equiv 0 \pmod{5}$, and there exists a unique 5-coloring of $(P_m \square C_{5l})^2$ up to some permutation of colors.

Proof. If n is a multiple of 5, Lemma 2 results to a 5-coloring c of $(P_3 \square C_n)^2$. Now, we extend this coloring to a 5-coloring c' of $(P_m \square C_n)^2$ as in the following.

For
$$i \ge 4$$
 let $c'(v_{ij}) = (j + 2(i-1)) \pmod{5}$.

Conversely, if $\chi((P_m \square C_n)^2) = 5$, then $5 \le \chi((P_3 \square C_n)^2) \le \chi((P_m \square C_n)^2) = 5$, so we have $\chi((P_3 \square C_n)^2) = 5$, and by Lemma 2, $n \equiv 0 \pmod{5}$.

Corollary 2 For every m and n $(m \ge 3, 5 \nmid n)$ we have,

$$\chi((P_m \square C_n)^2) \ge 6.$$

3.1 $P_2 \square C_n$

We note that if G is an r-regular graph with $\chi(G^2) = r + 1$, then r + 1 divides |V(G)|. So we have,

Corollary 3 If n is an odd number, then $\chi((P_2 \square C_n)^2) \ge 5$.

Lemma 3
$$\chi((P_2 \square C_n)^2) = 4 \iff n \equiv 0 \pmod{4}$$
.

Proof. We have $\chi((P_2 \square C_n)^2) \ge \Delta(P_2 \square C_n) + 1 = 4$. Let c_0 be a 4-coloring of $(P_2 \square P_2)^2$. This coloring may be extended uniquely to a color function c on $V((P_2 \square C_n)^2)$ only using colors of c_0 . It is clear to see that c is a 4-coloring of $(P_2 \square C_n)^2$ if and only if $n \equiv 0 \pmod{4}$. The following is a 4-coloring of $(P_2 \square C_n)^2$.

$$c: V((P_2 \square C_n)^2) \to \{0, 1, 2, 3\}$$

$$c(v_{ij}) = (j + 2(i - 1)) \pmod{4}.$$

Lemma 4 $\chi((P_2 \square C_3)^2) = \chi((P_2 \square C_6)^2) = 6.$

Proof. We know $(P_2 \square C_3)^2 = K_6$, so $\chi((P_2 \square C_3)^2) = \chi(K_6) = 6$. Since $\alpha((P_2 \square C_6)^2) = 2$, we have $\chi((P_2 \square C_6)^2) \ge 6$, The following is a 6-coloring of $(P_2 \square C_6)^2$.

Figure 1: A 6-coloring of
$$(P_2 \square C_6)^2$$

Theorem 2 If $4 \nmid n$ and $n \neq 3, 6$, then, $\chi((P_2 \square C_n)^2) = 5$.

Proof. For this n, by Corollary 3 and Lemma 3, $\chi((P_2 \square C_n)^2) \ge 5$. We can obtain a 5-coloring of $(P_2 \square C_{4l+1})^2$, $(P_2 \square C_{4l+2})^2 (l > 1)$ and $(P_2 \square C_{4l+3})^2$ by combining the coloring given in Lemma 3 and the colorings shown in Figure 2.

Figure 2: Some 5-colorings of $(P_2 \square C_{10})^2$, $(P_2 \square C_5)^2$, and $(P_2 \square C_7)^2$

3.2 $P_m \square C_{3l}$

Theorem 3 For each $m (m \ge 3)$ and l, we have:

$$5 \le \chi((P_m \square C_{3l})^2) \le 6.$$

Proof. Clearly $\chi((P_m \square C_{3l})^2) \ge 5$. The following is a 6-coloring of $(P_m \square C_{3l})^2$.

$$c: V(P_m \square C_{3l}) \to \{0, 1, 2, 3, 4, 5\}$$

$$c(v_{ij}) = \begin{cases} (1 + (i-1)) \pmod{6} & j \equiv 1 \pmod{3} \\ (3 + (i-1)) \pmod{6} & j \equiv 2 \pmod{3} \\ (5 + (i-1)) \pmod{6} & j \equiv 0 \pmod{3}. \end{cases}$$

3.3 $P_m \square C_{3l+1}$

Theorem 4 For every $m \ (m \ge 3)$ and l, we have:

$$5 \le \chi((P_m \square C_{3l+1})^2) \le 6.$$

Proof. The lower bound is clear. The following is a 6-coloring of $(P_m \square C_{3l+1})^2$.

$$c(v_{ij}) = \begin{cases} (1+(i-1)) & (\bmod 6) & j=1\\ (2+(i-1)) & (\bmod 6) & j\equiv 1 \pmod 3 \\ (4+(i-1)) & (\bmod 6) & j\equiv 2 \pmod 3 \\ (i-1) & (\bmod 6) & j\equiv 2 \pmod 3 \\ (i-1) & (\bmod 6) & j\equiv 0 \pmod 3 \\ (3+(i-1)) & (\bmod 6) & j=3l+1. \end{cases}$$

3.4 $P_m \square C_{3l+2}$

Theorem 5 For each $m (m \ge 3)$ and l, we have:

$$5 \le \chi((P_m \square C_{3l+2})^2) \le 6.$$

Proof. The lower bound is clear. The following is a 6-coloring of $(P_m \square C_{3l+2})^2$.

$$c: V(P_m \square C_{3l+2}) \to \{0, 1, 2, 3, 4, 5\}$$

$$c(v_{ij}) = \begin{cases} (1+(i-1)) & (\text{mod } 6) \quad j = 1\\ (2+(i-1)) & (\text{mod } 6) \quad j \equiv 1 \pmod{3} \\ (4+(i-1)) & (\text{mod } 6) \quad j \equiv 2 \pmod{3} \\ (i-1) & (\text{mod } 6) \quad j \equiv 0 \pmod{3} \\ (5+(i-1)) & (\text{mod } 6) \quad j \equiv 3l+2. \end{cases}$$

4 $C_m \square C_n$

First we prove a direct construction theorem.

Theorem 6 If there exists a k-coloring of $(C_m \square C_n)^2$, then for every l and l' there exists a k-coloring of $(C_{ml} \square C_{nl'})^2$.

Proof. Let c be a k-coloring of $(C_m \square C_n)^2$, then the following is a k-coloring of $(C_{ml} \square C_{nl'})^2$.

$$l \begin{cases} c & c & \cdots & c \\ c & c & \cdots & c \\ \vdots & \vdots & \vdots & \vdots \\ c & c & \cdots & c \end{cases}$$

Now we prove a necessary and sufficient condition for $\chi((C_m \Box C_n)^2)$ to be equal to 5.

1 2 5 7 3 4 6 0 6 5 1 2 0 7 3 4

Figure 3: An 8-coloring of $(C_4 \square C_4)^2$

Corollary 4 For all m and n, $\chi((C_m \square C_n)^2) = 5$ if and only if both m and n are multiple of 5.

Proof. If both m and n are multiple of 5, then by Example 2 and Theorem 6 we can generate a 5-coloring of $(C_m \square C_n)^2$. For the converse, let c be a 5-coloring of $(C_m \square C_n)^2$. Then c is also a 5-coloring of $(P_m \square C_n)^2$ and by Corollary 1, $n \equiv 0 \pmod{5}$, and c is also a 5-coloring of $(C_m \square P_n)^2$, thus again by Corollary 1, $m \equiv 0 \pmod{5}$.

G. Matthews informed us that they also have the result of Corollary 4 [8].

4.1 $\chi((C_n \square C_n)^2)$ for small n

In this subsection we find $\chi((C_n \square C_n)^2)$, for some small values of n.

- $\chi((C_3 \square C_3)^2) = 9$, for $(C_3 \square C_3)^2 = K_9$.
- $\chi((C_4\square C_4)^2)=8$. We have $\alpha((C_4\square C_4)^2)=2$, so $\chi((C_4\square C_4)^2)\geq 8$. In Figure 3, we present an 8-coloring of $(C_4\square C_4)^2$.
- $\chi((C_5 \square C_5)^2) = 5$. See Example 2.
- $\chi((C_6 \square C_6)^2) = 6$. By Corollary 4, $\chi((C_6 \square C_6)^2) \ge 6$. In Figure 4, we present a 6-coloring of $(C_6 \square C_6)^2$.
- $\chi((C_7 \square C_7)^2) = 7$. By Corollary 4, $\chi((C_7 \square C_7)^2) \ge 6$. Assume c is a 6- coloring of $(C_7 \square C_7)^2$, so there exists a color

1 2 3 4 5 0 3 4 5 0 1 2 5 0 1 2 3 4 1 2 3 4 5 0 3 4 5 0 1 2 5 0 1 2 3 4

Figure 4: A 6-coloring of $(C_6 \square C_6)^2$

class of size at least $\lceil \frac{49}{6} \rceil = 9$ in c. If in a row of $(C_7 \square C_7)^2$ two independent vertices are chosen in a class, then there can be at most one vertex from the previous or the next chosen row in that class. So in any color class of $(C_7 \square C_7)^2$ there are 4 consecutive rows with at most 4 independent vertices. But in the 3 remaining rows of $(C_7 \square C_7)^2$, we can not choose other 5 independent vertices. In Figure 5, we present a 7-coloring of $(C_7 \square C_7)^2$.

- $\chi((C_8\square C_8)^2)=7$. By Corollary 4, $\chi((C_8\square C_8)^2)\geq 6$. Assume c is a 6-coloring of $(C_8\square C_8)^2$, so there exists a color class of size at least $\lceil \frac{64}{6} \rceil = 11$ in c. Also in any color class of $(C_8\square C_8)^2$ there are 4 consecutive rows with at most 6 independent vertices. But in the 4 remaining rows of $(C_8\square C_8)^2$, we can not choose other 5 independent vertices. In Figure 5, we present a 7-coloring of $(C_8\square C_8)^2$.
- $\chi((C_9\square C_9)^2)=7$. By Corollary 4, $\chi((C_9\square C_9)^2)\geq 6$. Let c be a 6-coloring of $(C_9\square C_9)^2$, so there exists a color class of size at least $\lceil \frac{81}{6} \rceil = 14$ in c. Also in any color class of $(C_9\square C_9)^2$ there are 4 consecutive rows with at most 6 independent vertices. But in the 5 remaining rows of $(C_9\square C_9)^2$, we can not choose 8 independent vertices. In Figure 5, we present a 7-coloring of $(C_9\square C_9)^2$.

```
2
                        4
                          6
                            3 4
                                  0
                                    6
    3 4 5 6 0
1
  2
                     0
                          5
                            0 6
                                    2
                   4
                        1
                                  5
    5
3
  4
      6 0
           1
              2
                   3 5
                        6 4 2 3 4 1
5
         2
           3 4
  6
    0
      1
                   6 1
                        3 0 6 1
                                 2 5
    2 3 4
0
  1
           5 6
                   4 0 5 2 4 5 6 3
  3 4 5 6 0 1
2
                   2
                     3
                        6 1 0 3 4 0
  5
           2
              3
4
    6
       0
         1
                   6
                     4
                          5
                             6
                        0
                               2
                                 1
                                    5
              5
  0
    1
       2
         3
           4
                      5
                        3
                          2
                             1
                               5
                                 3 4
                           3
                 5
           0
             3
               4
                   6
                      0
        5
               2
                 3 4
                      5
          6
             1
                        1
                           4
            5 6
        2
          4
                 1 2
                      3 6 0
        1
          0
            3 4
                 5 6 0 2 3
                 3 4 5 1 4
            1
               2
        5
          6
        2
            5 6 1 2 3 6 0
          4
        1
          0 3 4 5 6 0 2 3
               2
                 3 4
        5
            1
                      5
                        1
                           4
                      3 6
                    2
          4
             5
                 1
                           0
```

Figure 5: Some 7-colorings of $(C_7 \square C_7)^2$, $(C_8 \square C_8)^2$ and $(C_9 \square C_9)^2$

- $\chi((C_{10}\Box C_{10})^2) = 5$. By Corollary 4.
- $\chi((C_{12} \square C_{12})^2) = 6$. By Corollary 4, $\chi((C_{12} \square C_{12})^2) > 5$. Now it follows by $\chi((C_6 \square C_6)^2) = 6$ and Theorem 6.

4.2 Some bounds for $\chi((C_m \square C_n)^2)$

In this subsection, we give more precise bounds for products of some particular cycles.

Theorem 7 For all k and $n(n \ge 3)$, we have:

$$5 \le \chi((C_{6k} \square C_n)^2) \le 6.$$

Proof. The lower bound is trivial. For the upper bound, all of the colorings given in Subsections 3.2, 3.3 and 3.4 for $(P_m \square C_{3l+i})^2$, i = 0, 1, 2, also works for $(C_{6k} \square C_{3l+i})^2$ i = 0, 1, 2.

Theorem 8 For all k and l, We have:

- 1. $\chi((C_3\square C_5)^2)=8$,
- 2. $5 \le \chi((C_{3k} \square C_{2l})^2) \le 6$,
- 3. $\chi((C_3\square C_{2l+1})^2) > 6$,
- 4. $5 \le \chi((C_{3k} \square C_{2l+1})^2) \le 7$, $(l \ge 3)$.

Proof.

1. We have $\alpha(C_3 \square C_5)^2 = 2$, so $\chi((C_3 \square C_5)^2) > 7$. The following is an 8-coloring of $(C_3 \square C_5)^2$.

- 2. We consider two cases for l.
 - l is even, l = 2l' for some l'. By Theorem 6, it is sufficient to find a 6-coloring of $(C_3 \square C_4)^2$. The following is a 6-coloring of $(C_3 \square C_4)^2$.

• l is odd, l = 2l' + 1 for some l'. Let c be a 6-coloring of $(C_{3k} \square C_6)^2$, obtained by combining the following 6-coloring of $(C_3 \square C_6)^2$.

Also let c' be a 6-coloring of $(C_{3k} \square C_{4(l'-1)})^2$ obtained in the previous case. The following is a 6-coloring of $(C_{3k} \square C_{2l})^2$.

$$c'((C_{3k}\Box C_{4(l'-1)})^2) \mid c((C_{3k}\Box C_6)^2)$$

- 3. If there exists a 6-coloring of $(C_3 \square C_{2l+1})^2$, then there exists at least one color class of size at least $\lceil \frac{3(2l+1)}{6} \rceil = l+1$. We can choose at most 1 independent vertex from two consecutive columns of $(C_3 \square C_{2l+1})^2$. So the maximum size of each color class of $(C_3 \square C_{2l+1})^2$ is l. Therefore $\chi((C_3 \square C_{2l+1})^2) > 6$.
- 4. For l=3 by Theorem 6, it is sufficient to consider the following 7-coloring of $(C_3 \square C_7)^2$.

For $l \ge 4$, let c' be a 6-coloring of $(C_{3k} \square C_{2(l-2)})^2$ obtained in the second item of this theorem. The following is a 7-coloring of $(C_{3k} \square C_{2l+1})^2$.

$$\boxed{c'((C_{3k}\square C_{2(l-2)})^2) \mid c(C_{3k}\square C_5)}$$

where, c is obtained by combining the following 7-coloring of $C_3 \square C_5$ as follows:

Based on the results above we make the following conjecture:

Conjecture 2 For all m and n, we have:

$$5 \le \chi((C_m \square C_n)^2) \le 6 \iff 6|mn.$$

Finally in this section we find an upper bound for $\chi((C_m \square C_n)^2)$. For this purpose we use some 4-colorings of K_4 . First we introduce 6 of them as follows.

Theorem 9 For all m and n, $(m, n) \neq (3, 3)$, we have:

$$5 \le \chi((C_m \square C_n)^2) \le 8.$$

Proof. The lower bound is trivial. We prove the upper bound with introducing an 8-coloring in each of the possible cases and subcases.

- (1) $C_{4k}\square C_n$
 - $C_{4k}\Box C_{4l}$ An 8-coloring of $(C_{4k}\Box C_{4l})^2$ can be obtained by repetition of the following pattern: A A' , i.e.:

• $C_{4k}\square C_{4l+1}$

An 8-coloring of $(C_{4k} \square C_{4l+1})^2$ can be obtained by repetition of the following pattern:

• $C_{4k}\square C_{4l+2}$

An 8-coloring of $(C_{4m}\square C_{4n+2})^2$ can be obtained by repetition of the following pattern:

$$\begin{vmatrix} A & A' & \cdots & A & A' & R' \\ A' & A & \cdots & A' & A & R \end{vmatrix}$$

• $C_{4k}\square C_{4l+3}$

An 8-coloring of $(C_{4k} \square C_{4l+3})^2$ can be obtained by repetition of the following pattern:

(2) $C_{4k+1}\square C_n$

\bullet $C_{4k+1}\square C_{4l+1}$

An 8-coloring of $(C_{4k+1}\square C_{4l+1})^2$ can be obtained by repeating the following pattern:

$$\begin{vmatrix} A & A' & \cdots & A & A' & A & A' & \frac{4}{2} \\ A' & A & \cdots & A & A' & A' & R & \frac{1}{3} \end{vmatrix}$$

and adding them to the top of the following:

	A		ľ				A'	<u> </u>
ĺ	6 5	C		6 5	C	C'	3 4 6 5	1
							$\frac{0}{1}$ $\frac{3}{7}$	

 \bullet $C_{4k+1}\square C_{4l+2}$

An 8-coloring of $(C_{4k+1}\square C_{4l+2})^2$ can be obtained by repeating the following coloring:

$$\left| \begin{array}{cc|c} A & A' & \cdots & A & A' & A & A' & G \\ A' & C & \cdots & A' & C & A' & H & I \end{array} \right|$$

and adding them to the top of the following:

where G, H, I, M and N are the following colorings:

• $C_{4k+1}\square C_{4l+3}$ An 8-coloring of $(C_{4k+1}\square C_{4l+3})^2$ can be obtained by repeating the following:

and adding them to the top of the following:

A	A'	 A	<i>A</i> ′	A	A'	G	5 6
1		,		1		N	
4 3	1 2	 4 3	1 2	4 3	1 2	5 1	0

(3) $C_{4k+2}\square C_n$

• $C_{4k+2} \square C_{4l+2}$ An 8-coloring of $(C_{4k+2} \square C_{4l+2})^2$ can be obtained by repeating the following:

$$\begin{vmatrix} A & A' & \cdots & A & A' & R' \\ A' & A & \cdots & A' & A & R \end{vmatrix}$$

and adding them to the top of the following:

• $C_{4k+2}\square C_{4l+3}$ An 8-coloring of $(C_{4k+2}\square C_{4l+3})^2$ can be obtained by repeating

and adding them to the top of the following:

$$C' \quad C \quad \cdots \quad C' \quad C \quad C' \quad \frac{1}{3}$$

- (4) $C_{4k+3}\square C_n$
 - $C_{4k+3}\square C_{4l+3}$ An 8-coloring of $(C_{4k+3}\square C_{4l+3})^2$ can be obtained by repeating

$$\begin{vmatrix} A & A' & \cdots & A & A' & A & \frac{6}{7} \\ A' & A & \cdots & A' & A & A' & \frac{1}{3} \end{vmatrix}$$

and adding them to the top of the following:

Conjecture 3 For every $m \ (m \ge 5)$ and $n \ (n \ge 5)$, we have:

$$5 \le \chi((C_m \square C_n)^2) \le 7.$$

Acknolegments.

We would like to thank to Mr. Behruz Bagheri Gh. for reading the final draft.

References

- [1] Shih-Hu Chiang and Jing-Ho Yan. On L(d, 1)-labeling of Cartesian product of a cycle and a path. Discrete Appl. Math., 156(15):2867–2881, 2008.
- [2] Zdeněk Dvořák, Daniel Král, Pavel Nejedlý, and Riste Škrekovski. Coloring squares of planar graphs with girth six. *European J. Combin.*, 29(4):838–849, 2008.
- [3] Jessica Fridrich and Petr Lisoněk. Grid colorings in steganography. *IEEE Trans. Inform. Theory*, 53(4):1547–1549, 2007.
- [4] Robert E. Jamison and Gretchen L. Matthews. Distance k colorings of Hamming graphs. In Proceedings of the Thirty-Seventh Southeastern International Conference on Combinatorics, Graph Theory and Computing, volume 183, pages 193–202, 2006.
- [5] Tommy R. Jensen and Bjarne Toft. Graph coloring problems. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York, 1995. A Wiley-Interscience Publication.
- [6] Florica Kramer and Horst Kramer. A survey on the distance-colouring of graphs. *Discrete Math.*, 308(2-3):422-426, 2008.

- [7] Ko-Wei Lih and Wei-Fan Wang. Coloring the square of an outerplanar graph. *Taiwanese J. Math.*, 10(4):1015–1023, 2006.
- [8] Gretchen Matthews and Robert Jamison. A private communication with G. Matthews. 2008.
- [9] Michael Molloy and Mohammad R. Salavatipour. A bound on the chromatic number of the square of a planar graph. J. Combin. Theory Ser. B, 94(2):189-213, 2005.
- [10] Jan van den Heuvel and Sean McGuinness. Coloring the square of a planar graph. J. Graph Theory, 42(2):110-124, 2003.
- [11] G. Wegner. Graphs with given diameter and a coloring problem. Technical report, University of Dortmund, 1977.