Super Edge-Graceful Labelings of Complete Tripartite Graphs

Abdollah Khodkar*
Department of Mathematics
University of West Georgia
Carrollton, GA 30118
akhodkar@westga.edu

Abstract

Let $[n]^*$ denote the set of integers $\{-\frac{n-1}{2},\ldots,\frac{n+1}{2}\}$ if n is odd, and $\{-\frac{n}{2},\ldots,\frac{n}{2}\}\setminus\{0\}$ if n is even. A super edge-graceful labeling f of a graph G of order p and size q is a bijection $f:E(G)\to [q]^*$, such that the induced vertex labeling f^* given by $f^*(u)=\sum_{uv\in E(G)}f(uv)$ is a bijection $f^*:V(G)\to [p]^*$. A graph is super edge-graceful if it has a super edge-graceful labeling. We prove that all complete tripartite graphs $K_{a,b,c}$, except $K_{1,1,2}$, are super edge-graceful.

Keywords: labeling in graphs; edge labeling; super edge-graceful labeling

1 Introduction

In this paper we consider only simple, finite, undirected graphs. We define the set of integers $[n]^*$ to be $\{-\frac{n-1}{2},\ldots,\frac{n-1}{2}\}$ if n is odd, and $\{-\frac{n}{2},\ldots,\frac{n}{2}\}\setminus\{0\}$ if n is even. Notice that the cardinality of $[n]^*$ is n, and $[n]^*$ contains 0 if and only if n is odd. A graph of order p and size q is said to be super edge-graceful (SEG) if there is a bijection $f: E(G) \to [q]^*$, such that the induced vertex labeling f^* given by $f^*(u) = \sum_{uv \in E(G)} f(uv)$ is a bijection $f^*: V(G) \to [p]^*$. We use [8] for terminology and notation not defined here.

A graph of order p and size q is edge-graceful [2] if the edges can be labeled by $1, 2, \ldots, q$ such that the vertex sums are distinct (mod p). A

^{*}Research supported by a Faculty Research Grant, University of West Georgia

necessary condition for a graph with p vertices and q edges to be edge-graceful is that $q(q+1) \equiv \frac{p(p-1)}{2} \pmod{p}$.

Super edge-graceful labelings (SEGLs) were first considered by Mitchem and Simoson [7] who showed super edge-graceful trees are edge-graceful. In particular, Mitchem and Simoson noticed that if G is a super-edge graceful graph and p|q, if q is odd, or p|(q+1), if q is even, then G is edge-graceful. Some families of graphs have been shown to be super-edge graceful by explicit labelings. It is known that, for example, paths of all orders except 2 and 4 and cycles of all orders except 4 and 6 are super edge-graceful [1], as are trees of odd order with three even vertices [6]. It was recently proved that [5] total stars and total cycles are also super edge-graceful. In addition,

Theorem 1. [3] All complete graphs of all orders except 1, 2 and 4 are super edge-graceful.

Theorem 2. [4] All complete bipartite graphs are super edge-graceful except for $K_{2,2}$, $K_{2,3}$, and $K_{1,n}$ if n is odd.

In this paper we prove that all complete tripartite graphs $K_{a,b,c}$, except $K_{1,1,2}$, are super edge-graceful. The following lemma is crucial in this paper. Throughout this paper $\ell(v)$ denotes the induced label of vertex v.

2 A SEGL of $K_{a,b,c}$, where a, b and c are even

In this section we prove that there exists a SEGL of $K_{a,b,c}$ for all positive even integers a, b and c.

Lemma 3. Let a, b and c be positive integers and b+c even. Let $\theta=a$ if a is even and $\theta=a-1$ if a is odd. In addition, assume

$$\begin{cases} b+c > \frac{\theta}{4} + 2 & \text{if } \theta \equiv 0 \pmod{4} \\ b+c > \frac{\theta+2}{4} + 4 & \text{if } \theta \equiv 2 \pmod{4}. \end{cases}$$
 (1)

If there exists a SEGL of $K_{a-2,b,c}$ such that $\ell(w_1) = \ell \ge 0$, for some ℓ , and $\ell(w_2) = \ell + 1$, where w_1 and w_2 are not in the partite set of size a-2, then there exists a SEGL of $K_{a,b,c}$ such that $\ell(w_1) = \ell + 1$ and $\ell(w_2) = \ell$.

Proof. By assumption, there exists a SEGL of $K_{a-2,b,c}$. Let $W = \{w_1, w_2, w_3, \ldots, w_{b+c}\}$ be the vertices of the partite sets of sizes b and c and suppose that the induced vertex labels for w_1 and w_2 are ℓ and $\ell+1$, respectively. Add two new vertices u and v to the partite set of size a-2 and join these two to every vertex in W to obtain a $K_{a,b,c}$. The labels we need to assign to the new edges are $\{\pm(\frac{m}{2}+1),\pm(\frac{m}{2}+2),\ldots,\pm(\frac{m}{2}+(b+c))\}$, where m=(a-2)(b+c)+bc if bc is even and m=(a-2)(b+c)+bc-1 if bc is odd.

Label the edge uw_i with $(-1)^i(\frac{m}{2}+i)$ and the edge vw_i with $(-1)^{i+1}(\frac{m}{2}+i)$ for $i \in \{1, 2, 3, \dots, b+c\}$. Note that with this labeling the vertex labels of $K_{a-2,b,c}$ do not change and $(\ell(u),\ell(v)) = ((b+c)/2, -(b+c)/2)$. To obtain a SEGL of $K_{a,b,c}$, we need to make $\{\ell(u),\ell(v)\} = \{\pm(\frac{\theta+b+c}{2})\}$.

Case 1: $a \equiv 0, 1 \pmod{4}$. Then (b+c)/2 and $(\theta+b+c)/2$ have the same parity. If $\theta/4$ is odd, swap the edge labels $\frac{m}{2} + 2$ and $-(\frac{m}{2} + \frac{\theta}{4} + 2)$ at u with the edge labels $-(\frac{m}{2} + 2)$ and $\frac{m}{2} + \frac{\theta}{4} + 2$ at v, respectively. Then $\ell(u) = \frac{\theta+b+c}{2}$ and $\ell(v) = -\frac{\theta+b+c}{2}$, as desired.

If $\theta/4$ is even, swap the edge labels $\frac{m}{2}+2$ and $-(\frac{m}{2}+\frac{\theta}{4}+3)$ at u with the edge labels $-(\frac{m}{2}+2)$ and $\frac{m}{2}+\frac{\theta}{4}+3$ at v, respectively. Then $\ell(u)=\frac{\theta+b+c}{2}+2$ and $\ell(v)=-\frac{\theta+b+c}{2}-2$. Now swap the edge labels $-(\frac{m}{2}+3)$ and $\frac{m}{2}+4$ at u with the edge labels $\frac{m}{2}+3$ and $-(\frac{m}{2}+4)$ at v, respectively, to obtain $\ell(u)=\frac{\theta+b+c}{2}$ and $\ell(v)=-\frac{\theta+b+c}{2}$.

Case 2: $a \equiv 2, 3 \pmod{4}$. Then (b+c)/2 and $(\theta+b+c)/2$ have different parity. Swap the edge label $\frac{m}{2}+2$ at u with the edge label $\frac{m}{2}+1$ at v. Now $\ell(w_1) = \ell+1$, $\ell(w_2) = \ell$, $\ell(u) = (b+c-2)/2$ and $\ell(v) = -(b+c-2)/2$.

If $(\theta+2)/4$ is odd, swap the edge labels $\frac{m}{2}+4$ and $-(\frac{m}{2}+\frac{\theta+2}{4}+4)$ at u with the edge labels $-(\frac{m}{2}+4)$ and $\frac{m}{2}+\frac{\theta+2}{4}+4$ at v, respectively. Then $\ell(u)=\frac{\theta+b+c}{2}$ and $\ell(v)=-\frac{\theta+b+c}{2}$, as desired.

If $(\theta+2)/4$ is even, swap the edge labels $\frac{m}{2}+4$ and $-(\frac{m}{2}+\frac{\theta+2}{4}+5)$ at u with the edge labels $-(\frac{m}{2}+4)$ and $\frac{m}{2}+\frac{\theta+2}{4}+5$ at v, respectively. Then $\ell(u)=\frac{\theta+b+c}{2}+2$ and $\ell(v)=-\frac{\theta+b+c}{2}-2$. Now swap the edge labels $-(\frac{m}{2}+3)$ and $\frac{m}{2}+4$ at u with the edge labels $\frac{m}{2}+3$ and $-(\frac{m}{2}+4)$ at v, respectively, to obtain $\ell(u)=\frac{\theta+b+c}{2}$ and $\ell(v)=-\frac{\theta+b+c}{2}$.

Remark 4. A closer look at the proof of Lemma 3 shows that Condition (1) can be modified as follows:

$$\begin{cases} b+c>\frac{\theta}{4} & \text{if} \quad \theta\equiv 0 \pmod 4 \text{ and } b+c\geq 10\\ b+c>\frac{\theta+2}{4}+1 & \text{if} \quad \theta\equiv 2 \pmod 4 \text{ and } b+c\geq 12. \end{cases} \tag{2}$$

In order to prove this, consider the case $\theta \equiv 0 \pmod{4}$, $\theta/4$ is odd and $b+c=\frac{\theta}{4}+1$. Hence, there is no edge label $-(\frac{m}{2}+\frac{\theta}{4}+2)$ at u. We swap the edge labels $\frac{m}{2}+2$, $-(\frac{m}{2}+\frac{\theta}{4})$, $\frac{m}{2}+4$, $-(\frac{m}{2}+5)$, $\frac{m}{2}+6$ and $-(\frac{m}{2}+7)$ with their opposites to obtain $\ell(u)=\frac{\theta+b+c}{2}$ and $\ell(v)=-\frac{\theta+b+c}{2}$, as desired. The other cases are similar.

Theorem 5. Let a, b and c be positive even integers. Then there exists a SEGL of $K_{a,b,c}$.

Proof. Without loss of generality, we may assume $a \le b \le c$. By induction on the number of vertices k = a + b + c, we prove that there exists a

SEGL of $K_{a,b,c}$. The Appendix displays a SEGL of $K_{2,2,2}$. Hence, the statement is true for k=6. Now assume every complete tripartite graph with $k \geq 6$ vertices is SEG. We prove that every complete tripartite graph $K_{a,b,c}$ with k+2 vertices is SEG. If a=2, then $b+c \geq 6$, and hence, there is a SEGL of $K_{a-2,b,c}$ by Theorem 2. If $a \geq 4$, then by the inductive hypothesis, there exists a SEGL of $K_{a-2,b,c}$. Note that in both cases there exist two vertices w_1 and w_2 not in the partite set of size a-2 such that $\{\ell(w_1), \ell(w_2)\} = \{1, 2\}$. Apply Lemma 3 to construct a SEGL of $K_{a,b,c}$. This completes the proof.

3 A SEGL of $K_{a,b,c}$, where a and b are even and c is odd

In this section we prove every $K_{a,b,c}$ is SEG if a and b are even and c is odd. We split our proof into three cases: $a \not\equiv b \pmod{4}$, $a \equiv b \equiv 0 \pmod{4}$, and $a \equiv b \equiv 2 \pmod{4}$. When b+c is even we make use of Lemma 3 in induction. Similarly, when b+c is odd we apply the following lemma in induction.

Lemma 6. Let a, b and c be positive integers, b even, and c odd. Let

$$\begin{cases} c > 4(a+b) - 6 & \text{or} \\ b > 4(a+c) - 6 & \text{or} \\ c > 4(a+b) - 18 & \text{and } b \ge 4 \text{ or} \\ b > 4(a+c) - 18 & \text{and } c \ge 5. \end{cases}$$
 (3)

If there exists a SEGL of $K_{a-2,b,c}$ such that $\ell(w_1) = \ell \ge 0$, for some ℓ , and $\ell(w_2) = \ell + 1$, where w_1 and w_2 are not in the partite set of size a-2, then there exists a SEGL of $K_{a,b,c}$ such that $\ell(w_1) = \ell + 1$ and $\ell(w_2) = \ell$.

Proof. By assumption, there exists a SEGL of $K_{a-2,b,c}$. We construct a SEGL for $K_{a,b,c}$. Assume a is even (the case a is odd is similar). Let $W = \{w_1, w_2, \ldots, w_{b+c}\}$ be the vertices in the partite sets of sizes b and c. In addition, suppose that the induced labels for vertices w_1 and w_2 are ℓ and $\ell+1$ for some positive integer ℓ , respectively. Add two new vertices u and v to the partite set of size a-2 and join them to every vertex in W to obtain a $K_{a,b,c}$. The labels we need to assign to the new edges are $\{\pm(\frac{m}{2}+1),\pm(\frac{m}{2}+2),\ldots,\pm(\frac{m}{2}+(b+c))\}$, where m=(a-2)(b+c)+bc. Label the edge uw_i with $(-1)^i(\frac{m}{2}+i)$ and the edge vw_i with $(-1)^{i+1}(\frac{m}{2}+i)$ for $i \in \{1,2,3,\ldots,b+c\}$. Note that with this labeling the vertex labels of $K_{a-2,b,c}$ do not change and $(\ell(u),\ell(v))=(-\frac{m+b+c+1}{2},\frac{m+b+c+1}{2})$. To obtain a SEGL of $K_{a,b,c}$, we need to make $\{\ell(u),\ell(v)\}=\{\pm(\frac{a+b+c-1}{2})\}$. Assume $\frac{m+b+c+1}{2}$ and $\frac{a+b+c-1}{2}$ have different parity (the case $\frac{m+b+c+1}{2}$

and $\frac{a+b+c-1}{2}$ have the same parity is similar). Swap the edge label $\frac{m}{2}+2$ at u with the edge label $\frac{m}{2}+1$ at v. Now $\ell(w_1)=\ell+1$, $\ell(w_2)=\ell$, $\ell(u)=-\frac{m+b+c+3}{2}$ and $\ell(v)=\frac{m+b+c+3}{2}$.

Let $0 \le j \le \gamma = \lfloor (b+c-4)/4 \rfloor$ and $I = \{0, 1, 2, ..., \gamma\}$. If we swap the edge labels m/2 + 2j + 4 and -(m/2 + b + c - 2j) at u with the edge labels -(m/2 + 2j + 4) and m/2 + b + c - 2j at v, then $\ell(u)$ increases ($\ell(v)$ decreases) by 2(b+c-4j-4). For $J \subseteq I$ define

$$S(J) = \sum_{i \in J} 2(b + c - 4j - 4).$$

Then

- 1. For $0 \le j \le \gamma 1$, 2(b + c 4j 4) 2(b + c 4(j + 1) 4) = 8.
- 2. Let $J \subset I$ and $j \in I \setminus J$. If we swap the edge labels m/2 + 2j + 4 and -(m/2 + 2j + 5) or the edge labels (m/2 + b + c 2j 1) and -(m/2 + b + c 2j) at u with their opposites, then $\ell(u)$ increases $(\ell(v))$ decreases by 2. Hence we can increase $\ell(u)$ and decrease $\ell(v)$ by S(J) + 2 or S(J) + 4.
- 3. $2(b+c-4\gamma-4)=2$ if $b+c\equiv 1 \pmod 4$ and $2(b+c-4\gamma-4)=6$ if $b+c\equiv 3 \pmod 4$.
- 4. If $b+c\equiv 3\pmod 4$, since the edge labels $-(m/2+2\gamma+5)$ and $(m/2+2\gamma+6)$ are at u, we can increase $\ell(u)$ by S(J)-2 and decrease $\ell(v)$ by S(J)-2, where $J\subseteq I$.

5.

$$\begin{array}{rcl} S(I) & = & \sum_{j=0}^{\gamma} 2(b+c-4j-4) \\ & = & -4\gamma^2 + 2(b+c-6)\gamma + (2b+2c-8) \\ & = & (((b+c)^2+3)/4) - b - c. \end{array}$$

6. By (3), it is straightforward to see that

$$S(I) + \ell(u) = S(I) - \frac{(a-2)(b+c) + bc + b + c + 3}{2}$$

$$\geq \frac{b^2 + c^2 - 2b - 2c - 2ab - 2ac - 3}{4}$$

$$\geq -\frac{a+b+c-1}{2}.$$

Therefore, by proper edge labels swapping, we can make $\{\ell(u), \ell(v)\} = (-(a+b+c-1)/2, (a+b+c-1)/2)$. See Example 7.

Example 7. Assume there exists a SEGL of $K_{2,4,59}$ and $\ell(w_1) = \ell$ and $\ell(w_2) = \ell + 1$ for some positive integer ℓ . We extend this labeling to a SEGL of $K_{4,4,59}$. We use the notation in Lemma 6. Add the new edges uw_i and vw_i , $1 \le i \le 63$, to obtain a $K_{4,4,59}$. The edge labels required for the new edges are $\{\pm (182+i) \mid 1 \le i \le 63\}$. Label the edge uw_i with $(-1)^i(182+i)$ and vw_i with $(-1)^{i+1}(182+i)$. Then $\ell(u) = -214$ and $\ell(v) = 214$. Swap the edge labels 184 at u with the edge label 183 at v. Then $\ell(w_1) = \ell + 1$, $\ell(w_2) = \ell$, $\ell(u) = -215$ and $\ell(v) = 215$. Now swap the edge labels uw_i with vw_i for $i \in \{4, 18, 34, 35, 49, 63\}$ to obtain $(\ell(u), \ell(v)) = (-33, 33)$, as required.

3.1 $a \equiv b \equiv 0 \pmod{4}$ and c odd

Lemma 8. Let a, b and c be positive integers, $a \equiv b \equiv 0 \pmod{4}$, and c odd.

- 1. Let $ab+ac-bc-3a-4 \ge 0$. Then there is an $a \times (b+c)$ array whose entries are precisely $\{\pm(\frac{bc}{2}+i) \mid 1 \le i \le \frac{ab+ac}{2}\}$ and whose column sums are all zero and row sums are $\{\pm(\frac{b+c-1}{2}+i) \mid 1 \le i \le \frac{a}{2}\}$.
- 2. Let ab + ac bc 3a 4 < 0. Then there is a $b \times (a + c)$ array whose entries are precisely $\{\pm(\frac{ac}{2} + i) \mid 1 \le i \le \frac{ab + bc}{2}\}$ and whose column sums are all zero and row sums are $\{\pm(\frac{a+c-1}{2} + i) \mid 1 \le i \le \frac{b}{2}\}$.

Proof. Part 1. Define an $a \times (b+c)$ array $A = [a_{i,j}]$ as follows.

$$a_{i,j} = \begin{cases} \frac{bc}{2} + k & \text{if} \quad i = 2k - 1, j = 1 \\ -(\frac{bc}{2} + k) & \text{if} \quad i = 2k, j = 1 \\ \frac{bc}{2} + a + 1 - k & \text{if} \quad i = 2k - 1, j = 2 \\ -(\frac{bc}{2} + a + 1 - k) & \text{if} \quad i = 2k, j = 2 \\ -(\frac{3a}{2} + bc + 3 - k) & \text{if} \quad i = 2k, j = 3, \\ \frac{3a}{2} + bc + 3 - k & \text{if} \quad i = 2k, j = 3, \end{cases}$$

for $1 \le i \le a$. So far, we have filled the first three columns of A. Note that

- 1. by construction, no entry is repeated in the first three columns;
- 2. since $ab+ac-bc-3a-4\geq 0$, the entries in the first three columns are all in $\{\pm(\frac{bc}{2}+i)\mid 1\leq i\leq \frac{ab+ac}{2}\};$
- 3. the column sums for the first three columns are zero and the row sums are $-(\frac{a}{2}+2-k)$ if i=2k-1 and $\frac{a}{2}+2-k$ if i=2k.

The remaining entries are

$$\begin{array}{rcl} L_1 & = & \{\pm(\frac{2a+bc}{2}+i) \mid 1 \leq i \leq \frac{bc}{2}+2\} \\ L_2 & = & \{\pm(\frac{3a}{2}+bc+2+i) \mid 1 \leq i \leq \frac{ab+ac-bc-3a-4}{2}\}. \end{array}$$

Since $a,b\equiv 0\pmod 4$, it follows that $L_1\cup L_2$ can be partitioned into a(b+c-3)/4 4-subsets of the form $\{\pm\ell,\pm(\ell+1)\}$ for some positive integer ℓ . Partition the empty cells of A into a(b+c-3)/4 2×2 subarrays and fill each 2×2 sub-array with a 4-subset in such a way that the column sums are zero and the row sum for the first row is -1 and for the second row is 1 in each sub-array. Now the row sum for row i=2k-1 is $-(\frac{a+b+c+1}{2}-k)$ and for row i=2k is $\frac{a+b+c+1}{2}-k$. Hence, A is the required array. Example 12 displays an 8×13 array A when a=b=8 and c=5.

Part 2. We first note that if ab+ac-bc-3a-4 < 0, then $ab+bc-ac-3b-4 \ge 0$. Hence, by Part (1), the required $b \times (a+c)$ array exists. \square

Example 9. The construction given in Part (1) of Lemma 8 with a = b = 8 and c = 5 provides the following 8×13 array with column sums zero and row sums $\{\mp 10, \mp 9, \mp 8, \mp 7\}$. This array is employed to extend a SEGL of $K_{8,5}$ to a SEGL of $K_{8,5}$ (see Theorem 10).

21 28 -54	00 20	07 00	45 40	F. F.O.	05 00
21 28 -54	29 –30		45 –46	57 –58	65 –66
-21 - 28 54	-29 30	-37 38	-45 46	-57 58	-65 66
22 27 -53	31 -32	39 -40	47 –48	59 -60	67 -68
-22 - 27 53	-31 32	-39 40	-47 48	-59 60	-67 68
23 26 -52	33 -34	41 -42	49 -50	61 -62	69 -70
-23 - 26 52	-33 34	-41 42	-49 50	-61 63	-69 79
24 25 -51	35 –36		55 -56	63 -64	71 -72
-24 - 25 51	-35 36	-43 44	-55 56	-63 64	-71 72

Theorem 10. Let a, b and c be positive integers, $a \equiv b \equiv 0 \pmod{4}$, and c odd. Then there exists a SEGL of $K_{a,b,c}$.

Proof. If $ab+ac-bc-3a-4\geq 0$, by Part (1) of Lemma 8, there is an $a\times (b+c)$ array $A=[a_{i,j}]$ whose entries are precisely $\{\pm(\frac{bc}{2}+i)\mid 1\leq i\leq \frac{ab+ac}{2}\}$ and whose column sums are all zero and row sums are $\{\pm(\frac{b+c-1}{2}+i)\mid 1\leq i\leq \frac{a}{2}\}$. (The case ab+ac-bc-3a-4<0 is similar.) Consider the graph $K_{a,b,c}$ with partite sets $U=\{u_1,u_2,\ldots,u_a\}$, $W_1=\{w_1,w_2,\ldots,w_b\}$ and $W_2=\{w_{b+1},w_{b+2},\ldots,w_{b+c}\}$. By Theorem 2, there is a SEGL of $K_{b,c}$. Use this labeling to label the edges between W_1 and W_2 . In addition, label the edge u_iw_j with $a_{i,j}$ for $1\leq i\leq a$ and $1\leq j\leq b+c$. The resulting labeling is a SEGL of $K_{a,b,c}$.

3.2 $a \not\equiv b \pmod{4}$ and $c \pmod{d}$

Similar to Lemma 8 we have the following lemma for this case.

Lemma 11. Let a, b and c be positive integers, a and b even, $a \not\equiv b \pmod{4}$, and c odd.

- 1. Let $ab+ac-bc-2a+2 \ge 0$ and a < bc. Then there exists an $a \times (b+c)$ array whose entries are precisely $\{\pm (\frac{bc}{2}+i) \mid 1 \le i \le \frac{ab+ac}{2}\}$ and whose column sums are all zero and row sums are $\{\pm (\frac{b+c-1}{2}+i) \mid 1 \le i \le \frac{a}{2}\}$.
- 2. Let ab+ac-bc-2a+2 < 0 and b < ac. Then there exists a $b \times (a+c)$ array whose entries consists of $\{\pm(\frac{ac}{2}+i) \mid 1 \le i \le \frac{ab+bc}{2}\}$ and whose column sums are all zero and row sums are $\{\pm(\frac{a+c-1}{2}+i) \mid 1 \le i \le \frac{b}{2}\}$.

Proof. Part 1. Define an $a \times (b+c)$ array $A = [a_{i,j}]$ as follows.

$$a_{i,j} = \begin{cases} \frac{bc}{2} + k & \text{if} \quad i = 2k - 1, j = 1 \\ -(\frac{bc}{2} + k) & \text{if} \quad i = 2k, j = 1 \\ \frac{a+bc}{2} + k & \text{if} \quad i = 2k - 1, j = 2 \\ -(\frac{a+bc}{2} + k) & \text{if} \quad i = 2k, j = 2 \\ -(\frac{a+2bc}{2} + k - 1) & \text{if} \quad i = 2k - 1, j = 3 \\ \frac{a+2bc}{2} + k - 1 & \text{if} \quad i = 2k, j = 3, \end{cases}$$

for $1 \le i \le a$. So far, we have filled the first three columns of A. Note that

- 1. since a < bc, no entry is repeated in the first three columns;
- 2. since $ab + ac bc 2a + 2 \ge 0$, the entries in the first three columns are all in $\{\pm (\frac{bc}{2} + i) \mid 1 \le i \le \frac{ab + ac}{2}\}$;
- 3. the column sums for the first three columns are zero and the row sums are k+1 if i=2k-1 and -(k+1) if i=2k.

The remaining entries are

$$\begin{array}{rcl} L_1 & = & \{\pm(\frac{2a+bc}{2}+i) \mid 1 \leq i \leq \frac{bc-a}{2}-1\} \\ L_2 & = & \{\pm(a+bc+i-1) \mid 1 \leq i \leq \frac{ab+ac-bc}{2}-a+1\}. \end{array}$$

Since a and b are even and $a \not\equiv b \pmod 4$, it follows that $L_1 \cup L_2$ can be partitioned into a(b+c-3)/4 4-subsets of the form $\{\pm \ell, \pm (\ell+1)\}$ for some positive integer ℓ . Partition the empty cells of A into a(b+c-3)/4 2×2 sub-arrays and fill each 2×2 sub-array with a 4-subset in such a way that the column sums are zero and the row sum for the first row is 1 and for the second row is -1 in each sub-array. Now the row sum for row i=2k-1 is $\frac{b+c-3}{2}+k+1$ and for row i=2k is $-(\frac{b+c-3}{2}+k+1)$. Hence, A is the required array. Example 12 displays a 4×13 array A when a=4, b=10 and c=3.

Part 2. We first note that if ab+ac-bc-2a+2 < 0, then $ab+bc-ac-2b+2 \ge 0$. Hence, by Part (1), the required $b \times (a+c)$ array exists.

Example 12. The construction given in Part (1) of Lemma 11 with a=4, b=10 and c=3 provides the following 4×13 array with column sums zero and row sums $\{\pm 7, \pm 8\}$. This array is employed to extend a SEGL of $K_{10,3}$ to a SEGL of $K_{4,10,3}$ (see Lemma 13).

16 18 -34					
-16 -18 34					
17 19 -35	-22 23	-26 27	-30 31	-36 37	-40 41
-17 - 19 35	22 -23	26 -27	30 -31	36 -37	40 -41

Lemma 13. Let a, b and c be positive integers, a and b even, $a \not\equiv b$ (mod 4), and c odd. If

1.
$$ab + ac - bc - 2a + 2 \ge 0$$
, $a < bc$ and $(b, c) \ne (2, 3)$, or

2.
$$ab + ac - bc - 2a + 2 < 0$$
, $b < ac$ and $(a, c) \neq (2, 3)$,

then there exists a SEGL of $K_{a,b,c}$.

Proof. We only present a proof for Part (1). The proof for Part (2) is similar.

By Part (1) of Lemma 11, there is an $a \times (b+c)$ array $A = [a_{i,j}]$ whose entries are precisely $\{\pm(\frac{bc}{2}+i) \mid 1 \leq i \leq \frac{ab+ac}{2}\}$ and whose column sums are all zero and row sums are $\{\pm(\frac{b+c-1}{2}+i) \mid 1 \leq i \leq \frac{a}{2}\}$. Consider the graph $K_{a,b,c}$ with partite sets $U = \{u_1,u_2,\ldots,u_a\},\ W_1 = \{w_1,w_2,\ldots,w_b\}$ and $W_2 = \{w_{b+1},w_{b+2},\ldots,w_{b+c}\}$. By Theorem 2, there is a SEGL of $K_{b,c}$. Use this labeling to label the edges between W_1 and W_2 . In addition, label the edge u_iw_j with $a_{i,j}$ for $1 \leq i \leq a$ and $1 \leq j \leq b+c$. The resulting labeling is a SEGL of $K_{a,b,c}$.

Corollary 14. Let a and b be positive even integers and $a \not\equiv b \pmod{4}$. Then there exists a SEGL of $K_{a,b,1}$.

Proof. Without loss of generality we may assume $a \leq b$. Now apply Lemma 13 with c = 1.

Since $K_{2,3}$ is not SEG by Theorem 2, we use the following result as a detour.

Lemma 15. Let $b \equiv 0 \pmod{4}$ be a positive integer. Then there exists a SEGL of $K_{2,b,3}$.

Proof. Let $W = \{w_1, w_2, \ldots, w_{b+3}\}$ be the vertices of $K_{b,3}$. By Theorem 2, there is a SEGL of $K_{b,3}$. Join two new vertices u and v to every vertex in W to obtain a $K_{2,b,3}$. The labels we need to assign to the new edges are $\{\pm(\frac{3b}{2}+1), \pm(\frac{3b}{2}+2), \ldots, \pm(\frac{3b}{2}+(b+3))\}$.

Label the edge uw_i with $(-1)^i(\frac{3b}{2}+i)$ and the edge vw_i with $(-1)^{i+1}(\frac{3b}{2}+i)$ for $i \in \{1, 2, 3, \dots, b+3\}$. Note that with this labeling the vertex labels of W do not change and $(\ell(u), \ell(v)) = (-(2b+2), 2b+2)$. To obtain a SEGL of $K_{2,b,3}$, we need to make $\{\ell(u), \ell(v)\} = \{\pm(\frac{b}{2}+2)\}$.

If b/4 is odd, we swap the edge labels 3b/2 + 2 and -(3b/2 + 3b/4 + 2) at u with the edge labels -(3b/2 + 2) and (3b/2 + 3b/4 + 2) at v. Then $\ell(u) = -(b/2 + 2)$ and $\ell(v) = b/2 + 2$, as required.

If b/4 is even, we swap the edge labels 3b/2+2 and -(3b/2+3b/4+3) at u with the edge labels -(3b/2+2) and (3b/2+3b/4+3) at v. Then $\ell(u) = -b/2$ and $\ell(v) = b/2$. We also swap the edge labels 3b/2+4 and -(3b/2+3) with -(3b/2+4) and 3b/2+3. Then $\ell(u) = -(b/2+2)$ and $\ell(v) = b/2+2$, as required.

Lemma 16. Let c be a positive odd integer. Then $K_{2,4,c}$, $K_{2,8,c}$ and $K_{4,6,c}$ are super edge-graceful.

Proof. For c=1 apply Corollary 14. By Lemma 15, $K_{2,4,3}$ and $K_{2,8,3}$ are SEG. For the other values apply Lemma 13.

Theorem 17. Let a, b and c be positive integers, a and b even, $a \not\equiv b$ (mod 4), and c odd. Then there exists a SEGL of $K_{a,b,c}$.

Proof. By Lemma 16, the theorem is true if $a+b \le 10$. Now let $a+b \ge 12$. First consider the case c < 4(a+b)-6. By Corollary 14, there is a SEGL of $K_{a,b,1}$. Now by induction on c, Lemma 3 and Remark 4, one can obtain a SEGL of $K_{a,b,c}$. Second let c > 4(a+b)-6. By Theorem 2, there is a SEGL of $K_{b,c}$. By induction on a and Lemma 6, we extend this labeling to a SEGL of $K_{a,b,c}$. This completes the proof.

3.3 $a \equiv b \equiv 2 \pmod{4}$ and $c \pmod{4}$

For this case we employ a technique similar to that explained in Subsection 3.2 to find a SEGL of $K_{a,b,c}$. The proof of the following lemma is similar to the proof of Lemma 15.

Lemma 18. Let $b \equiv 2 \pmod{4}$. Then there exists a SEGL of $K_{2,b,1}$.

Proof. For a SEGL of $K_{2,2,1}$ see the Appendix. Now assume $b \geq 6$. By Theorem 2, there is a SEGL of $K_{b,1}$. Let $W = \{w_1, w_2, \ldots, w_{b+1}\}$ be the vertices of $K_{b,1}$. In addition, suppose that the induced labels for vertices w_1 and w_2 are ℓ and $\ell+1$ for some positive integer ℓ , respectively. Join two new vertices u and v to every vertex in W to obtain a $K_{2,b,1}$. The labels we need to assign to the new edges are $\{\pm(\frac{b}{2}+1),\pm(\frac{b}{2}+2),\ldots,\pm(\frac{b}{2}+(b+1))\}$.

Label the edge uw_i with $(-1)^i(\frac{b}{2}+i)$ and the edge vw_i with $(-1)^{i+1}(\frac{b}{2}+i)$ for $i\in\{1,2,3,\ldots,b+1\}$. Note that with this labeling the vertex labels of W do not change and $(\ell(u),\ell(v))=(-(b+1),b+1)$. To obtain a SEGL of $K_{2,b,1}$, we need to make $\{\ell(u),\ell(v)\}=\{\pm(\frac{b}{2}+1)\}$. Swap the edge label $\frac{b}{2}+2$ at u with the edge label $\frac{b}{2}+1$ at v. Now $\ell(w_1)=\ell+1$, $\ell(w_2)=\ell$, $\ell(u)=-(b+2)$ and $\ell(v)=b+2$.

If (b+2)/4 is odd, we swap the edge labels b/2+4 and -(b/2+4+(b+2)/4) at u with the edge labels -(b/2+4) and (b/2+4+(b+2)/4) at v. Then $\ell(u) = -(b/2+1)$ and $\ell(v) = b/2+1$, as required.

If (b+2)/4 is even and $b \ge 10$, we swap the edge labels b/2+4 and -(b/2+4+(b+6)/4) at u with the edge labels -(b/2+4) and (b/2+4+(b+6)/4) at v. Then $\ell(u)=-(b/2-1)$ and $\ell(v)=b/2-1$. We also swap the edge labels -(b/2+b-1) and (b/2+b) with (b/2+b-1) and -(b/2+b). Then $\ell(u)=-(b/2+1)$ and $\ell(v)=b/2+1$, as required.

Finally, if b=6, we swap the edge labels 7, -8, 9 and -10 at u with their opposites. Then $\ell(u)=-4$ and $\ell(v)=4$, as desired.

Lemma 19. Let $a \equiv 0 \pmod 4$, $b \equiv 2 \pmod 4$ and a < b. Then there exists an $a \times (b+1)$ array whose entries are precisely $\{\pm (\frac{3b+2}{2}+i) \mid 1 \le i \le \frac{(a-2)(b+1)}{2}\}$ and whose column sums are all zero and row sums are $\{\pm (\frac{b+2}{2}+i) \mid 1 \le i \le \frac{a}{2}\}$.

Proof. Part 1. Define an $a \times (b+1)$ array $A = [a_{i,j}]$ as follows.

$$a_{i,j} = \begin{cases} \frac{3b+2}{2} + k & \text{if} \quad i = 2k-1, j = 1 \\ -(\frac{3b+2}{2} + k) & \text{if} \quad i = 2k, j = 1 \\ \frac{3b+a+2}{2} + k & \text{if} \quad i = 2k-1, j = 2 \\ -(\frac{3b+a+2}{2} + k) & \text{if} \quad i = 2k, j = 2 \\ -(3b + \frac{a}{2} + k) & \text{if} \quad i = 2k-1, j = 3 \\ 3b + \frac{a}{2} + k & \text{if} \quad i = 2k, j = 3, \end{cases}$$

for $1 \le i \le a$. So far, we have filled the first three columns of A. Since $4 \le a < b$, no entry is repeated in the first three columns and the entries are all in $\{\pm(\frac{3b+2}{2}+i) \mid 1 \le i \le \frac{(a-2)(b+1)}{2}\}$. Note that the column sums for the first three columns are zero and the row sums are k+2 if i=2k-1 and -(k+2) if i=2k. The remaining entries are

$$\begin{array}{rcl} L_1 & = & \{\pm(\frac{3b}{2}+a+1+i) \mid 1 \leq i \leq \frac{3b-a-2}{2} \} \\ L_2 & = & \{\pm(3b+a+i) \mid 1 \leq i \leq \frac{ab-a-3b+2}{2} \}. \end{array}$$

Since $a \equiv 0 \pmod 4$ and $b \equiv 2 \pmod 4$, it follows that $L_1 \cup L_2$ can be partitioned into a(b-2)/4 4-subsets of the form $\{\pm \ell, \pm (\ell+1)\}$ for some positive integer ℓ . Partition the empty cells of A into a(b-2)/4 2 × 2 sub-arrays and fill each 2 × 2 sub-array with a 4-subset in such a way that

the column sums are zero and the row sum for the first row is 1 and for the second row is -1 in each sub-array. The resulting array A is the required array. Example 20 displays an 8×11 array A when a = 8 and b = 10. \square

Example 20. The construction given in Lemma 19 with a=8 and b=10 provides the following 8×11 array with column sums zero and and row sums $\{\pm7,\pm8,\pm9,\pm10\}$. This array is employed to extend a SEGL of $K_{2,10,1}$ to a SEGL of $K_{10,10,1}$ (see Lemma 21).

17	21	-35	-25	26	-33	34	-45	46	-53	54
-17	-21	35	25	-26	33	-34	45	-46	53	-54
18	22	-36	-27	28	-39	40	-47	48	-55	56
-18	-22	36	27	-28	39	-40	47	-48	55	-56
19	23	-37	-29	30	-41	42	-49	50	-57	58
-19	-23	37	29	-30	41	-42	49	-50	57	-58
20	24	-38	-31	32	-43	44	-51	52	-59	60
-20	-24	38	31	-32	43	-44	51	-52	59	-60

Lemma 21. Let $a \equiv b \equiv 2 \pmod{4}$. Then there exists a SEGL of $K_{a,b,1}$.

Proof. Without loss of generality, we may assume $a \leq b$. By Lemma 18, we may also assume $a \geq 6$. Let the partite sets of $K_{a,b,1}$ be $U = \{u_1, u_2, \ldots, u_a\}$, $W = \{w_1, w_2, \ldots, w_b\}$ and $\{w_{b+1}\}$. Consider the subgraph $K_{2,b,1}$ of $K_{a,b,1}$ with vertices $\{u_{a-1}, u_a\} \cup W \cup \{w_{b+1}\}$. By Lemma 18, there is a SEGL for this subgraph. Let $A = [a_{i,j}]$ be an $(a-2) \times (b+1)$ array given in Lemma 19. Label the edge $u_i w_j$ with $a_{i,j}$ for $i \in \{1, 2, \ldots, a-2\}$ and $j \in \{1, 2, \ldots, b+1\}$. The resulting labeling is a SEGL of $K_{a,b,1}$. \square

Lemma 22. Let c be an odd integer and $b \in \{2, 6\}$. Then there exists a SEGL of $K_{2,b,c}$.

Proof. For c=1 we apply Lemma 18. For a SEGL of $K_{2,2,3}$ see the Appendix. Now let $c\geq 3$ and $(b,c)\neq (2,3)$. By Theorem 2, there is a SEGL of $K_{b,c}$. Apply a technique similar to that described in the proof of Lemma 18 to extend this labeling to a SEGL of $K_{2,b,c}$.

Theorem 23. Let a, b and c be positive integers, $a \equiv b \equiv 2 \pmod{4}$ and $c \equiv 1 \pmod{2}$. Then there exists a SEGL of $K_{a,b,c}$.

Proof. Without loss of generality we may assume $a \le b$. By Lemma 22, we may also assume $b \ne 2$ and $a + b \ge 12$. First let c < 4(a + b) - 6. By Lemma 21, there is a SEGL of $K_{a,b,1}$. Apply Lemma 3 and Remark 4 to obtain a SEGL of $K_{a,b,c}$. Next let c > 4(a+b) - 6. By Theorem 2, if a = 2,

and Theorem 17, if $a \neq 2$, there is a SEGL of $K_{a-2,b,c}$. Now apply Lemma 6 to extend this labeling to a SEGL of $K_{a,b,c}$.

By Theorems 17, 10 and 23, we can state the main result of this section.

Theorem 24. Let a, b and c be positive integers, a and b even and c odd. Then there exists a SEGL of $K_{a,b,c}$.

4 A SEGL of $K_{a,b,c}$, where a is even and b and c are odd

In this section we prove that for every positive even integer a and positive odd integers b and c, $(a, b, c) \neq (2, 1, 1)$, the complete tripartite graph $K_{a,b,c}$ is SEG. It is easy to see that $K_{2,1,1}$ is not SEG. By Theorem 2, $K_{b,1}$ is not SEG. Hence, we cannot apply Lemma 3 to obtain a SEGL of $K_{2,b,1}$. Our first result in this section shows that $K_{2,b,1}$ is SEG.

Lemma 25. Let $b \neq 1$ be a positive odd integer. Then there exists a SEGL of $K_{2,b,1}$.

Proof. We split this proof into two cases.

Case 1: $b \equiv 1 \pmod{4}$. First consider the graph $K_{2,1,1}$ with partite sets $\{v_1, v_2\}$, $\{u\}$ and $\{w_0\}$. Label uw_0 , uv_1 , uv_2 , v_1w_0 and v_2w_0 with 0, 2, -1, -2 and 1, respectively. Then $\ell(u) = 1$, $\ell(w_0) = -1$ and $\ell(v_1) = \ell(v_2) = 0$. Now define a $(b-1) \times 3$ array $A = [a_{i,j}]$ as follows.

$$a_{i,j} = \left\{ \begin{array}{ccc} k+2 & \text{if} & i=2k-1, j=1 \\ -(k+2) & \text{if} & i=2k, j=1 \\ \frac{b-1}{2}+i+2 & \text{if} & j=2 \\ -(\frac{b-1}{2}+i+2) & \text{if} & j=3, \end{array} \right.$$

for $1 \le i \le b-1$. Note the row sums of A are $\{\pm 3, \pm 4, \ldots, \pm \frac{b+3}{2}\}$. Swap $a_{2,2}$ with $a_{2,3}$ and $a_{4,2}$ with $a_{4,3}$. In addition, swap $a_{4k+2,2}$ with $a_{4k+2,3}$ and $a_{4k+3,2}$ with $a_{4k+3,3}$ for $1 \le k \le \frac{b-5}{4}$. It is easy to see that the resulting $(b-1) \times 3$ array, say $B = [b_{i,j}]$, has the same row sums as array A and the column sums of B are 0, -2 and 2.

Add b-1 new vertices $\{w_1, w_2, \ldots, w_{b-1}\}$ to the partite set $\{w_0\}$ of $K_{2,1,1}$ and join these vertices to u, v_1 and v_2 to obtain a $K_{2,b,1}$. Label uw_i , v_1w_i and v_2w_i with $b_{i,1}$, $b_{i,2}$ and $b_{i,3}$, respectively, for $1 \le i \le b-1$. Then $\ell(u) = 1$, $\ell(w_0) = -1$, $\ell(v_1) = -2$ and $\ell(v_2) = 2$. Hence, the resulting labeling is a SEGL of $K_{2,b,1}$.

Case 2: $b \equiv 3 \pmod{4}$. First note that there is a SEGL of $K_{2,3,1}$ (see the Appendix). We construct a $(b-3)\times 3$ array $A=[a_{i,j}]$ whose entries

are precisely $\{\pm 6, \pm 7, \ldots, \pm \frac{3b+1}{2}\}$ and whose column sums are all zero and row sums are $\{\pm 4, \pm 5, \ldots, \pm \frac{b+3}{2}\}$. Set $a_{i,1} = 5 + k$ if i = 2k - 1 and $a_{i,1} = -(5+k)$ if i = 2k for $1 \le i \le b-3$. The remaining entries are $\{\frac{b-3}{2}+i+5 \mid 1 \le i \le b-3\}$. By assumption, we can partition these entries into (b-3)/4 4-subsets of the form $\{\pm \ell, \pm (\ell+2)\}$ for some positive integer ℓ . Partition the empty cells of ℓ into ℓ in

Theorem 26. Let a, b and c be positive integers, a even, b and c odd and a < 4(b+c) - 18. Then there is a SEGL of $K_{a,b,c}$.

Proof. Without loss of generality, we may assume $b \ge c$. If c = 1, then by Lemma 25, there is a SEGL of $K_{2,b,1}$. If $c \ne 1$, then by Theorem 2, there is a SEGL of $K_{b,c}$. Now since b + c is even, by induction on a and Lemma 3, the result follows.

Lemma 27. Let a and b be positive integers, a even, $b \equiv 1 \pmod{4}$, $b \geq 5$ and $a \geq (b+3)/2$. Then there exists a $(b-1) \times (a+1)$ array whose entries are precisely $\{\pm (a+i) \mid 1 \leq i \leq \frac{ab-a+b-1}{2}\}$ and whose column sums are all zero and row sums are $\{\pm (\frac{a}{2}+1+i) \mid 1 \leq i \leq \frac{b-1}{2}\}$.

Proof. Define a $(b-1) \times (a+1)$ array $A = [a_{i,j}]$ as follows.

$$a_{i,j} = \begin{cases} a+k & \text{if} \quad i=2k-1, j=1\\ -(a+k) & \text{if} \quad i=2k, j=1\\ \frac{2a+b-1}{2}+k & \text{if} \quad i=2k-1, j=2\\ -(\frac{2a+b-1}{2}+k) & \text{if} \quad i=2k, j=2\\ -(\frac{4a+b-5}{2}+k) & \text{if} \quad i=2k-1, j=3\\ \frac{4a+b-5}{2}+k & \text{if} \quad i=2k, j=3, \end{cases}$$

for $1 \le i \le b-1$. So far, we have filled the first three columns of A. Note that the column sums for the first three columns are zero and the row sums are k+2 if i=2k-1 and -(k+2) if i=2k. The remaining entries are

$$\begin{array}{rcl} L_1 & = & \{\pm(a+b+i-1) \mid 1 \leq i \leq \frac{2a-b-3}{2}\} \\ L_2 & = & \{\pm(2a+b+i-3) \mid 1 \leq i \leq \frac{ab-3a-b+5}{2}\}. \end{array}$$

By assumptions, $L_1 \cup L_2$ can be partitioned into (b-1)(a-2)/4 4-subsets of the form $\{\pm \ell, \pm (\ell+1)\}$ for some positive integer ℓ . Partition the empty cells of A into (b-1)(a-2)/4 2×2 sub-arrays and fill each 2×2 sub-array with a 4-subset in such a way that the column sums are zero and the row sum for the first row is 1 and for the second row is -1 in each sub-array.

The resulting array A is the required array. Example 28 displays an 8×11 array A when a = 10 and b = 9.

Example 28. The construction given in Lemma 27 with a = 10 and b = 9 provides the following 8×11 array with column sums zero and and row sums $\{\pm 7, \pm 8, \pm 9, \pm 10\}$. This array can be employed to extend a SEGL of $K_{10,1,1}$ to a SEGL of $K_{10,9,1}$.

11	15	-23	-19	20	-31	32	-39	40	-47	48
-11	-15	23	19	-20	31	-32	39	-40	47	-48
12	16	-24	-21	22	-33	34	-41	42	-49	50
-12	-16	24	21	-22	33	-34	41	-42	49	-50
13	17	-25	-27	28	-35	36	-43	44	-51	52
-13	-17	25	27	-28	35	-36	43	-44	51	-52
14	18	-26	-29	30	-37	38	-45	46	-53	54
-14	-18	26	29	-30	37	-38	45	-46	53	-54

Lemma 29. Let a and b be positive integers, a even and $b \equiv 3 \pmod{4}$, $b \ge 7$ and $a \ge (b+3)/4$. Then there exists a $(b-3) \times (a+1)$ array whose entries are precisely $\{\pm (2a+i+1) \mid 1 \le i \le \frac{ab-3a+b-3}{2}\}$ and whose column sums are all zero and row sums are $\{\pm (\frac{a}{2}+2+i) \mid 1 \le i \le \frac{b-3}{2}\}$.

Proof. Define a $(b-3) \times (a+1)$ array $A = [a_{i,j}]$ as follows.

$$a_{i,j} = \begin{cases} 2a + k + 1 & \text{if} \quad i = 2k - 1, j = 1 \\ -(2a + k + 1) & \text{if} \quad i = 2k, j = 1 \\ \frac{4a + b - 1}{2} + k & \text{if} \quad i = 2k - 1, j = 2 \\ -(\frac{4a + b - 1}{2} + k) & \text{if} \quad i = 2k, j = 2 \\ -(\frac{8a + b - 5}{2} + k) & \text{if} \quad i = 2k - 1, j = 3 \\ \frac{8a + b - 5}{2} + k & \text{if} \quad i = 2k, j = 3, \end{cases}$$

for $1 \le i \le b-3$. So far, we have filled the first three columns of A. Note that the column sums for the first three columns are zero and the row sums are k+3 if i=2k-1 and -(k+3) if i=2k. The remaining entries are

$$\begin{array}{rcl} L_1 & = & \{\pm(2a+b+i-2) \mid 1 \le i \le \frac{4a-b-1}{2}\} \\ L_2 & = & \{\pm(4a+b+i-4) \mid 1 \le i \le \frac{ab-7a-b+7}{2}\}. \end{array}$$

By assumptions, $L_1 \cup L_2$ can be partitioned into (b-3)(a-2)/4 4-subsets of the form $\{\pm \ell, \pm (\ell+1)\}$ for some positive integer ℓ . Partition the empty cells of A into (b-3)(a-2)/4 2×2 sub-arrays and fill each 2×2 sub-array with a 4-subset in such a way that the column sums are zero and the row sum for the first row is 1 and for the second row is -1 in each sub-array. The resulting array A is the required array. Example 30 displays a 8×11 array A when a=10 and b=11.

Example 30. The construction given in Lemma 27 with a=10 and b=11 provides the following 8×11 array with column sums zero and and row sums $\{\pm 8, \pm 9, \pm 10, \pm 11\}$. This array can be employed to extend a SEGL of $K_{10,3,1}$ to a SEGL of $K_{10,11,1}$.

22	26	-44	-30	31	-38	39	-50	51	-58	59
-22	-26	44	30	-31	38	-39	50	-51	58	-59
23	27	-45	-32	33	-40	41	-52	53	-60	61
-23	-27	45	32	-33	40	-41	52	-53	60	-61
24	27	-46	-34	35	-42	43	-54	55	-62	63
-24	-28	46	34	-35	42	-43	54	-55	62	-63
25	29	-47	-36	37	-48	49	-56	57	-64	65
-25	-29	47	36	-37	48	-49	56	-57	64	-65

Lemma 31. There exists a SEGL of $K_{1,1,c}$ for every positive integer $c \neq 2$.

Proof. There is a SEGL of $K_{1,1,1} = K_3$ by Theorem 1. A SEGL of $K_{1,1,3}$ is given in the Appendix. Now let $c \geq 4$. By Theorem 2, there is a SEGL of $K_{2,c}$. Join the two vertices in the partite set of size two with an edge and assign label zero to this edge. The resulting labeling is a SEGL of $K_{1,1,c}$.

Lemma 32. Let a be a positive even integer, b a positive odd integer and $(a,b) \neq (2,1)$. Then $K_{a,b,1}$ is SEG.

Proof. By Lemma 25, there exists a SEGL of $K_{2,b,1}$ if $b \neq 1$. Now let $a \geq 4$. First consider the case a < b. Hence, we may assume $b \geq 5$. Now since b+1 is even, the result follows by induction on a and Lemma 3.

Second let a > b. By Lemma 31, there is a SEGL of $K_{a,1,1}$. If $b \equiv 1 \pmod{4}$, using a $(b-1) \times (a+1)$ array given in Lemma 27 we can extend a SEGL of $K_{a,1,1}$ to a SEGL of $K_{a,b,1}$.

Now assume $b \equiv 3 \pmod 4$. First we construct a SEGL of $K_{a,3,1}$. For $a \ge 12$ apply Lemma 6 to extend a SEGL of $K_{a,1,1}$, to a SEGL of $K_{a,3,1}$. The Appendix displays a SEGL of $K_{2,3,1}$. By adding two new vertices in the partite set of size two, one can extend this labeling to a SEGL of $K_{4,3,1}$ (see Lemma 3). Now let $a \in \{6, 8, 10\}$. Add two new vertices to the partite set of size one of a $K_{a,1,1}$. Apply a method similar to that described in Lemma 6 to extend a SEGL of $K_{a,1,1}$ to a SEGL of $K_{a,3,1}$. Finally, use a $(b-3) \times (a+1)$ array given in Lemma 29 to extend a SEGL of $K_{a,3,1}$ to a SEGL of $K_{a,0,1}$.

Lemma 33. Let a and b be positive integers, a even and $b \equiv 1 \pmod{4}$, $b \geq 9$ and $a \geq \frac{b-1}{6}$. Then there exists a $(b-3) \times (a+3)$ array whose entries are precisely $\{\pm (3a+i+4) \mid 1 \leq i \leq \frac{ab-3a+3b-9}{2}\}$ and whose column sums are all zero and row sums are $\{\pm (\frac{a}{2}+3+i) \mid 1 \leq i \leq \frac{b-3}{2}\}$.

Proof. Define a $(b-3) \times (a+3)$ array $A = [a_{i,j}]$ as follows.

$$a_{i,j} = \begin{cases} 3a + k + 4 & \text{if} \quad i = 2k - 1, j = 1 \\ -(3a + k + 4) & \text{if} \quad i = 2k, j = 1 \\ \frac{6a + b + 5}{2} + k & \text{if} \quad i = 2k - 1, j = 2 \\ -(\frac{6a + b + 5}{2} + k) & \text{if} \quad i = 2k, j = 2 \\ -(\frac{12a + b + 7}{2} + k) & \text{if} \quad i = 2k, j = 3, \end{cases}$$

for $1 \le i \le b-3$. So far, we have filled the first three columns of A. Note that the column sums for the first three columns are zero and the row sums are k+3 if i=2k-1 and -(k+3) if i=2k. The remaining entries are

$$\begin{array}{rcl} L_1 & = & \{\pm (3a+b+i+1) \mid 1 \leq i \leq \frac{6a-b+5}{2} \} \\ L_2 & = & \{\pm (6a+b+i+2) \mid 1 \leq i \leq \frac{ab-9a+b-5}{2} \}. \end{array}$$

By assumptions, $L_1 \cup L_2$ can be partitioned into a(b-3)/4 4-subsets of the form $\{\pm \ell, \pm (\ell+1)\}$ for some positive integer ℓ . Partition the empty cells of A into a(b-3)/4 2×2 sub-arrays and fill each 2×2 sub-array with a 4-subset in such a way that the column sums are zero and the row sum for the first row is 1 and for the second row is -1 in each sub-array. The resulting array A is the required array. Example 34 displays a 8×11 array A when a=8 and b=9.

Example 34. The construction given in Lemma 33 with a=8 and b=9 provides the following 6×11 array with column sums zero and and row sums $\{\pm 8, \pm 9, \pm 10\}$. This array can be employed to extend a SEGL of $K_{8,3,3}$ to a SEGL of $K_{8,9,3}$.

29	32	-57	-35	36	-41	42	-47	48	-53	54
-29	-32	57				-42			53	-54
30	33	-58	-37	38	-43	44	-49	50	-55	56
-30	-33		37		43	-44			55	-56
31	34	-59	-39	40	-45	46	-51	52	-60	61
-31	-34	-59	39	-40	45	-46	51	-52	60	-61

Lemma 35. Let a and b be positive integers, a even and $b \equiv 3 \pmod 4$, $b \ge 7$ and $a \ge \frac{b+3}{4}$. Then there exists a $(b-1) \times (a+3)$ array whose entries are precisely $\{\pm (2a+i+1) \mid 1 \le i \le \frac{ab-a+3b-3}{2}\}$ and whose column sums are all zero and row sums are $\{\pm (\frac{a}{2}+2+i) \mid 1 \le i \le \frac{b-1}{2}\}$.

Proof. Define a $(b-1) \times (a+3)$ array $A = [a_{i,j}]$ as follows.

$$a_{i,j} = \begin{cases} 2a+k+1 & \text{if} \quad i=2k-1, j=1\\ -(2a+k+1) & \text{if} \quad i=2k, j=1\\ \frac{4a+b+1}{2}+k & \text{if} \quad i=2k-1, j=2\\ -(\frac{4a+b+1}{2}+k) & \text{if} \quad i=2k, j=2\\ -(\frac{8a+b-1}{2}+k) & \text{if} \quad i=2k-1, j=3\\ \frac{8a+b-1}{2}+k & \text{if} \quad i=2k, j=3, \end{cases}$$

for $1 \le i \le b-1$. So far, we have filled the first three columns of A. Note that the column sums for the first three columns are zero and the row sums are k+2 if i=2k-1 and -(k+2) if i=2k. The remaining entries are

$$\begin{array}{rcl} L_1 & = & \{\pm (2a+b+i) \mid 1 \leq i \leq \frac{4a-b-1}{2}\} \\ L_2 & = & \{\pm (4a+b+i-1) \mid 1 \leq i \leq \frac{ab-5a+b+1}{2}\}. \end{array}$$

By assumptions, $L_1 \cup L_2$ can be partitioned into a(b-1)/4 4-subsets of the form $\{\pm \ell, \pm (\ell+1)\}$ for some positive integer ℓ . Partition the empty cells of A into a(b-1)/4 2×2 sub-arrays and fill each 2×2 sub-array with a 4-subset in such a way that the column sums are zero and the row sum for the first row is 1 and for the second row is -1 in each sub-array. The resulting array A is the required array. Example 36 displays a 10×11 array A when a=8 and b=11.

Example 36. The construction given in Lemma 35 with a=8 and b=11 provides the following 10×11 array with column sums zero and and row sums $\{\pm 7, \pm 8, \pm 9, \pm 10, \pm 11\}$. This array can be employed to extend a SEGL of $K_{8,1,3}$ to a SEGL of $K_{8,1,3}$.

18	23	-38	-28	29	-43	44	-53	54	-63	64
-18	-23	38	28	-29	43	-44	53	-54	63	-64
19	24	-39	-30	31	-45	46	-55	56	-65	66
-19	-24	39	30	-31	45	-46	55	-56	65	-66
20	25	-40	-32	33	-47	48	-57	58	-67	68
-20	-25	40	32	-33	47	-48	57	-58	67	-68
21	26	-41	-34	35	-49	50	-59	60	-69	70
-21	-26	41	34	-35	49	-50	59	-60	69	-70
22	. 27	-42	-36	37	-51	52	-61	62	-71	72
-22	-27	42	36	-37	51	-52	61	-62	71	-72

Lemma 37. Let a be a positive even integer. Then there exist SEGLs of $K_{a,3,3}$ and $K_{a,3,5}$.

Proof. First we construct a SEGL of $K_{a,3,3}$. By Lemma 32, there is a SEGL of $K_{a,1,3}$. Add two new vertices to the partite set of size one of $K_{a,1,3}$. Let $W = \{w_1, w_2, \ldots, w_{a+3}\}$ be the vertices in partite sets of sizes a and 3. In addition, suppose that the induced labels for vertices w_1 and w_2 are ℓ and $\ell+1$ for some positive integer ℓ , respectively. Add two new vertices u and v to the partite set of size one and join them to every vertex in W to obtain a $K_{a,3,3}$. The labels we need to assign to the new edges are $\{\pm (2a+1) + i \mid 1 \le i \le a+3\}$.

Label the edge uw_i with $(-1)^i(2a+1+i)$ and the edge vw_i with $(-1)^{i+1}(2a+1+i)$ for $i\in\{1,2,3,\ldots,a+3\}$. Note that with this labeling the vertex labels of $K_{a,1,3}$ do not change and $(\ell(u),\ell(v))=(-2a-\frac{a}{2}-3,2a+\frac{a}{2}+3)$. To obtain a SEGL of $K_{a,3,3}$, we need to make $\{\ell(u),\ell(v)\}=\{\pm(\frac{a}{2}+3)\}$. Swap the edge labels 2a+1+2 and -(2a+1+a+3) at u with their opposites, then $(\ell(u),\ell(v))=(-\frac{a}{2}-1,\frac{a}{2}+1)$. We also swap the edge labels -(2a+1+3) and -(2a+1+4) at -(2a+1+3) at

Now consider the graph $K_{a,3,5}$. By Theorem 2, there is a SEGL of $K_{3,5}$. Apply Lemma 3 to extend this labeling to a SEGL of $K_{2,3,5}$ and then to a SEGL of $K_{4,3,5}$. Now let $a \geq 6$. Extend a SEGL of $K_{a,3,3}$ to a SEGL of $K_{a,3,5}$ in a similar fashion explained above. This completes the proof. \square

Lemma 38. Let a be a positive even integer and b a positive odd integer. Then $K_{a,b,3}$ is SEG.

Proof. By Lemma 37, we may assume $b \ge 7$. First let a < b. By Theorem 2, there is a SEGL of $K_{b,3}$. Apply Lemma 3 to extend this labeling to a SEGL of $K_{a,b,3}$. Now let a > b. If $b \equiv 3 \pmod{4}$ we proceed as follows. By Lemma 32, there is a SEGL of $K_{a,1,3}$. Use a $(b-1) \times (a+3)$ array given in Lemma 35 to extend this labeling to a SEGL of $K_{a,b,3}$. Finally, if $b \equiv 1 \pmod{4}$, we start with a SEGL of $K_{a,3,3}$, which exists by Lemma 37. Then we employ a $(b-3) \times (a+3)$ array given in Lemma 33 to extend this labeling to a SEGL of $K_{a,b,3}$. □

Theorem 39. Let a, b and c be positive integers, a even, b and c odd, $(a,b,c) \neq (2,1,1)$ and $a \geq 4(b+c)-18$. Then there exists a SEGL of $K_{a,b,c}$.

Proof. By Lemmas 32 and 38 the theorem is true for c = 1, 3. Without loss of generality, we may assume $b \ge c \ge 5$. Now since $a \ge 4(b+c) - 18$, by induction on c and Lemma 6, we can extend a SEGL of $K_{a,b,c-2}$ to a SEGL of $K_{a,b,c}$.

By Theorems 26 and 39, we can state the main theorem of this section.

Theorem 40. The graph $K_{a,b,c}$ is SEG for all even positive integer a and all positive odd integers b and c except for (a,b,c)=(2,1,1).

5 A SEGL of $K_{a,b,c}$, where a, b and c are all odd

In this section we prove that for all positive odd integers a, b and c the complete tripartite graph $K_{a,b,c}$ is SEG.

Lemma 41. There exists a SEGL of $K_{1,b,c}$ for every positive odd integers b and c.

Proof. Without loss of generality, we may assume $b \le c$. By Lemma 31 and the Appendix, the theorem is true for $(b,c) \in \{(1,1),(1,3),(3,3),(1,5),(1,7)\}$. Using the notation in the proof of Lemma 3, the following table displays the labels for the new edges uw_i and vw_i . Now one can easily extend a SEGL of $K_{1,b-2,c}$ to a SEGL of $K_{1,b,c}$, where $(b,c) \in \{(3,5),(5,5),(3,7),(5,7),(7,7)\}$.

	7 1 1 6 0 0 0 10 11	$ \rho(x) = A$
$ K_{1,1,5} $	Label of uw_i : -6 6 -8 -9 10 11	$\ell(u)=4$
to $K_{1,3,5}$		$\ell(v) = -4$
$K_{1,3,5}$		$\ell(u)=5$
to $K_{1,5,5}$	Label of vw_i : 12 13 -14 -15 16 -17	$\ell(v) = -5$
$K_{1,1,7}$	Label of uw_i : -8 8 -10 -11 12 13 -14 15	$\ell(u)=5$
to $K_{1,3,7}$	Label of vw_i : -9 9 10 11 -12 -13 14 -15	$\ell(v) = -5$
$K_{1,3,7}$	Label of uw_i : $16-17-18-19$ $20-21$ 22 23	$\ell(u)=6$
to K _{1.5.7}	Label of $vw_i : -16$ 17 18 19 -20 21 -22 -23	$\ell(v)=6$
$K_{1,5,7}$	2000101001,	$\ell(u) = 7$
to $K_{1,7,7}$	Label of $uw_i : -25$ 25 26 27 -28 29 -30 -31	$\ell(v) = -7$

Finally, assume $c \ge 9$. By Lemma 31, there is a SEGL of $K_{1,1,c}$. Now by induction on b and Lemma 3 the result follows.

Theorem 42. Let a, b and c be positive odd integers. Then there exists a SEGL of $K_{a,b,c}$.

Proof. By Lemma 41, there is a SEGL of $K_{1,b,c}$. Now, without loss of generality, we may assume $3 \le a \le b \le c$. First we find a SEGL of $K_{3,3,3}$. By Lemma 41, there is a SEGL of $K_{1,3,3}$. Let the partite sets of $K_{1,3,3}$ be $\{x\}$, $\{w_1, w_2, w_3\}$ and $\{w_4, w_5, w_6\}$. Add two new vertices u and v to the partite set $\{x\}$ and join them to w_i for $1 \le i \le 6$ to obtain a $K_{3,3,3}$. Label the new edges uw_i , $1 \le i \le 6$, with -8, 8, -10, -11, 12 and 13 and

 vw_i with -9, 9, 10, 11, -12 and -13. The resulting labeling is a SEGL of $K_{3,3,3}$. Now let $b \ge 3$ and $c \ge 5$. By Lemma 41, there is a SEGL of $K_{1,b,c}$. By induction on a and Lemma 3, there exists a SEGL of $K_{a,b,c}$.

References

- [1] S. Cichacz, D. Froncek, A. Khodkar and W. Xu, Super edge-graceful paths and cycles, Bulletin of the Institute of Combinatorics and its Applications, (to appear).
- [2] S.P. Lo, On edge-graceful labelings of graphs, Congressus Numerantium 50 (1985), 231-241.
- [3] A. Khodkar, R. Rasi and S.M. Sheikholeslami, Super edge-gracefulness of complete graphs, Utilitas Mathematica (to appear)
- [4] A. Khodkar, S. Nolen and J.T. Perconti, Super Edge-Graceful Labelings of Complete Bipartite Graphs, Australasian Journal of Combinatorics 46 (2010), 241–261.
- [5] A. Khodkar and K. Vinhage, Super edge-graceful labelings of total stars and total cycles, Journal of Combinatorial Mathematics and Combinatorial Computing (to appear).
- [6] Sin-Min Lee and Yong-Song Ho, All trees of odd order with three even vertices are super edge-graceful, Journal of Combinatorial Mathematics and Combinatorial Computing 62 (2007), 53-64.
- [7] J. Mitchem and A. Simoson, On edge-graceful and super-edge-graceful graphs, Ars Combin. 37 (1994), 97-111.
- [8] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.

Appendix

In this appendix we present SEGLs of $K_{1,2,2}$, $K_{1,1,3}$, $K_{1,2,3}$, $K_{1,3,3}$, $K_{2,2,2}$, and $K_{2,2,3}$. These labelings cannot be obtained by the constructions given in the paper.

