4-cordiality of some regular graphs and the complete 4-partite graph

Maged Z. Youssef and Naseam A. AL-Kuleab
Department of Mathematics, Faculty of Science,
Ain Shams University, Abbassia 11566, Cairo, Egypt.

and

Department of Mathematics, Faculty of Science, King Faisal University, Al-Hasa, Kingdom of Saudi Arabia

Abstract

Suppose G is a graph with vertex set V(G) and edge set E(G), and let A be an additive Abelian group. A vertex labeling $f:V(G)\to A$ induces an edge labeling $f^*:E(G)\to A$ defined by $f^*(xy)=f(x)+f(y)$. For $a\in A$, let $n_a(f)$ and $m_a(f)$ be the number of vertices v and edges e with f(v)=a and $f^*(e)=a$, respectively. A graph G is A-cordial if there exists a vertex labeling f such that $|n_a(f)-n_b(f)|\leq 1$ and $|m_a(f)-m_b(f)|\leq 1$ for all $a,b\in A$. When $A=\mathbb{Z}_k$, we say that G is k-cordial instead of \mathbb{Z}_k -cordial. In this paper we investigate certain regular graphs and ladder graphs that are 4-cordial and we give a complete characterization of the 4-cordiality of the complete 4-partite graph. An open problem about which complete multipartite graphs are not 4-cordial is given.

Keywords: Regular graph, ladder, complete 4-partite graph, k – cordial labeling.

Mathematics Subject Classifications (2000): 05C78

1. Introduction

All graphs considered in this paper are finite, simple and undirected. For most of the graph theory terminology and notation used, we follow [8] and especially of graph labeling [10].

Let G be a graph with vertex set V(G) and edge set E(G), and let A be an additive Abelian group. A vertex labeling $f:V(G)\to A$ induces an edge labeling $f^*\colon E(G)\to A$, defined by $f^*(xy)=f(x)+f(y)$, for all edges $xy\in E(G)$. For $a\in A$, let $n_a(f)=\left|f^{-1}(a)\right|$ and $m_a(f)=\left|f^{*-1}(a)\right|$. A labeling f of a graph G is said to be A-cordial labeling if $\left|n_a(f)-n_b(f)\right|\leq 1$ and $\left|m_a(f)-m_b(f)\right|\leq 1$ for all $a,b\in A$. A graph G is called A-cordial if it admits an A-cordial labeling. When $A=\mathbb{Z}_k$, we use the k-cordial labeling in stead of \mathbb{Z}_k -cordial labeling, and we say that G is k-cordial if G is \mathbb{Z}_k -cordial.

The notion of A – cordial labeling was first introduced by Hovey [14] who introduced a simultaneous generalization of harmonious [12] and cordial [3] labelings. Hovey [14] investigated many families of graphs that are k – cordial and gave the following conjectures: all trees are k – cordial for all k; all connected graphs are 3 – cordial; and C_{2mk+j} is k – cordial if and only if $j\neq k$, where k and j are even and $0 \le j < 2k$. The last conjecture was verified by Tao [16]. Youssef [17] proved some necessary conditions for a graph to be k – cordial and gave some new families of k – cordial graphs. See [1-2, 4-7, 9, 11, and 15] for other related topics. Gallian [10] surveys the current state of knowledge for k – cordial labeling and many other labelings.

We mention some known results which are referred to throughout the paper. The following theorem gives a necessary condition to certain regular graphs to be k – cordial when k is even. We use it many times throughout the paper.

Theorem 1 Let k be even and G be a d-regular (p,q) graph with $p,q \equiv 0 \pmod{k}$. If G is k-cordial, then $q \equiv 0 \pmod{2k}$.[17]

Lemma 1 If G is a (p,q)k - coordial graph with $p \equiv 0 \pmod{k}$, then $G + \overline{K}_n$ is k - coordial for all positive integer n.[17]

Lemma 2 If G is k - cordial, then $G + \overline{K}_n$ is k-cordial for every $n \equiv 0 \pmod{k}$.[18]

The following lemma shows that adding number of isolated vertices congruent to $0 \pmod{k}$ to one partition (then to many partitions) of complete multipartite k – cordial graph produce another complete multipartite k – cordial graph.

Lemma 3 If K_{m_1,m_2,\cdots,m_r} is k - coordial so is K_{m_1+t,m_2,\cdots,m_r} for all $t\equiv 0 \pmod k$).[18]

Theorem 2 K_n is 4-cordial if and only if $n \le 6$. [17]

Theorem 3 $K_{m,n,p}$ is 4-cordial if and only if $(m,n,p) \pmod{4} \neq (0,2,2), (2,2,2)$, where $m \pmod{4} \leq n \pmod{4} \leq p \pmod{4}$. [18]

In the next section of this paper we investigate certain regular graphs that are 4-cordial and in section 3, we determine exactly which of various kinds of ladders are 4-cordial. In section 4, we give a complete characterization of the 4-cordiality of the complete 4-partite graphs.

2. 4-cordiality of graphs related to cycles

In this section, we determine the 4-cordiality of the graphs mC_{4n} and C_n^3 . The proofs of the following proposition and its corollary are immediate and we omit both of them.

Proposition 2.1 If G and H are (p_1,q_1) and (p_2,q_2) k - cordial graphs such that $(p_1 \text{ or } p_2 \equiv 0 \pmod k)$ and $(q_1 \text{ or } q_2 \equiv 0 \pmod k)$, then $G \cup H$ is k - cordial.

Corollary 2.2 If G is a (p,q)k - cordial graph such that p and $q \equiv 0 \pmod{k}$, then mG is k - cordial for every positive integer m.

Theorem 1 above gives the necessary condition for the 2-regular graph mC_{nk} to be k - cordial when k is even which is m or n is even. As a special case we determine which of mC_{4n} is 4-cordial.

Theorem 2.3 mC_{4n} is 4-cordial if and only if m or n is even

Proof. Necessity follows from Theorem 1. For sufficiency, if n is even, then C_{4n} is 4-cordial by Hovey [14] and hence mC_{4n} is 4-cordial for all positive integer m by Corollary 2.2. If n is odd, then the following 4-cordial labeling of $2C_{4n}$ and Corollary 2.2 completes the proof: We label the vertices of the labels cycle successively the first by $(0.012)\prod_{1}^{\frac{n-1}{2}}(0.0112233)$ and $(1.233)\prod_{1}^{\frac{n-1}{2}}(0.0112233)$ for

the second cycle.

Youssef [17] showed that C_n^2 is 4 – cordial if and only if $n \neq 2 \pmod{4}$. However, we show the following.

2.5 C_n^3 is 4-cordial if and only if $n \neq 8t + 4, t \geq 1$ and $n \neq 7$

Proof. Necessity, if n = 8t + 4, $t \ge 1$, then C_n^3 is not 4 -cordial by Theorem 1. If n = 7, $C_{7}^{3} = K_{7}$ which is not 4-cordial by Theorem 2. For sufficiency, if $3 \le n \le 6$, then $C_n^3 = K_n$, which is 4-cordial by Theorem 2. Now, let n = 8t + s, $t \ge 1$ and $0 \le s \le 7$, $s \ne 4$ and $V(C_n^3) = \{v_1, v_2, ..., v_n\}$. If s = 0, we label the vertices of the cycle by the successive labels:

 \prod (01231230). If s = 1, we label the vertices of the cycle by the successive labels: $(\prod_{i=1}^{s} (01231230))(0)$. If s=2, we label the vertices of the cycle by the successive labels: $(\prod (01231230))(02)$. If s=3, we label the vertices of the cycle by the successive labels: $(\prod (01231230))(012)$. If s=5, we label the vertices of the cycle by the successive labels: $(\prod (01231230)) (01230)$. If s = 6, we label the cycle by the successive vertices the $(\prod (01231230)) (012302)$. If s = 7, we label the vertices of by the successive the cvcle labels: $(\prod (01231230))(0221331)$. We show that the given labeling works in the first case when n = 8t and the reader may verify that in each case the labeling works: Let f be the described vertex labeling above and for $i \in \mathbb{Z}_4$, let

$$X_i = \left| \left\{ v_j v_k : j - k \equiv \pm 1 \pmod{n}, f^*(v_j v_k) = i \right\} \right|,$$

$$Y_i = \left| \left\{ v_j v_k : j - k \equiv \pm 2 \pmod{n}, f^*(v_j v_k) = i \right\} \right| \text{ and }$$

$$\begin{split} Z_i = & \left| \left\{ v_j v_k : \quad j - k \equiv \pm 3 \pmod{n}, \ f^*(v_j v_k) = i \right\} \right| \quad \text{. Clearly} \\ \text{that } m_i = X_i + Y_i + Z_i \text{. Now, since } X_0 = 2t \text{, } X_1 = X_3 = 3t \text{,} \\ X_2 = 0 \text{; } Y_i = 2t \quad \text{for all } i \in \mathbb{Z}_4 \quad \text{and} \quad Z_0 = 2t \text{, } Z_1 = Z_3 = t \text{,} \end{split}$$

 $Z_2=4t$, then $m_i=6t$ for all $i\in\mathbb{Z}_4$ and f is a 4-cordial labeling of C_n^3 . \square

3. 4-cordiality of ladders

The ladder L_n $(n \ge 2)$ is defined to be the graph $P_n \times P_2$, while the Möbius ladder M_n , $(n \ge 3)$ is the graph obtained from the ladder L_n by joining the opposite vertices of the two copies of P_n . A circular ladder graph is a graph of the form $C_n \times P_2$, $(n \ge 3)$ and is denoted by CL_n , sometimes also called a prism graph. See Gross and Yellen [13]. A circular ladder graph CL_n may be obtained from the ladder L_n by joining the end vertices of each copy of P_n .

Let
$$V(L_n) = \{u_i, v_i : 1 \le i \le n\}$$
 and

$$\begin{split} E\left(L_{n}\right) &= \{u_{\mathbf{i}}u_{\mathbf{i}+1}, v_{\mathbf{i}}v_{\mathbf{i}+1} \colon 1 \leq \mathbf{i} \leq n-1\} \cup \{u_{\mathbf{i}}v_{\mathbf{i}} \colon 1 \leq \mathbf{i} \leq n\}. \\ \text{Note} &\quad \text{that} &\quad E\left(M_{n}\right) = E\left(L_{n}\right) \cup \{u_{\mathbf{i}}v_{n}, u_{n}v_{\mathbf{i}}\}, \qquad \text{while} \\ E\left(CL_{n}\right) &= E\left(L_{n}\right) \quad \cup \{u_{\mathbf{i}}u_{n}, v_{\mathbf{i}}v_{n}\}. \\ \text{The following proposition} \\ \text{shows that if we add 4 steps to a 4-cordial ladder L_{n} yields} \\ \text{again a 4-cordial ladder L_{n+4}.} \end{split}$$

Proposition 3.1 If the ladder L_n has a 4-cordial labeling f such that $(f(u_n), f(v_n)) = (1, 2)$ or (2, 3), then L_{n+4} is 4-cordial.

Proof. If $(f(u_n), f(v_n)) = (1,2)$, define a labeling $g: V(L_{n+4}) \rightarrow \mathbb{Z}_4$ as $g(V(L_n)) = f(V(L_n))$ and label the 4 vertices u_i , i = n + 1, n + 2, n + 3, n + 4 consecutively by the labels: 0,3,0, 2 and label the 4 vertices v_i , i = n + 1, n + 2,

n+3, n+4 consecutively by the labels:2,1,1,3. Then $n_i(g)=n_i(f)+2$, $m_i(g)=m_i(f)+3$ for all $i\in\mathbb{Z}_4$ and clearly g is a 4-cordial labeling of L_{n+4} .

If $(f(u_n), f(v_n)) = (2,3)$ then as above, define a labeling $g:V(L_{n+4}) \to \mathbb{Z}_4$ as $g(V(L_n)) = f(V(L_n))$ and label the 4 vertices u_i , i=n+1, n+2, n+3, n+4 consecutively by the labels: 0,3, 0,1 and label the 4 vertices v_i , i=n+1, n+2, n+3, n+4 consecutively by the labels: 1,3,2,2. Again, g is a 4-cordial labeling of L_{n+4} . \square

As an immediate consequence we have the following corollary.

Corollary 3.2 If each of the Möbius ladder M_n and the circular ladder CL_n has a 4-cordial labeling f such that $(f(u_n), f(v_n)) = (1, 2)$, then so are M_{n+8} and CL_{n+8} .

Theorem 3.3 L_n is 4-cordial for all $n \ge 3$.

Proof. If n=2, then $L_2=C_4$ is not 4-cordial by Theorem 1. For $3 \le n \le 6$, we will give a 4-cordial labeling f such that $(f(u_n),f(v_n))=(1,2)$ or (2,3), then applying Proposition 3.1 completes the proof. We label the vertices of L_3 as follows: 0, 0, 2 for $f(u_i)$ and 1, 3, 3 for $f(v_i)$ respectively, i=1,2,3. We label the vertices of L_4 as follows: 3,2,0,2 for $f(u_i)$ and 1,1,0,3 for $f(v_i)$ respectively, i=1,2,3,4. We label the vertices of L_5 as follows: 3,2,0,1,1 for $f(u_i)$ and 1,3,0,2,2 for $f(v_i)$ respectively, i=1,2,3,4,5. We label the vertices of L_6 as follows: 1,3,3,0,2,2 for $f(u_i)$ and 0,0,2,1,1,3 for $f(v_i)$ respectively, i=1,2,3,4,5,6.

Theorem 3.4 M_n is 4 – coordial if and only if $n \neq 4 \pmod{8}$.

Proof. Necessity follows from Theorem 1. For sufficiency, we will give a 4-cordial labeling f of M_n , $3 \le n \le 10$, $n \ne 4$, with $(f(u_n), f(v_n)) = (1,2)$, then applying Corollary 3.2 completes

the proof. We label the vertices of M_n , successively as pattern: $(f(u_1), f(u_2), ..., f(u_n)), (f(v_1), f(v_2), ..., f(v_n))$

n = 3: (3,0,1), (1,0,2)...

n = 5: (3,2,0,1,1), (1,3,0,2,2).

n = 6: (3,2,0,3,3,1), (1,0,0,2,1,2).

n = 7: (3,0,2,0,3,0,1), (1,0,3,1,3,2,2).

n = 8: (3,1,2,2,0,1,0,1), (1,3,3,0,3,2,0,2).

n = 9: (3,0,1,3,1,3,2,1,1), (1,0,2,0,2,2,0,3,2).

n = 10: (3,0,1,3,1,3,1,0,2,1), (1,0,2,0,2,2,0,3,3,2). \Box

In a similar argument to Theorem 3.4 we proof the following.

Theorem 3.5 CL_n is 4-cordial if and only if $n \neq 4 \pmod{8}$.

Proof. Necessity follows from Theorem 1. For sufficiency, we will give a 4-cordial labeling f of CL_n , $3 \le n \le 10$, $n \ne 4$, with $(f(u_n), f(v_n)) = (1, 2)$, then applying Corollary 3.2 completes the proof. We label the vertices of CL_n , successively as pattern: $(f(u_1), f(u_2), ..., f(u_n))$, $(f(v_1), f(v_2), ..., f(v_n))$

n = 3: (0,3,1), (0,3,2).

n = 5: (2,0,1,3,1), (0,1,3,0,2).

n = 6: (2,2,0,0,1,1), (0,3,1,3,3,2).

n = 7: (0,0,3,3,2,1,1), (2,1,1,0,0,3,2).

n = 8: (2,2,3,3,0,0,1,1), (2,3,3,0,0,1,1,2).

n = 9: (1,0,0,0,3,3,2,2,1), (1,1,1,0,0,3,3,2,2).

n = 10: (1,2,2,3,3,0,0,1,0,1), (3,3,0,0,1,2,3,1,2,2).

Another variation of a ladder graph is specified as follows. A ladder \mathbb{L}_n , $n \geq 2$ is a graph obtained by completing the ladder L_n by edges $u_i v_{i+1}$ for $1 \leq i \leq n-1$. See [2]. The following lemma shows that if the ladder \mathbb{L}_n has a 4-cordial labeling then so is \mathbb{L}_{n+2} under a restriction on the 4-cordial labeling of \mathbb{L}_n .

Lemma 3.6 If \mathbb{L}_n has a 4-cordial labeling f such that $(f(u_n), f(v_n)) = (1, 2)$, then so is \mathbb{L}_{n+2} .

Proof. Define a labeling $g:V(\mathbb{L}_{n+2})\to\mathbb{Z}_4$ as $g(V(\mathbb{L}_n))=f(V(\mathbb{L}_n))$ and label the 2 vertices u_i , i=n+1,n+2 consecutively by the labels: 3,1and label the 2 vertices v_i , i=n+1,n+2 consecutively by the labels: 0,2. Then $n_i(g)=n_i(f)+1$, $m_i(g)=m_i(f)+2$ for all $i\in\mathbb{Z}_4$ and clearly g is a 4-cordial labeling of \mathbb{L}_{n+2} . \square

Theorem 3.7 \mathbb{L}_n is 4-cordial for all $n \geq 2$.

Proof. We will give a 4-cordial labeling f of \mathbb{L}_n , n=2,3, such that $(f(u_n),f(v_n))=(1,2)$, then applying Lemma 3.6 completes the proof. We label the vertices of \mathbb{L}_2 as follows: 3,1 for $f(u_i)$ and 0,2 for $f(v_i)$ respectively, i=1,2. We label the vertices of \mathbb{L}_3 as follows: 1,3,1 for $f(u_i)$ and 2,0,2 for $f(v_i)$ respectively, i=1,2,3. \square

4. 4-cordiality of complete 4-partite graph

Hovey [14] showed that the complete bipartite graph $K_{2,k-2}$ is not k – cordial for all $k \ge 4$. However we give a slight generalization to this result by showing that the graph obtained by appending any number of edges from the two vertices of degree $n \ge 2$ in $K_{2,n}$ is not k – cordial where k is

equal to the order of the graph. We give a similar proof to the one due to Hovey.

Theorem 4.1 The graph obtained by appending m edges from the one vertex of degree $n \ge 2$ in $K_{2,n}$ and appending t edges from the other vertex of degree n is not p -cordial, where p is the order of the graph.

Proof. Suppose that the graph is p-cordial and let the two vertices of degree n of $K_{2,n}$ be u and v. As any vertex in a k-cordial labeling can be assigned the label 0, we can assume u labeled 0 and suppose v is labeled i. Then there is no way to get i as an edge label, a contradiction. \square

Let $K_{m,n,p,r}$ be the complete 4-partite graph where u_i 's (resp. v_j 's, resp. w_k 's, resp. x_t 's) are the m-independent (resp. n-independent, resp. p-independent, r

Youssef [17] showed that the complete bipartite graph $K_{m,n}$ is 4-cordial if and only if m or $n \not\equiv 2 \pmod 4$, while Youssef and Al-Kuleab [18] gave a complete characterization of the complete tripartite graphs which are 4-cordial. However, the following theorem extends these results to complete 4-partite graphs. Using the symmetry of the complete 4-partite graph $K_{m,n,p,r}$, we may assume that $m \pmod 4 \le n \pmod 4 \le p \pmod 4 \le r \pmod 4$.

Theorem 4.2 $K_{m,n,p,r}$ is 4-cordial if and only if $(m,n,p,r) \pmod{4} \not\equiv (0,0,2,2)$.

Proof. Necessity, if $m,n\equiv 0 \pmod 4$ and $p,r\equiv 2 \pmod 4$, let $q=\left|E(K_{m,n,p,r})\right|$ and suppose that $K_{m,n,p,r}$ is 4-cordial with labeling f,

then
$$\sum_{e \in E(K_{m,n,p,r})} f^*(e) = (\sum_{v \in V(K_{m,n,p,r})} \deg(v) f(v)) \pmod{4}$$

$$\Rightarrow \frac{6q}{4} = (n+p+r) \sum_{i=1}^{m} f(u_i) + (m+p+r) \sum_{j=1}^{n} f(v_j) +$$

$$(m+n+r)\sum_{k=1}^{p}f(w_k)+(m+n+p)\sum_{t=1}^{r}f(x_t) \pmod{4}$$

Since
$$(n+p+r)$$
 and $(m+p+r) \equiv 0 \pmod{4}$,

then,
$$\frac{3q}{2} = (m+n+r) \sum_{k=1}^{p} f(w_k) + (m+n+p) \sum_{i=1}^{r} f(x_i) \pmod{4}$$
,

$$\frac{3q}{2} = (m+n+r) \left[\frac{3(m+n+p+r)}{2} - \sum_{i=1}^{m} f(u_i) - \sum_{j=1}^{n} f(v_j) - \sum_{i=1}^{r} f(x_i) \right]$$

$$+(m+n+p)\sum_{i=1}^{r} f(x_i) \pmod{4}$$

$$\frac{3q}{2} = (m+n+r)\frac{3(m+n+p+r)}{2} - (m+n+r)\left[\sum_{i=1}^{m} f(u_i) + \sum_{i=1}^{n} f(v_i)\right]$$

$$+(p-r)\sum_{t=1}^{r} f(x_t) \pmod{4}$$

And since, $(m+n+r)\frac{3(m+n+p+r)}{2} \equiv 0 \pmod{4}$ and $(p-r) \equiv 0 \pmod{4}$

$$\Rightarrow \frac{3q}{2} = -(m+n+r)\left[\sum_{i=1}^{m} f(u_i) + \sum_{i=1}^{n} f(v_i)\right] \pmod{4}$$

And as,
$$\frac{3q}{2} = 2 \pmod{4}$$
 and $(n + m + r) = 2 \pmod{4}$

Then,
$$\sum_{i=1}^{m} f(u_i) + \sum_{j=1}^{n} f(v_j) = 1 \pmod{2}$$

and since,

$$\frac{3(m+n+p+r)}{2} = \sum_{i=1}^{m} f(u_i) + \sum_{j=1}^{n} f(v_j) + \sum_{k=1}^{p} f(w_k) + \sum_{i=1}^{r} f(x_i)$$
and
$$\frac{3(m+n+p+r)}{2} = 0 \pmod{2},$$

then,
$$\sum_{k=1}^{p} f(w_k) + \sum_{t=1}^{r} f(x_t) = 1 \pmod{2}$$
.

Without any loss of generality we may assume that $\sum_{i=1}^m f(u_i) \equiv 1 \pmod{2} \text{ and } \sum_{k=1}^p f(w_k) \equiv 1 \pmod{2}.$

Now, let O_1 (resp. O_2 ,resp. O_3 ,resp. O_4) be the number of vertices whose its label is odd in the m-set (resp. n-set, resp. p-set, resp. r-set) and E_1 (resp., E_2 ,resp., E_3 ,resp. E_4) be the number of vertices whose its label is even in the m-set (resp. n-set, resp. p-set, resp. r-set).

Since $\sum_{i=1}^{m} f(u_i) = 1 \pmod{2}$, then O_1 is odd and hence E_1 is odd

too. Also, as $\sum_{k=1}^{p} f(w_k) = 1 \pmod{2}$, then O_3 is odd and hence E_3 is odd too. So, we can deduce that each of O_2 , E_2 , O_4 and E_4 is even.

We calculate
$$m_0(f)+m_2(f)$$
 and $m_1(f)+m_3(f)$:
$$m_0(f)+m_2(f)=O_1(O_2+O_3+O_4)+O_2(O_3+O_4)+E_1(E_2+E_3+E_4)+\\ +E_2(E_3+E_4)+O_3O_4+E_3E_4$$

$$m_1(f)+m_3(f)=O_1(E_2+E_3+E_4)+O_2(E_3+E_4)+E_1(O_2+O_3+O_4)+\\ +E_2(O_3+O_4)+O_3E_4+E_3O_4$$

Put $x_1 = O_2 + O_3 + O_4$, $y_1 = E_2 + E_3 + E_4$, $x_2 = O_3 + O_4$ and $y_2 = E_3 + E_4$

Subtracting $m_0(f) + m_2(f)$ from $m_1(f) + m_3(f)$, we get:

$$m_1(f) + m_3(f) - (m_0(f) + m_2(f)) = (O_1 - E_1)(y_1 - x_1) +$$

$$+(O_2-E_2)(y_2-x_2)+(O_3-E_3)(E_4-O_4)$$

As $x_1 + y_1 = n + p + r = 0 \pmod{4}$ and since both of x_1 and y_1 are odd, then $y_1 - x_1 = \pm 2 \pmod{8}$. Similarly $x_2 + y_2 = p + r = 0 \pmod{4}$ and since both of x_2 and y_2 are odd, then $y_2 - x_2 = \pm 2 \pmod{8}$ and as:

 $O_1 + E_1 = m \equiv 0 \pmod{4}$ and both of O_1 and E_1 are odd, then $O_1 - E_1 \equiv \pm 2 \pmod{8}$

 $O_2 + E_2 = n \equiv 0 \pmod{4}$ and both of O_2 and E_2 are even, then $O_2 - E_2 \equiv 0 \pmod{4}$

 $O_3 + E_3 = p \equiv 2 \pmod{4}$ and both of O_3 and E_3 are odd, then $O_3 - E_3 \equiv 0 \pmod{4}$

 $O_4 + E_4 = r = 2 \pmod{4}$ and both of O_4 and E_4 are even, then $O_4 - E_4 = \pm 2 \pmod{8}$.

Hence $m_1(f)+m_3(f)-(m_0(f)+m_2(f))\equiv 4(\bmod 8)$, which is a contradiction, since $m_i=\frac{q}{4}$ for every $i\in\mathbb{Z}_4$.

Sufficiency, we have 34 cases to consider. If one of m,n,p or $r\equiv 0 \pmod 4$, say m, and the others satisfy that $(n,p,r)\not\equiv (0,2,2)$ and (2,2,2), then $K_{n,p,r}$ is 4-cordial by Theorem 3 and hence $K_{m,n,p,r}=\overline{K}_m+K_{n,p,r}$ is 4-cordial by Lemma 2. This cover 18 cases. If $(n,p,r)\equiv (1,1,2), (2,3,3)$, then $K_{n,p,r}$ is 4-cordial by Theorem 3 and hence $K_{m,n,p,r}=\overline{K}_m+K_{n,p,r}$ is 4-cordial by Lemma 1. This cover the

cases $(m,n,p,r) \equiv (1,1,1,2), (1,2,3,3)$ and (2,2,3,3). If $(m,n,p) \equiv (1,1,2), (2,3,3),$ then $K_{m,n,n}$ is 4-cordial by Theorem 3 and $K_{m,n,p,r} = K_{m,n,p} + \overline{K}_r$ is 4-cordial by Lemma 1. This cover the cases (1,1,2,2), (1,1,2,3) and (2,3,3,3). Finally, as $K_{4,2,2}$ is 4-cordial by the following pattern: (0,0,1,2;1,2;0,3;2,3), where the labels of each independent vertex set is separated by a semicolon, then $K_{m,n,r}$, $(m,n,p,r) \equiv (0,2,2,2)$, is 4-cordial by Lemma 3 . Similarly, we label the remaining other 9 cases in same above pattern such that the graph is beside its labeling and again Lemma 3 proof: $K_{1,1,1,1}$ (0;1;2;3), completes the (0;1;2;0,2,3), $K_{1,1,3,3}$ (0;1;0,2,3;0,1,2), $K_{1,2,2,2}$ (3;0,2;2,1;0,1), $K_{1,2,2,3}$ (2;0,1;0,3;1,2,3), $K_{1,3,3,3}$ (2;0,1,2;0,1,3;0,2,3), $K_{2,2,2,2}(0,1;0,3;2,3;1,2)$, $K_{2,2,2,3}\left(0,1;0,3;2,3;0,1,2\right),K_{3,3,3,3}\left(0,1,2;0,1,3;0,2,3;1,2,3\right).$

The above theorem along with the 4-cordiality of complete bipartite graph in [17] and of complete tripartite graph in [18] raises the question of which complete multipartite graphs are not 4-cordial. Therefore we propose the following open problem.

Open Problem Which of complete multipartite graphs are not 4-cordial.

References

- [1] **B. D. Acharya and S. M. Hegde**, Arithmetic graphs, *J. Graph Theory*, **14** (1990) 275-299.
- [2] M. Baca, B. Baskoro, M. Miller, J. Ryan, R. Simanjuntack and K. Sugeng, Survey of edge antimagic labelings of graphs, J. Indonesian Math. Soc., 12 (2006) 113-130.

- [3] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, *Ars Combin.*, 23 (1987) 201-207.
- [4] **I. Cahlt**, On cordial and 3-equitable labelings of graphs, *Utilitas Math.*, **37** (1990) 189-198.
- [5] I. Cahit, H-cordial graphs, *Bull. Inst. Combin. Appl.*, **18** (1996) 87-101.
- [6] I. Cahit and R. Yilmaz, E_k -cordial graphs, Ars Combin. 54 (2000)119-127.
- [7] **G. J. Chang, D. F. Hsu and D. G. Rogers**, Additive variations on a graceful theme: some results on harmonious and other related graphs, *Congress. Numer.*, **32** ((1981) 181-197.
- [8] **G. Chartrand and L. Lesniak-Foster**, Graphs and Digraphs (3nd Edition) CRC Press, 1996.
- [9] H. Enomoto, A. S. Llado, T. Nakaamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998)105-109.
- [10] J. A. Gallian, A dynamic survey of graph labeling, *The Electronic J. of Combin.*16 (2009), # DS6, 1-219.
- [11] **T. Grace**, On sequential labelings of graphs, *J. Graph Th*eory **7** (1983) 195-201.
- [12] R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Method, 1 (1980) 382-404.
- [13] J. T. Gross and J. Yellen, Graph Theory and Its Applications. Boca Raton, FL: CRC Press, 1999.
- [14] **M. Hovey**, A-cordial graphs, *Discrete Math.*, **93** (1991) 183-194.
- [15] S. M. Lee, E. Schmelchel, and S. C. Shee, On felicitous graphs, *Discrete Math.*, **93** (1991) 201-209.
- [16] **R. Tao**, On k-cordiality of cycles, crowns and wheels, *System Sci. Math. Sci.* **11** (1998) 227-229.

- [17] M. Z. Youssef, On k-cordial labeling, Australas. J. Combin. 43 (2009) 31-37.
- [18] M. Z. Youssef and N. A. AL-Kuleab, Further results on k-cordial labeling, preprint.

Current address for the first author: Department of Mathematics, Teachers College, King Saud University, Riyadh 11491, KSA.