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Abstract

Let [n]" denote the set of integers {—23%,..., 2} if n is odd,
and {~%,...,2}\ {0} if n is even. A super edge-graceful labeling
f of a graph G of order p and size g is & bijection f : E(G) —
[g]*, such that the induced vertex labeling f* given by f*(u) =
2uve B(c) f(wv) is a bijection f* : V(G) — [p]*. A graph is su-
per edge-graceful if it has a super edge-graceful labeling. We prove
that all complete tripartite graphs Kg s,c, except K1,1,2, are super
edge-graceful.

Keywords: labeling in graphs; edge labeling; super edge-graceful
labeling

1 Introduction

In this paper we consider only simple, finite, undirected graphs. We define
the set of integers [n]* to be {—251,..., 251} if nis odd, and -5 31\
{0} if n is even. Notice that the cardinality of [n]* is n, and [n]* contains
0 if and only if n is odd. A graph of order p and size g is said to be super
edge-graceful (SEG) if there is a bijection f : E(G) — [q]*, such that the
induced vertex labeling f* given by f*(u) =3, B(c) f(uv) is a bijection
f* : V(G) = [p]*. We use [8] for terminology and notation not defined
here.

A graph of order p and size g is edge-graceful [2] if the edges can be
labeled by 1,2,...,q such that the vertex sums are distinct (mod p). A

*Research supported by a Faculty Research Grant, University of West Georgia

JCMCC 76 (2011), pp. 137-158



necessary condition for a graph with p vertices and q edges to be edge-
graceful is that g(¢ + 1) = 11(22:2 (mod p).

_ Super edge-graceful labelings (SEGLs) were first considered by Mitchem
and Simoson (7] who showed super edge-graceful trees are edge-graceful. In
particular, Mitchem and Simoson noticed that if G is a super-edge graceful
graph and plg, if ¢ is odd, or p|(g+ 1), if g is even, then G is edge-graceful.
Some families of graphs have been shown to be super-edge graceful by
explicit labelings. It is known that, for example, paths of all orders except
2 and 4 and cycles of all orders except 4 and 6 are super edge-graceful
[1], as are trees of odd order with three even vertices [6]. It was recently
proved that [5] total stars and total cycles are also super edge-graceful. In
addition,

Theorem 1. [3] All complete graphs of all orders except 1, 2 and 4 are
super edge-graceful.

Theorem 2. [4] All complete bipartite graphs are super edge-graceful ex-
cept for K32, K23, and K if n is odd.

In this paper we prove that all complete tripartite graphs Kg 5., except
Ki,1,2, are super edge-graceful. The following lemma is crucial in this
paper. Throughout this paper ¢(v) denotes the induced label of vertex v.

2 A SEGL of K, ., where a, b and c are even

In this section we prove that there exists a SEGL of Kq ¢ for all positive
even integers a, b and c.

Lemma 3. Let a, b and c be positive integers and b+ c even. Let § = a if
ais even and § = a — 1 if a is odd. In addition, assume

b+c>§+2 if 6=0 (mod 4) 1)
b+c>%H2+4 if =2 (mod 4).

If there exists a SEGL of K4—24,c such that £(w;) = £ > 0, for some £, and
£(ws) = £+ 1, where w; and ws are not in the partite set of size a — 2, then
there exists a SEGL of K, 4 such that £(w;) = £+ 1 and £(wz) = £.

Proof. By assumption, there exists a SEGL of Ka_2,c. Let W = {w;, wa,
wa, ..., Wssc} e the vertices of the partite sets of sizes b and ¢ and suppose
that the induced vertex labels for w; and w are £ and € + 1, respectively.
Add two new vertices u and v to the partite set of size ¢ — 2 and join
these two to every vertex in W to obtain a K. The labels we need to
assign to the new edges are {+(%+1), £(F+2),...,£(F+(b+c))}, where
m = (a—2)(b+c)+bc if be is even and m = (a—2)(b+c)+bc—1if be is odd.
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Label the edge uw; with (—1)*(% +1) and the edge vw; with (—1)*+!( +1)
forie {1,2,3,...,b+ c}. Note that with this labeling the vertex labels of
Ka_2p,c do not change and (£(u),€(v)) = ((b+¢)/2,—(b+c)/2). To obtain
a SEGL of Kap,c, we need to make {€(u), £(v)} = {£(&t5<)}.

Case 1: a = 0,1 (mod 4). Then (b+c)/2 and (6 + b+ ¢)/2 have the
same parity. If /4 is odd, swap the edge Iabels Z+2and (R +5+2)
at u w1th the edge labels —(% +2) and 3 + + 2 at v, respectively. Then
f(u) = &£2+€ and f(v) = —-—L‘L as desxred

If0/4i 1s even, swap the edge labels F+2and —(F +%+3) at u with the
edge labels —(F+2) and Z+£+3at v, respectlvely Then f(u) = 22442
and ¢(v) = ——'ﬁ 2. Now swap the edge labels —(% + 3) and "‘ +4
at u thh the edge labels Zt + 3 and —(3 +4) at v, respectlvely, to obtam
{(u) = &£2+€ and ¢(v) = Lﬂ.
Case 2. a = 2,3 (mod 4). Then (b+c)/2 and (8 + b+ ¢)/2 have different
parity. Swap the edge label 3 +2 at u with the edge label 2t +1 at v. Now
lun) =€+1, Ywy) =4, L(u) =(b+c—2)/2 and £(v) = —(b+ c—2)/2.

If (6 +2)/4 is odd, swap the edge labels  +4 and —(3 + &2 + 4) at
u with the edge labels —(% +4) and % + —i— +4 atv, respectlvely Then

(u) = H2E€ and ¢(v) = - LEe, a5 de31red

If (6 + 2)/4 is even, swap the edge labels 2 + 4 and - (% + &2 + 5)
at u with the edge labels —(2 +4) and 2 + —+— +5 at v, respectlvely
Then £(u) = &£8+€ + 2 and £(v) = —ﬂ 2. Now swap the edge labels
—(% +3) and ”‘ +4atu w1th the edge labels Z + 3 and —(% +4) at v,
respectively, to obta.m Y(u) = &L8t¢ and £(v) = i—-—"’—c. O

Remark 4. A closer look at the proof of Lemma 3 shows that Condition
(1) can be modified as follows:

b+c>§ if 6=0 (mod4)andb+c>10 @
b+e>%H241 if =2 (mod4) and b+c > 12.

In order to prove this, consider the case § = 0 (mod 4), 8/4 is odd and
b+c =% + 1. Hence, there is no edge label — -(Z + +2) at u. We swap
the edge labels 2 +2, —(2 +2), 2 +4, —(Z +5), z +6 and -(5+7)
with their opp031tes to obtain £(u) = —"'—"'— and £(v) = , as desired.
The other cases are similar.

Theorem 5. Let a, b and ¢ be positive even integers. Then there exists a
SEGL of K, p,c.

Proof. Without loss of generality, we may assume a < b < ¢. By induction
on the number of vertices ¥ = a + b + ¢, we prove that there exists a
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SEGL of Kgp.c. The Appendix displays a SEGL of Kj22. Hence, the
statement is true for k = 6. Now assume every complete tripartite graph
with k > 6 vertices is SEG. We prove that every complete tripartite graph
K p,c with k + 2 vertices is SEG. If a = 2, then b+ ¢ > 6, and hence,
there is a SEGL of K2 ¢ by Theorem 2. If a > 4, then by the inductive
hypothesis, there exists a SEGL of K,_24,c. Note that in both cases there
exist two vertices w; and wsy not in the partite set of size a — 2 such that
{€(w), &(w2)} = {1,2}. Apply Lemma 3 to construct a SEGL of K p,c-
This completes the proof. O

3 A SEGL of K,;., where a and b are even
and c is odd

In this section we prove every K, is SEG if o and b are even and c is
odd. We split our proof into three cases: a # b (mod 4), e = b =0 (mod
4), and a = b = 2 (mod 4). When b + ¢ is even we make use of Lemma 3
in induction. Similarly, when b+ ¢ is odd we apply the following lemma in
induction.

Lemma 6. Let a, b and ¢ be positive integers, b even, and c odd. Let

c>4(a+b)—-6 or

b>4(a+c)—6 or (3)
c>4(a+b)-18 andb>4or

b>4(a+c)—18 andc2>5.

If there exists a SEGL of Kg—2,c such that £(w;) = £ > 0, for some ¢, and
{(wq) = €+ 1, where w; and w; are not in the partite set of size a — 2, then
there exists a SEGL of K, 5 such that &(w;) = £+ 1 and £(w2) =

Proof. By assumption, there exists a SEGL of K,—2,5,.. We construct a
SEGL for K, .. Assume a is even (the case a is odd is similar). Let
W = {w), ws, ..., Wpsc} be the vertices in the partite sets of sizes b and c.
In addition, suppose that the induced labels for vertices w; and wy are £
and £ + 1 for some positive integer ¢, respectively. Add two new vertices
u and v to the partite set of size @ — 2 and join them to every vertex in
W to obtain a K, .. The labels we need to assign to the new edges are
{£(B+1),£(F+2),...,£(F + (b+¢))}, where m = (a — 2)(b+¢) + be.
Label the edge uw; with (—1)}(B+4) and the edge vw; with (-1)"*1($+
i) for i € {1,2,3,...,b+c}. Note that with this labeling the vertex labels
of Ka—2p,c do not change and (f(u),f(v)) = (—mibfetl mibledly T,
obtain a SEGL of K, ¢, we need to make {£(u), 8(0)} = {£(atbfe=1)},

Assume mibfetl and etbiecl haye different parity (the case mibetl
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and 2tbte=l have the same parity is similar). Swap the edge label 2 + 2
at u with the edge label 3t + 1 at v. Now f(w;) = €+ 1, (ws) = ¢,
e(u) m:tb;tci and e(,u) mibg:c:t.'&

Let0<_7<7—|_(b+c—4)/4]andI—{012 .»7}. If we swap
the edge labels m/2 4+ 2j + 4 and —(m/2 + b+ ¢ — 2j) at u with the edge
labels —(m/2+ 2j +4) and m/2 + b+ c— 25 at v, then £(u) increases (¢(v)
decreases) by 2(b + ¢ — 45 — 4). For J C I define

S(J)=) 2(b+c—4j—4).
jeJ

Then
1. For0<j<y—1,20b+c—4j—4)—2b+c—4(G+1)—4) =

2. Let J C I and j €I\ J. Ifweswap the edge labels m/2 + 25+ 4
and —(m/2 + 2j + 5) or the edge labels (m/2 + b+ c—2j — 1) and
—(m/2 + b + ¢ — 2j) at u with their opposites, then £(u) increases
(é(v) decreases) by 2. Hence we can increase #(u) and decrease £(v)
by S(J) +2 or S(J) +4.

3. 2(b+c~4y-4)=2ifb+c=1(mod 4) and 2(b+c—4y—4) =
if b4+ ¢ =3 (mod 4).

4. If b+ ¢ = 3 (mod 4), since the edge labels —(m/2 + 2y + 5) and
(m/2+ 274 6) are at u, we can increase £(u) by S(J)—2 and decrease
&(v) by S(J) — 2, where J C I.

SI) Z,q02(b+c—4j 4)
—47 +2(b+c—6)’y+ (2b+2c—8)
(((b+¢)* +3)/4) -

6. By (3), it is straightforward to see that
(a=2)b+c)+bc+b+c+3

SI)+84uw) = SU)- 5
b2+ c2—2b—2¢—2ab—2ac—3

_a+b+c—1 4

2 )

Therefore, by proper edge labels swapping, we can make {£(u),(v)} =
(—(a+b+c—-1)/2,(a+b+c—1)/2). See Example 7. ]
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Example 7. Assume there exists a SEGL of K3 4,50 and ¢(w;) = ¢ and
€(wz) = £+1 for some positive integer £. We extend this labeling to a SEGL
of K4,4,50. We use the notation in Lemma 6. Add the new edges uw; and
vw;, 1 < i < 63, to obtain a Ky 4,59. The edge labels required for the new
edges are {+(182+17) |1 <i < 63} Label the edge uw; with (—1)*(182+1)
and vw; with (— 1)’+1(182 + ). Then £(u) = —214 and £(v) = 214. Swap
the edge labels 184 at u with the edge label 183 at v. Then {(w;) =£¢+1,
O(ws) = £, &(u) = —215 and #(v) = 215. Now swap the edge labels uw;
with vw; for i € {4, 18, 34,35,49, 63} to obtain (£(u), {(v)) = (—33,33), as
required.

3.1 a=b=0 (mod 4) and c odd

Lemma 8. Let a, b and ¢ be positive integers, = b = 0 (mod 4), and ¢
odd.
1. Let ab+ac—bc—3a—4 > 0. Then there is an a x (b+c) array whose
entries are precisely {i("c +4)|1<i< -“-"ii-} and whose column
sums are all zero and row sums are {:I:(L +i)|1<i< §}

2. Let ab+ac—bc—3a—4 < 0. Then there is a b x (a +c) array whose
entries are precisely {£(% +1) 1< < “—":"’—°} and whose column
sums are all zero and row sums are {+(2£§=t +14) [1<i < -g-}

Proof. Part 1. Define an a x (b+ c) array A = [a;,;] as follows.

btk if i=2k-1,j=1

("“+k) if i=2kj=1
= "°+a+1—k if i=2-1,j=2
WY —(B4at+l-k) if i=2kj=2

(§°+bc+3 k) if i=2k—1,j=3
3“+bc+3 k if i=2k,j=3,

for 1 < i < a. So far, we have filled the first three columns of A. Note that
1. by construction, no entry is repeated in the first three columns;

2. since ab + ac — be — 3a — 4 > 0, the entries in the first three columns
are all in {£(% +14) | 1 <4 < obac),

3. the column sums for the first three columns are zero and the row
sums are —(§ +2 - k) ifi=2k—1and §+2-kifi=2k.

The remaining entries are

Ly = {:*:(—'j-—+z)|1<1,<b°+2}
L, = {t(3+bc+2+7)|1<ig sbtaccpestaza)
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Since a,b = 0 (mod 4), it follows that L; U L, can be partitioned into
a(b+ c—3)/4 4-subsets of the form {+¢,%(¢ + 1)} for some positive
integer £. Partition the empty cells of A into a(b+c—3)/4 2 x 2 sub-
arrays and fill each 2 x 2 sub-array with a 4-subset in such a way that the
column sums are zero and the row sum for the first row is —1 and for the
second row is 1 in each sub-array. Now the row sum for row i = 2k — 1 is
—(atbetl k) and for row i = 2k is &¥btetl _ k. Hence, A is the required
array. Example 12 displays an 8 x 13 array A whena =b =8 and ¢ = 5.

Part 2. We first note that if ab+ac—bc—3ea—4 < 0, then ab+ bc—ac—
3b — 4 > 0. Hence, by Part (1), the required b x (a + ¢) array exists. O

Example 9. The construction given in Part (1) of Lemma 8 witha=b=8
and ¢ = 5 provides the following 8 x 13 array with column sums zero and
row sums {F10,F9,F8,F7}. This array is employed to extend a SEGL of
Kg s to a SEGL of Kgg s (see Theorem 10).

21 28-54| 29-30) 37-38| 45-46| 57-58| 65—66
—21-28 54| -29 30| -37 38| -45 46| —57 58 | —65 66
22 27-53| 31-32| 39-40| 47-48| 59-60| 67—68
—22-27 53| -31 32| -39 40| —-47 48| -59 60| —67 68
23 26-52| 33-34| 41-42| 49-50| 61—-62| 69—70|
—23-26 52| -33 34| -41 42| -49 50| -61 63| —69 79
24 25-51 35-36 | 43-44| 55-56| 63—64| 71-72
—24-25 51| -35 36| —-43 44| —-556 56| —63 64| =71 T2

Theorem 10. Let a, b and c be positive integers, a = b= 0 (mod 4), and
c odd. Then there exists a SEGL of K p c.

Proof. If ab + ac — bc — 3a — 4 > 0, by Part (1) of Lemma 8, there is
an a x (b+ c) array A = [a; ;] whose entries are precisely {£(% + 1) |
1<i< %} and whose column sums are all zero and row sums are
{2 +d) 1< < 2}. (The case ab+ac—bc—3a—-4 < 0 is
similar.) Consider the graph K, with partite sets U = {u1,uz,...,%a},
Wi = {w1,wa,...,wp} and Wo = {wp41,Ws42,...,wpsc}. By Theorem
2, there is a SEGL of K .. Use this labeling to label the edges between
W and W,. In addition, label the edge u;w; with a; ; for 1 < i < a and
1 £ j £ b+ c. The resulting labeling is a SEGL of K, c. O

3.2 a#b (mod 4) and ¢ odd

Similar to Lemma 8 we have the following lemma for this case.
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Lemma 11. Let a, b and ¢ be positive integers, a and b even, a # b (mod
4), and ¢ odd.

1. Let ab+ac—bc—2a+2 > 0 and a < be. Then there exists an a x (b+c)
array whose entries are precisely {:I:(b2—° +1) | 1 <4 < ebfacy and
whose column sums are all zero and row sums are {:I:(-”‘t':;;l +1) |
1<i< 8}

2. Let ab+ac—bec—2a+2 < 0 and b < ac. Then there exists a bx (a+c)
array whose entries consists of {£(4f +1) | 1 <i < 2} and whose
column sums are all zero and row sums are {+(2=1+4) |1 <i < 2}.

Proof. Part 1. Define an a x (b+ c) array A = [a; ;] as follows.

btk if i=2%k—1,j=1

—(%+k) if i=2kj=1
= etk + k if i=2k—1,7=2
W) —(adbe + k) if i=2k,j=2

—(“—322—“+k—1) if i=2%k-1,j=3
at2be k-1 if i=2kj=3,

for 1 < i < a. So far, we have filled the first three columns of A. Note that
1. since a < bc, no entry is repeated in the first three columns;

2. since ab+ ac — bc — 2a + 2 > 0, the entries in the first three columns
are all in {+(% +1) | 1 < i < ebfec);

3. the column sums for the first three columns are zero and the row
sums are k+1ifi =2k —1 and —(k+1) if i = 2k.

The remaining entries are

Ly = {x(®ffe+i|1<i<ige-1)
Ly, = {*(a+bc+i-1)|1<igabge=be g1},

Since a and b are even and a # b (mod 4), it follows that L; U Ly can be
partitioned into a(b+c—3)/4 4-subsets of the form {%¢, +(£+1)} for some
positive integer £. Partition the empty cells of A into a(b+c—3)/4 2 x 2
sub-arrays and fill each 2 x 2 sub-array with a 4-subset in such a way that
the column sums are zero and the row sum for the first row is 1 and for the
second row is —1 in each sub-array. Now the row sum for row i = 2k — 1
is &£=3 4+ k + 1 and for row i = 2k is —(95§;3+k+1). Hence, A is the
required array. Example 12 displays a 4 x 13 array A whena =4, =10
and ¢ = 3.

Part 2. We first note that if ab+ac—bc—2a+2 < 0, then ab+bc—ac—
2b+ 2 > 0. Hence, by Part (1), the required b x (a + ¢) array exists. [
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Example 12. The construction given in Part (1) of Lemma 11 with a = 4,
b = 10 and ¢ = 3 provides the following 4 x 13 array with column sums
zero and row sums {+7,+8}. This array is employed to extend a SEGL of
Kj0,3 to a SEGL of Ky 10,3 (see Lemma 13).

16 18-34|-20 21)-24 25| -28 29(-32 33| -38 39
~16—18 34| 20-21| 24-25| 28-29| 32-33| 38-39
17 19-35| —22 23| -26 27| —30 31| —-36 37| —40 41
—-17-19 35| 22-23] 26-27| 30-31) 36-37| 40-41

Lemma 13. Let q, b and ¢ be positive integers, a and b even, a # b (mod
4), and ¢ odd. If

1. ab+ac—bc—2a+220,a < bcand (b,c) # (2,3), or
2. ab+ac—bc—2a+2<0,b<acand (a,c) # (2,3),
then there exists a SEGL of K, p.c.

Proof. We only present a proof for Part (1). The proof for Part (2) is
similar.

By Part (1) of Lemma 11, there is an a x (b + c) array A = [a; ;] whose
entries are precisely {£(% +1) | 1 < i < 2%$2¢} and whose column sums
are all zero and row sums are {i(ﬁf{,;’- +14) |1 <4< §}. Consider the
graph K, 5 . with partite sets U = {u1,u2,...,ua}, Wy = {w1,w,...,wp}
and Wa = {wp41,Ws42,. .-, Wotc}. By Theorem 2, there is a SEGL of K ..
Use this labeling to label the edges between W) and W,. In addition, label
the edge u;w; with a;; for 1 <i < aeaand 1 < j < b+ c. The resulting
labeling is a SEGL of K . c. a

Corollary 14. Let a and b be positive even integers and a # b (mod 4).
Then there exists a SEGL of Kgp,1.

Proof. Without loss of generality we may assume a < b. Now apply Lemma
13 with c = 1. O

Since K>3 is not SEG by Theorem 2, we use the following result as a
detour.

Lemma 15. Let b = 0 (mod 4) be a positive integer. Then there exists a
SEGL of Ko 3.

Proof. Let W = {w;,w,..., wp43} be the vertices of K 3. By Theorem
2, there is a SEGL of Kj 3. Join two new vertices u and v to every vertex
in W to obtain a Ka 5 3. The labels we need to assign to the new edges are
(R +1), (2 +2),..., 2R+ (+3)}
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Label the edge uw; with (—1)*(32+4) and the edge vw; with (-1)"*+!(3+
i) for i € {1,2,3,...,b+ 3}. Note that with this labeling the vertex labels
of W do not change and (£(u),£(v)) = (—(2b+ 2),2b + 2). To obtain a
SEGL of K353, we need to make {£(u),¢(v)} = {£(} +2)}.

If b/4 is odd, we swap the edge labels 3b/2 + 2 and —(3b/2 + 3b/4 + 2)
at u with the edge labels —(3b/2 + 2) and (3b/2 + 3b/4 + 2) at v. Then
£(u) = —(b/2 + 2) and £(v) = b/2 + 2, as required.

If b/4 is even, we swap the edge labels 3b/2 + 2 and —(3b/2 + 3b/4 + 3)
at u with the edge labels —(3b/2 + 2) and (3b/2 + 3b/4 + 3) at v. Then
&(u) = —b/2 and £(v) = b/2. We also swap the edge labels 3b/2 + 4 and

—(3b/2 + 3) with —(3b/2 + 4) and 3b/2 + 3. Then £(u) = —(b/2 + 2) and
£(v) = b/2 + 2, as required. O

Lemma 16. Let ¢ be a positive odd integer. Then K3 4.c, K28 and Kq6.¢
are super edge-graceful.

Proof. For ¢ =1 apply Corollary 14. By Lemma 15, K3 4,3 and K25,3 are
SEG. For the other values apply Lemma 13. O

Theorem 17. Let a, b and ¢ be positive integers, a and b even, a # b (mod
4), and c odd. Then there exists a SEGL of K p,c.

Proof. By Lemma 16, the theorem is true if a+b < 10. Now let a+b > 12.
First consider the case ¢ < 4(a + b) — 6. By Corollary 14, there is a SEGL
of K4 5,1. Now by induction on ¢, Lemma 3 and Remark 4, one can obtain
a SEGL of Kap,- Second let ¢ > 4(a + b) — 6. By Theorem 2, there is a
SEGL of Kp,. By induction on a and Lemma 6, we extend this labeling to

a SEGL of K, pc. This completes the proof.
O

33 a=b=2 (mod 4) and c odd

For this case we employ a technique similar to that explained in Subsection
3.2 to find a SEGL of K, .. The proof of the following lemma is similar
to the proof of Lemma 15.

Lemma 18. Let b = 2 (mod 4). Then there exists a SEGL of K3 ,1.

Proof. For a SEGL of K,21 see the Appendix. Now assume b > 6. By
Theorem 2, there is a SEGL of Kpy. Let W = {wy,wo,.. .,Wp4+1} be the
vertices of Kp 1. In addition, suppose that the induced labels for vertices
w; and wo are £ and £+ 1 for some positive integer ¢, respectively. Join two
new vertices u and v to every vertex in W to obtain a K33,1. The labels we
need to assign to the new edges are {£(§ +1),+(3+2),. SEE+(0+1))}.
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Label the edge uw; with (—1)*( +%) and the edge vw; with (=1)**1(5+
i) for i € {1,2,3,...,b+ 1}. Note that with this labeling the vertex labels
of W do not cha.nge and (e(u),€(v)) = (=(b+1),b+1). To obtain a SEGL
of K341, we need to make {£(u),£(v)} = {£(% + 1)}. Swap the edge label
-2‘! + 2 at u with the edge label -g- + 1 at v. Now {(w;) = £+ 1, {(wy) = ¢,
f(u) =~(b+2) and £(v) =b+2.

If (b+2)/4 is odd, we swap the edge labels b/2+4 and —(b/2+4+ (b+
2)/4) at u with the edge labels —(b/2 4+ 4) and (b/2 + 4 + (b + 2)/4) at v.
Then £(u) = —(b/2 + 1) and £(v) = b/2 + 1, as required.

If (b+2)/4 is even and b > 10, we swap the edge labels b/2 + 4 and
—(b/2 + 4 + (b + 6)/4) at u with the edge labels —(b/2 + 4) and (b/2 +
4+ (b+6)/4) at v. Then £(u) = —(b/2 — 1) and £(v) = b/2 — 1. We also
swap the edge labels —(b/2 + b — 1) and (b/2 + b) with (b/2 + b - 1) and
—(b/2 +b). Then £(u) = —(b/2 + 1) and €(v) = b/2 + 1, as required. -

Finally, if b = 6, we swap the edge labels 7, —8, 9 and ~10 at u with
their opposites. Then ¢(u) = —4 and £(v) = 4, as desired. 0O

Lemma 19. Let @ = 0 (mod 4), b = 2 (mod 4) and a < b. Then there
exists an a x (b + 1) array whose entries are precisely {+(3%+2 +14) | 1 <
i < f“—_%ﬂ} and whose column sums are all zero and row sums are
{2 +9)|1<i< g}

Proof. Part 1. Define an a x (b+ 1) array A = [a; ;] as follows.

3b42 L g if i=2%k~1,7=1
(i'*'—+k) if i=2kj=1

.= —"t‘t"—+k if i=2k—1,j=2
W (&t“-t+k) if i=2k,j=2

—(3b+ +k) if i=2k-1,7=3
3b+§+k if i=2k,j=3,

for 1 < i < a. So far, we have filled the first three columns of A. Since
4 < a < b, no entry is repeated in the first three columns and the entries
are all in {£(¥#2 +4) |1<i < 52"—2¥b+—11} Note that the column sums
for the first three columns are zero and the row sums are k+2 if i = 2k —1
and —(k + 2) if ¢ = 2k. The remaining entries are

Ly = {£(%+a+1+1)|1<ig =g=2}
Ly = {:I:(3b+a+z)|1<z<ab-a-3i}

Since a = 0 (mod 4) and b = 2 (mod 4), it follows that L; U Ly can be
partitioned into a(b — 2)/4 4-subsets of the form {+¢,+(2+ 1)} for some
positive integer £. Partition the empty cells of A4 into a(b— 2)/4 2 x 2
sub-arrays and fill each 2 x 2 sub-array with a 4-subset in such a way that
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the column sums are zero and the row sum for the first row is 1 and for the
second row is —1 in each sub-array. The resulting array A is the required
array. Example 20 displays an 8 x 11 array A whena =8 and b=10. O

Example 20. The construction given in Lemma 19 with a = 8 and b = 10
provides the following 8 x 11 array with column sums zero and and row sums
{£7, 48,19, +10}. This array is employed to extend a SEGL of K2,10,1 to
a SEGL of Ki0,10,1 (see Lemma 21).

17 21 -35[-25 26(-33 34|-45 46| -53 54
-17 -21 35| 25 -26| 33 -—-34| 456 —46| 53 -54
18 22 -36|-27 28| -39 40| -—47 48| -55 56
—-18 -22 36| 27 -28| 39 —40| 47 -—48| 55 -—56
19 23 -37|-20 30|-41 42]|-49 50| -57 58
-19 -23 37| 29 -30| 41 —42{ 49 -50| 57 -—58
20 24 -38|-31 32|-43 44[-51  52|-59 60
-20 —-24 38| 31 -32| 43 -—44| 51 -52| 59 —60

Lemma 21. Let a = b =2 (mod 4). Then there exists a SEGL of Ko 4,1

Proof. Without loss of generality, we may assume a < b. By Lemma
18, we may also assume a > 6. Let the partite sets of K,51 be U =
{u1,u2,...,ua}, W = {wy,ws,..., wp} and {wp+1}. Consider the subgraph
Kap1 of Kqp,1 with vertices {ua_1,ua}UWU{wp41}. By Lemma 18, there
is a SEGL for this subgraph. Let A = [a; ;] be an (a — 2) x (b + 1) array
given in Lemma 19. Label the edge u;w; with a; ; forie€ {1,2,...,a -2}
and j € {1,2,...,b+ 1}. The resulting labeling is a SEGL of Ksp,1. O

Lemma 22. Let ¢ be an odd integer and b € {2,6}. Then there exists a
SEGL of Ko p.c.

Proof. For ¢ = 1 we apply Lemma 18. For a SEGL of K223 see the
Appendix. Now let ¢ > 3 and (b,¢) # (2,3). By Theorem 2, there is a
SEGL of K. Apply a technique similar to that described in the proof of
Lemma 18 to extend this labeling to a SEGL of Ks p c. |

Theorem 23. Let a, b and ¢ be positive integers, a = b = 2 (mod 4) and
c =1 (mod 2). Then there exists a SEGL of Kqp,c.

Proof. Without loss of generality we may assume ¢ < b. By Lemma 22,
we may also assume b # 2 and a + b > 12. First let ¢ < 4(a +b) — 6. By
Lemma 21, there is a SEGL of K, 5,1. Apply Lemma 3 and Remark 4 to
obtain a SEGL of K, p,c. Next let ¢ > 4(a+b) —6. By Theorem 2, ifa = 2,
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and Theorem 17, if a # 2, there is a SEGL of K,_2 3 .. Now apply Lemma
6 to extend this labeling to a SEGL of K, .. O

By Theorems 17, 10 and 23, we can state the main result of this section.

Theorem 24. Let a, b and ¢ be positive integers, a and b even and ¢ odd.
Then there exists a SEGL of K ...

4 A SEGL of K,;., where a is even and b and
c are odd

In this section we prove that for every positive even integer a and positive
odd integers b and c, (a, b, ¢) # (2,1, 1), the complete tripartite graph Kg 5
is SEG. It is easy to see that K5 ;,; is not SEG. By Theorem 2, K} is not
SEG. Hence, we cannot apply Lemma 3 to obtain a SEGL of Kj 1. Our
first result in this section shows that Ko, is SEG.

Lemma 25. Let b # 1 be a positive odd integer. Then there exists a SEGL
of Kz,b,l-

Proof. We split this proof into two cases.

Case 1: b =1 (mod 4). First consider the graph K, ;,; with partite
sets {v1,v2}, {u} and {we}. Label uwg, uvy, uvs, vywe and vowg with
0,2,—1,-2 and 1, respectively. Then ¢(u) = 1, £(wp) = —1 and £(v;) =
£(v2) = 0. Now define a (b — 1) x 3 array A = [a; ;] as follows.

k+2 i i=2%-1j=1
_) sy i =2k
Gij = b=lii42 if j=2
~Elyire) if j=3,

for 1 <i < b— 1. Note the row sums of A are {£3,+4,..., =43}, Swap
az2 with az 3 and aq2 with a4 3. In addition, swap ag422 w1th Q4k42,3 and
Q4k4+3,2 With age433 for 1 < k < "‘5 It is easy to see that the resulting
(b—1) x 3 array, say B = [b; ;], has the same row sums as array A and the
column sums of B are 0, —2 and 2

Add b — 1 new vertices {w;,w2,...,Wp~1} to the partite set {wp} of
K> ,1,1 and join these vertices to u,v; and v2 to obtain a Kp,1. Label v,
viw; and vow; with b; 1, b2 and b; 3, respectively, for 1 < i < b— 1. Then
l(u) = 1, (wo) = —1, €(v;) = —2 and £(vz) = 2. Hence, the resulting
labéling is a SEGL of Ko .

Case 2: b =3 (mod 4). First note that there is a SEGL of K3, (see
the Appendix). We construct a (b — 3) x 3 array A = [a; ;] whose entries
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are precisely {£6,+7,... ,:l:ﬁ,j—l} and whose column sums are all zero and
TOW sums are {j:4,:|:5,...,:!:"%3}. Set a;; =5+ kifi =2k—1 and
aiy = —(5+k)if i = 2k for 1 < i < b~—3. The remaining entries are
{9—;—3 +i+5|1 < i< b-3}. By assumption, we can partition these entries
into (b—3)/4 4-subsets of the form {+¢, £(£+2)} for some positive integer
£. Partition the empty cells of A into (b — 3)/4, 2 x 2 sub-arrays and fill
each 2 x 2 sub-array with a 4-subset in such a way that the column sums
are zero and the row sum for the first row is —2 and for the second row is
2 in each sub-array. Then A is the required array. As in Case 1, we can
use this array to extend a SEGL of K33, to a SEGL of Kz,1. O

Theorem 26. Let a, b and c be positive integers, a even, b and ¢ odd and
a < 4(b + c) — 18. Then there is a SEGL of Kgp,c-

Proof. Without loss of generality, we may assume b > c. If ¢ = 1, then by
Lemma 25, there is a SEGL of K23,1. If ¢ # 1, then by Theorem 2, there
is a SEGL of K} .. Now since b+ c is even, by induction on a and Lemma
3, the result follows. 0

Lemma 27. Let a and b be positive integers, a even, b= 1 (mod 4), b > 5
and a > (b+3)/2. Then there exists a (b—1) x (a+ 1) array whose entries
are precisely {£(a+1) | 1 < i < 22=¢4b=1} and whose column sums are all

zero and row sums are {+(§+1+1%)|1<i< b2}
Proof. Define a (b—1) x (a + 1) array A = [a; ;] as follows.

a+k if i=2k-1,j=1
—(a+k) if i=2kj=1

_ Zatbol 4tk if i=2k-1,j=2
T3 =\ —(Zedp=lik) if i=2kj=2

—(deth=b 1 k) if i=2k-1,j=3
4—“tzﬁ-—5+k if i=2k,j=3,

for 1 < i < b-1. So far, we have filled the first three columns of A. Note
that the column sums for the first three columns are zero and the row sums
are k+ 2 if i = 2k — 1 and —(k + 2) if ¢ = 2k. The remaining entries are

Ly = {x(a+b+i-1)|1<ixg 2e=p=3})
Lo = {+(2a+b+i—3)|1< i< ab=3a=bisy

By assumptions, L; U L can be partitioned into (b—1)(a—2)/4 4-subsets
of the form {+¢, (£ + 1)} for some positive integer £. Partition the empty
cells of A into (b—1)(a—2)/4 2 x 2 sub-arrays and fill each 2 x 2 sub-array
with a 4-subset in such a way that the column sums are zero and the row
sum for the first row is 1 and for the second row is —1 in each sub-array.
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The resulting array A is the required array. Example 28 displays an 8 x 11
array A when a = 10 and b= 9. a

Example 28. The construction given in Lemma 27 with a = 10 and b = 9
provides the following 8 x 11 array with column sums zero and and row
sums {£7,+8, +9, +£10}. This array can be employed to extend a SEGL of
K10,1,1 to a SEGL of Km,g,l.

1 15 -23|-19 20|-31 32[-39 40[-47 48
-11 -15 23| 19 -20| 31 -32| 39 —-40| 47 -48
12 16 -24)-21 22| -33 34|-41 42[-49 50
=12 -16 24| 21 -22| 33 -34| 41 -—42(| 49 -50
13 17 -25)|-27 28| -35 36(-43 44| -51 52
—-13 -17 25| 27 -28| 35 -36| 43 —44| 51 -52
14 18 -26|-29 30|-37 38|-45 46| -53 54
-14 -18 26| 29 -30| 37 -38| 45 —46| 53 -54

Lemma 29. Let a and b be positive integers, a even and b = 3 (mod 4),
b> 7 and e > (b+ 3)/4. Then there exists a (b~ 3) x (a + 1) array whose
entries are precisely {£(2a+i+1) | 1 < i < 2=3a+b=3} 414 whose column

sums are all zero and row sums are {(§ +2+14) |1 <i < 53},
Proof. Define a (b —3) x (a+ 1) array A = [a; ;] as follows.

2a+k+1 if i=2-1,j=1
—~2a+k+1) if i=2ji=1
dotb=l  p if i=2k—1,j=2
HIT _(dedb=l k) if i=2k,5=2
—(Batb=8 1 k) if §=2k—1,7=3
8—“"32&+k if i=2k,j=3,
for 1 < i< b~— 3. So far, we have filled the first three columns of A. Note

that the column sums for the first three columns are zero and the row sums
are k+ 3 if i = 2k — 1 and —(k + 3) if ¢ = 2k. The remaining entries are

Ly = {£(2a+b+i—2)|1<ix fazb=ly
Ly = {t(da+b+i—4)|1<ig sbrazbery

By assumptions, L; U L, can be partitioned into (b—3)(a —2)/4 4-subsets
of the form {£¢, £(¢+ 1)} for some positive integer ¢. Partition the empty
cells of A into (b—3)(a—2)/4 2x 2 sub-arrays and fill each 2 x 2 sub-array
with a 4-subset in such a way that the column sums are zero and the row
sum for the first row is 1 and for the second row is —1 in each sub-array.
The resulting array A is the required array. Example 30 displays a 8 x 11
array A when a = 10 and b = 11. 0
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Example 30. The construction given in Lemma 27 witha = 10 and b = 11
provides the following 8 x 11 array with column sums zero and and row
sums {+8, +9,+10,+11}. This array can be employed to extend a SEGL
of K10,3,1 to a SEGL of K10,11,1-

22 26 -44|-30 31}{-38 39|-50 51(-58 59
-22 -26 44| 30 -31| 38 -39 50 -51; 58 —59
23 27 —-45|-32 33(—-40 41|-52 53|—-60 61
-23 -27 45| 32 -33| 40 -—41| 52 -53| 60 -61
24 27 -46|-34 35]|-42 43)~-54 55|—-62 63
—-24 -28 46| 34 -35| 42 -—-43| 54 -55| 62 —63
25 29 —47|-36 37| -48 49| -56 57| —-64 65
-25 —29 47| 36 -37| 48 -49| 56 -—-57| 64 —65

Lemma 31. There exists a SEGL of K  for every positive integer ¢ # 2.

Proof. There is a SEGL of K 1,1 = K3 by Theorem 1. A SEGL of Kj 3
is given in the Appendix. Now let ¢ > 4. By Theorem 2, there is a SEGL
of Kp.. Join the two vertices in the partite set of size two with an edge
and assign label zero to this edge. The resulting labeling is a SEGL of

K e O

Lemma 32. Let a be a positive even integer, b a positive odd integer and
(a,b) # (2,1). Then K,p,; is SEG.

Proof. By Lemma 25, there exists a SEGL of K35,1 if b # 1. Now let a > 4.
First consider the case a < b. Hence, we may assume b > 5. Now since
b+ 1 is even, the result follows by induction on a and Lemma 3.

Second let a > b. By Lemma 31, there is a SEGL of K5 1,:. If b= 1
(mod 4), using a (b— 1) x (a + 1) array given in Lemma 27 we can extend
a SEGL of Ka,l,l to a SEGL of Ka,b,1~

Now assume b = 3 (mod 4). First we construct a SEGL of K, 3,1. For
a > 12 apply Lemma 6 to extend a SEGL of K,,1,1, to a SEGL of K, 3,1.
The Appendix displays a SEGL of K3 3,. By adding two new vertices in
the partite set of size two, one can extend this labeling to a SEGL of K4 3,1
(see Lemma 3). Now let a € {6,8,10}. Add two new vertices to the partite
set of size one of a K,1,1. Apply a method similar to that described in
Lemma 6 to extend a SEGL of K, 1,1 to a SEGL of K, 3,1. Finally, use a
(b—3) x (a+1) array given in Lemma 29 to extend a SEGL of K, 3,1 to a
SEGL of K, ,1- O
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Lemma 33. Let a and b be positive integers, a even and b = 1 (mod 4),
b>9anda > "%‘. Then there exists a (b—3) x (a+3) array whose entries
are precisely {+(3a+i+4) |1 < < 2=3436-9} 4nq whose column sums
are all zero and row sums are {+(§ +3+i) |1 <i< 553}

Proof. Define a (b - 3) x (a+ 3) array A = [a; ;] as follows.

3a+k+4 if i=2k-1,j=1
~Ba+k+4) if i=2kj=1

_ Satbtb L g if =2k—1,j=2
Gij = -(ﬁ;—bﬂw) if i=2kj=2

—(12a£b47 L k) if i=2k-1,j=3
laasber " g ook j— 3,

for 1 < i < b-3. So far, we have filled the first three columns of A. Note
that the column sums for the first three columns are zero and the row sums
are k+ 3 if i = 2k — 1 and —(k + 3) if i = 2k. The remaining entries are

Ly = {(Ba+b+i+1)|1<i< fazbis)
Ly = {£(6a+b+i+2)|1<i< ab=Sadb=s)

By assumptions, L; U Ly can be partitioned into a(b — 3)/4 4-subsets of
the form {+¢,+(¢ + 1)} for some positive integer £. Partition the empty
cells of A into a(b—3)/4 2 x 2 sub-arrays and fill each 2 x 2 sub-array with
a 4-subset in such a way that the column sums are zero and the row sum
for the first row is 1 and for the second row is —1 in each sub-array. The
resulting array A is the required array. Example 34 displays a 8 x 11 array
Awhena=8and b=09. a

Example 34. The construction given in Lemma 33 witha =8 and b=9
provides the following 6 x 11 array with column sums zero and and row
sums {+8,+9,+10}. This array can be employed to extend a SEGL of
K3,3,3 to a SEGL of Kg,9,3.

29 32 -57(-35 36|-41 42| -47 48| -53 54
-29 -32 57| 35 -36| 41 -42| 47 -48| 53 -54
30 33 -58|-37 38|43 44)-49 50|-55 56
-30 —-33 58| 37 -—38| 43 -—44| 49 -50( 55 -—56
31 34 -59|-39 40(-45 46| -51 52|-—-60 61
-31 -34 -59| 39 -40] 45 —46| 51 -52| 60 —61
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Lemma 35. Let a and b be positive integers, a even and b = 3 (mod 4),
b>7anda 2> %. Then there exists a (b— 1) x (a+3) array whose entries
are precisely {£(2a +i+1) | 1 < i < 2=2432=3} and whose column sums
are all zero and row sums are {+(% +2+14) | 1<i < %1}

Proof. Define a (b— 1) x (a + 3) array A = [a;;] as follows.

20+k+1 if i=2-1j=1
—(2a+k+1) if i=2kj=1

) debilip f i=2k-1,j=2
Qij = _(4a>—2b+l +k) if i=2kj=2

—(Befd=1 4 k) if i=2k-1,j=3
wzi-lwc if i=2k,j=3,

for 1 < i< b-1. So far, we have filled the first three columns of A. Note
that the column sums for the first three columns are zero and the row sums
are k+ 2 if i = 2k — 1 and —(k + 2) if ¢ = 2k. The remaining entries are

Ly = {+(2a+b+i)|1<i<dast=l)
L, = {£(da+b+i- 1)|1<i< ab—S;ibil}'

By assumptions, L; U Ly can be partitioned into a(b — 1)/4 4-subsets of
the form {+¢,+(¢ + 1)} for some positive integer £. Partition the empty
cells of A into a(b— 1)/4 2 x 2 sub-arrays and fill each 2 x 2 sub-array
with a 4-subset in such a way that the column sums are zero and the row
sum for the first row is 1 and for the second row is —1 in each sub-array.
The resulting array A is the required array. Example 36 displays a 10 x 11
array A when a =8 and b=11. O

Example 36. The construction given in Lemma 35 witha =8 and b =11
provides the following 10 x 11 array with column sums zero and and row
sums {+7,+8,£9,+10,%11}. This array can be employed to extend a
SEGL of Ks,1,3 to a SEGL of K8,11,3-

18 23 -—38 | —28 29| —-43 44| -53 54[—-63 64
—18 -23 38| 28 -29| 43 -—44| 53 -54| 63 —64
10 24 -39 | —30 31| —-45 46| -55 56| —65 66
19 —24 39| 30 -31| 45 —46| 55 -56| 65 —66
50 25 —40| —32 33| —47 48| —-57 58| —67 68
—20 —-25 40| 32 -33| 47 -48| 57 -58| 67 —68
91 26 —41]|-34 35|-49 5059 60[-69 70
21 -2 41| 34 -35| 49 -50| 59 —-60| 69 —70
92 . 27 —42|-36 3r|—-51 52|61 62[-71 72
—22 27 42| 36 -37| 51 -—-52| 61 —-62| 71 -T2

154



Lemma 37. Let a be a positive even integer. Then there exist SEGLs of
Ka3,3 and Kg 35

Proof. First we construct a SEGL of K,33. By Lemma 32, there is a
SEGL of K,,1,3. Add two new vertices to the partite set of size one of
K, 1,3. Let W = {w;,ws,...,wet+3} be the vertices in partite sets of sizes
e and 3. In addition, suppose that the induced labels for vertices w; and
wy are £ and £ + 1 for some positive integer £, respectively. Add two new
vertices u and v to the partite set of size one and join them to every vertex
in W to obtain a K, 3 3. The labels we need to assign to the new edges are
{£(2a+1)+i|1<i<a+3}.

Label the edge uw; with (—1)*(2a + 1 + ¢) and the edge vw; with
(1)1 (2a+1+1) fori € {1,2,3,...,a+3}. Note that with this labeling the
vertex labels of K,1,3 do not change and (¢(u), £(v)) = (—2a—$§-3,2a+ 3+
3). To obtain a SEGL of K, 3,3, we need to make {£(u), £(v)} = {£($+3)}.
Swap the edge labels 2a+1+2 and —(2a+1+a+3) at u with their opposites,
then (£(u), £(v)) = (—§—1, §+1). We also swap the edge labels —(2a+1+3)
and 2a+1+4 at u with their opposites, then (¢(u), 4(v)) = (—§ -3, % +3),
as required.

Now consider the graph K, 3,5. By Theorem 2, there is a SEGL of K3 5.
Apply Lemma 3 to extend this labeling to a SEGL of K33 5 and then to a
SEGL of Kj,35. Now let a > 6. Extend a SEGL of K, 33 to a SEGL of
K, 35 in a similar fashion explained above. This completes the proof. [

Lemma 38. Let a be a positive even integer and b a positive odd integer.
Then K, 3 is SEG.

Proof. By Lemma 37, we may assume b > 7. First let a < b. By Theorem
2, there is a SEGL of K, 3. Apply Lemma 3 to extend this labeling to a
SEGL of Ksp,3. Now let @ > b. If b = 3 (mod 4) we proceed as follows.
By Lemma 32, there is a SEGL of K,,1,3. Use a (b— 1) x (e + 3) array
given in Lemma 35 to extend this labeling to a SEGL of K, 4 3. Finally,
if b= 1 (mod 4), we start with a SEGL of K, 33, which exists by Lemma
37. Then we employ a (b — 3) x (a+ 3) array given in Lemma 33 to extend
this labeling to a SEGL of K, 5 3. 0

Theorem 39. Let a, b and c be positive integers, a even, b and ¢ odd,

(a,b,¢) # (2,1,1) and a > 4(b + ¢) — 18. Then there exists a SEGL of
a,b,ce

Proof. By Lemmas 32 and 38 the theorem is true for ¢ = 1,3. Without

loss of generality, we may assume b > ¢ > 5. Now since a > 4(b + c) — 18,

by induction on ¢ and Lemma 6, we can extend a SEGL of K, -2 to a
SEGL of Kgp,c. a
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By Theorems 26 and 39, we can state the main theorem of this section.

Theorem 40. The graph K, 4 is SEG for all even positive integer a and
all positive odd integers b and ¢ except for (a,b,c) = (2,1,1).

5 A SEGL of K,;., where a, b and c are all
odd

In this section we prove that for all positive odd integers a, b and c the
complete tripartite graph K, 5 . is SEG.

Lemma 41. There exists a SEGL of Kj 3 for every positive odd integers
bandec.

Proof. Without loss of generality, we may assume b < c. By Lemma 31 and
the Appendix, the theorem is true for (b,¢) € {(1,1),(1,3),(3,3),(1,5),
(1,7)}. Using the notation in the proof of Lemma 3, the following ta-
ble displays the labels for the new edges uw; and vw;. Now one can
easily extend a SEGL of Kjp—2. to a SEGL of Kjp., where (b,c) €

{(3,5),(5,5),(3,7),(5,7), (7, 7)}.

Ki15 | Labelof uwi: -6 6 -8 =9 10 11 lu) =4
to K135 | Labelof vw; : -7 7 8 9-10-11 fv) = —4
K135 | Label of uw; : —12 13 14 15-16 17 fu) =5
to K1,5,5 | Label of vw; : 12 13 -14-15 16 —17 v)=-5

Kia,7 | Label of uw; : —8 8-10-11 12 13-14 15| f(u)=5
to K137 | Label of vw; : =9 9 10 11-12-13 14-15 | Yv) = -5
K1, | Label of uw; : 16 -17-18-19 20-21 22 23 | é(u)=6

to K157 | Label of vw; : —16 17 18 19-20 21 —22-23 | {(v) =6
K157 | Label of uw; : —24 24 -26 -27 28-29 30 31| {(u)=7
to K1,7,7 | Label of uw; : =25 25 26 27 -28 29-30-31 | {(v) = -7

Finally, assume ¢ > 9. By Lemma 31, there is a SEGL of Kj,,.. Now
by induction on b and Lemma 3 the result follows. (]

Theorem 42. Let a, b and ¢ be positive odd integers. Then there exists
a SEGL of K, p,c-

Proof. By Lemma 41, there is a SEGL of K. Now, without loss of
generality, we may assume 3 < @ < b < c. First we find a SEGL of K33,3.
By Lemma 41, there is a SEGL of K; 33. Let the partite sets of K133
be {z}, {w1, w2, w3} and {ws, ws, we}. Add two new vertices u and v to
the partite set {z} and join them to w; for 1 < 7 < 6 to obtain a K33,3.
Label the new edges uw;, 1 < ¢ < 6, with —8, 8, —10, —11, 12 and 13 and
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vw; with -9, 9, 10, 11, ~12 and —13. The resulting labeling is a SEGL of
K333. Now let b > 3 and ¢ > 5. By Lemma 41, there is a SEGL of Kipe.
By induction on a and Lemma 3, there exists a SEGL of Kap,c. 0
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Appendix

In this appendix we present SEGLs of Kl 2,2, K11 3 K2 3 K133, K2 2,2
and K2 3. These labelings cannot be obtained by the constructions given
in the paper.
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A SEGL for Ka22 A SEGL for K32,3
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