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Abstract
The distribution of distances in the star graph STy, (1 < n € Z),
is established, and subsequently a threaded binary tree is obtained that
realizes an orientation of ST,, whose levels are given by the distances to

the identity permutation, via & pruning algorithm followed by a threading
algorithm. In the process, the distributions of distances of the efficient

dominating sets of ST}, are determined.
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1 Introduction

The star graph ST,, (1 < n € Z), is the Cayley graph of the symmetric group
S, with set of generators 8, = {(11), i =2,...,n}, ([1, 2]). The weight of &
vertex u of ST, is its distance to the identity-permutation vertex 12...n. In this
work, based on DIMACS Technical Report 2001-05, the weight distributions of
certain subsets C of ST, are determined, including that of ST, itself. Theorems
8 and 6 below attain these objectives. (A variation of Theorem 6 was obtained
in a different fashion in [6]).

An independent set C of vertices in a graph is an efficient dominating set [4],
or E-set [3], or 1-perfect codes [5], if each vertex not in C is adjacent to exactly
one vertex of C. In Section 5, we determine the weight distributions of these E-
sets; see Theorem 8 and subsequent remark. In obtaining this, we use a binary
directed tree Ap = A(ST,) whose arcs are of two types: (1) horizontal, left-
to-right, arcs; (2) vertical, top-to-bottom, arcs, (as in the subsequent figures).
In Section 6, we extend A, to an orientation I'y, of ST,,, (that is: an oriented
graph I'y). Moreover, the graphs I', form a nested sequence that converges to
a universal graph I'o, associated to the infinite star graph ST,.

2 Definition and examples of A,
Let n > 1 and let & € S,. We write & = 0102...0,, where Z(i) = oy,

for i = 1,2,...,n. A cycle (0i,04,...0i,.) of the permutation I is given by
(oy;) = 0iyy,, for j=1...7, where j + 1 is taken as 1 if j = r. Then, T has
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length r. Now, X is said to be proper if r > 1. The cycle structure II(X) of
¥ = 0102 ...0, is defined as the set of proper cycles of by X.

Two vertices X! and X2 of ST, with 1 in cycles 7! of £! and 72 of T2 of
the same length, have a common 1-invariant cycle structure if there is ® € S,
with ®(2!) = £2? inducing a 1-1 correspondence ®* : II(!) — II(X?) sending
7! onto 72 and with each 7 € II(X!) and ®(7) € II(£?) having the same length.
We say that £2 has the 1-invariant cycle structure, (or 1-ics), of £1. Each vertex
u of A, is written

w(u), c(u)
Z(u)
where (a) Z(u) = 01...0i-1 is shorthand for a permutation ¢102...0, of
12...n having 7 as the smallest index in {2,...,n} satisfying o; = j, for i <
j<n,and oj #j for 1 < j < i; (b) w(u) is the weight of Z(u); (c) c(u) is the

cardinality of the set S(u) of permutations having the 1-ics IT(x) of L(u).
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Figure 1: Representations of An, for n =2,3,4,5,6.

The string length A(E(u)) of v is defined as the number of entries (< n)
of T(u). Given an arc e of A,, let u. and u® be the tail and the head of
e, respectively. The two types of arcs in A, are selected as follows: (1) arcs
e with A(Z(2®)) = 1 + A(Z(ue)), as shown in Figures 1-3, indicated with a



multiplicative operator xm., where c(u®) = c(u.) X m., noticing that o;(u®) #
1; (2) the remaining arcs f, indicated with a divisive operator +d; determined
by c(uf) = c(uy) + dy, noticing that o1(u’) = 1 and that there is not an arc e
of type (1) with 2, = »¥ and u® = uy.

x6 x5[2,30 | x4[ 3,120 | x3[ 4,360 | x2[ 5,720 | x1[ &,720
312 4123 51234 612345 7123456
* g +5 +6

+2 +3 +4

A 7,120
7 1723456

6,144 | x1 7,144

162345 7623451

590 [x2]| 6,180 |x1 7,180

15234 652341 7523416
)

8,90
1523476 || B

4,40 | x3] 5,120 |x 6,240 | x1 7,240
1423 54231 642315 7423156
+2 +6
8,40

1423756

7,120 | x1 8,120
142365 7423651

A
3,15 | x4| 4,60 | x3| 5180 [x2[ 6,360 |x1 7,360
132 4321 53214 632145 7321456

+4 +3 i+4_‘
8,90

1327456 || B
7,120 | x1[ 8,120

132645 7326451 [l 4
| 645 |x2[ 790 |x1 8,90
13254 632541 7325416
=6

1325476
Figure 2: Representation of Ay.

An additional requirement in the definition of A, is that it is a rooted tree;
its root is denoted up = ug, with w(uo) =0, c(uo) = 1 and T(ug) = 1.

Given a maximal horizontal directed path, (or mhdp), P of A, the depth of
P is the number of vertical arcs of A, preceding P from wug.
Examples. Figures 1-3 contain the representations of A, for n = 2,.. .8
(with the root of Ag in Figure 3 squeezed on the bottom left), where pairs
of encased mhdp’s Uy, V;, either improper, (i.e. consisting of one vertex), or
proper, and indicated with a common capital letter I = A, B, ... on their right,
have corresponding vertex sets {u]}, {v]} representing each a complete set of
permutations with a common 1-ics, and thus having a common cardinality.

In fact, to determine the weight distribution of ST,,, the Pruning Algorithm
of section 3 below will leave only one of these encased mpdh’s with a common
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capital letter I, provided a denomination u;y;, d(j—ayis—1) fOT each vertex of An4;
is given via the following inductive definition of Axiom (5), for j = 0,1...|n/2),
and exemplified in Figure 4, showing the strings o3 .. -3(j~2)%(j-1) in those
denominations, for the vertices of A in their positions in Figure 3. Axiom
(0): there is an mhdp uou; ...u, of depth 0 in Apyy. Axiom (5): for each
Uigiy...isziy—1) &5 N property (j — 1) with ¢;_5 + 1 < 4;_,, there is a vertical
arc uioi;...iu_|)uioi|...i(j_|)i(,_|) and an mhdp from ul'ot'l...l'(j-l)iu-‘) to Uigiy...55-1n
whose depth is j in Apy.

Figure 4: Index string representation of As.

3 Redefinition and pruning of A,

If a vertex u of A, is the tail of a horizontal (vertical) arc e indicated xm,
(+d.) then we write m,, = m, (dy =d.). If u is not the tail of an arc, then we
write my = 0, (du = 0). The following redefinition allows to consider A, as a
subdigraph of An4, for any n, so the limit Ao of the nested sequence {An; n > 0}
of binary directed trees makes sense: replace the indication xm, = xm, of the
horizontal arc e of A, departing from a tail » of an arc in A, by ¢,, where
£y = n —m, and e is the operation given by c(u) e £, = ¢(u) x (n — m,); let
A;, be the resulting indicated digraph; redefine A,, = Aj. The new indications
for the horizontal arcs allow now the containment of indicated subdigraphs.



Incidentally, the cardinalities of the set of vertices of the resulting Ao that are
tails of arcs indicated o; form a Fibonacci sequence according to the increasing
values of ¢ = 0,1,.... This is apparent from the number of vertices in the
successive columns from left to right, in the representations of the A,’s as in
Figures 1-3, for increasing values of n =2,3,.. ..

Pruning Algorithm. The vertices uiyi,...;; of An are treated first in the
increasing order of their string lengths j+1 and then, for each fixed string length
§ +1, in the lexicographical order of their subindex strings %1, .. .1;, namely:

U, UL,y -+  Un—1,U2,2,U2,3)++ +, U2,n—1,U3,3y .-+,
Up—1,n=1,U24,4) -+ U2,4,6,65-

Each such a vertex u = uj,,...i; has the following fields associated with it: (1)

the notation u = u}’ = “::(:)u ,» where w(u) = w(Z(u)); (2) the notation (u)

of the corresponding permutation of {1,...n} associated to u; (8) the 1-ics
II(u) of £(u); (4) the number £, = n — my; (5-7) either a blank in each of the
three cases (5), (6) and (7), if u is the first or second vertex of an mhdp, or:
(5) the notation Z[u] of the permutation obtained from ¥(u) by permuting o,
and 0% = 1, (k # 1); (8) the l-ics II[u] of Zfu]; (7) a tuple C(u) = s1,...,84
composed by the orders s; of the cycles composing II[u]; (8) the number d,
expressed as a product bya,, where (8a) ay = i; — i;—1 under the convention
i_y = 0 and (8b) b, # O if the value of item (7) above is not a blank and
the resulting tuple C(u) was not present in previously treated vertices of An;
b, = 0, otherwise.

The Pruning Algorithm consists in determining these fields for the vertices
of An, in the prescribed order. This allows a partial reconstruction of A, in the
form of the maximal subdigraph A/,, which accepts and copies all the vertices
and arcs of A, into A/, except for one case: If b, = 0 and there is a vertical arc
e whose tail is », then e is not copied from A, into A; this is interpreted as the
pruning of e and descendant vertices and arcs (performed to avoid repetitions
of mhdp’s, as in the encased mpdh’s having a common capital-letter indication

at their right in Figures 1-3). 0

Let p, be the relation defined on the vertex set of ST, by up,v if and
only if u and v represent permutations with a common 1-ics. The following
second redefinition of A,, allows to have its vertex set in bijective correspondence
with the family of equivalence classes of ST, under p,, which in turn allows
to use A, in computing the weight distribution of ST,: perform the Pruning
Algorithm of A,, whose output is a maximal subdigraph A}, of A, in which
there are not pairs of mhdp’s vgv; . .. v, and vgv] ... vy of the same string length
s with corresponding vertices v; and v} having common 1-ics II(v;) = II(v}), for
i=0,1,...,8; redefine A, = A},. We still have A, as a subdigraph of An4; for
every n, so & Ay persists.

Example. The algorithm yields the list Py for n =9, (commas are deleted
in subindices  of u¥ = u(i,w) in item 1 and in the tuples C(u) in item 7; the
II(z) and II[u] are shown to the right of their corresponding £(u) and Z[u]):
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This list P, generalizes to the patterns expressed in the following theorem.
For u = u4p;...i; in Ag, let Ly = ligiy .. 5, €tC.

Theorem 1 Let i_y =0 and let tp = ix — ig—1, for k=0,1,...,5 ~ 1. Then:
(1) the 1-ics C(u) in the penultimate field of the line associated to a vertez
U = Uigiy..q; 0 Pn is of the form to,t1,..., 15, where the order of the integers
ty is irrelevant; (2) the vertices Uiy,...i; of An, (remaining after applying the
Pruning Algorithm), have subindex strings ioi1...i; completely determined by
the following conditions:

(a) 0<Sw<n-1, (b) if 7 > 0, then 2 < ig;
() te € tiyr, for k=0,...,5—2; (d) j-1 <455

(8) the weight w(u) of a vertex u = Uiyiy...i; of An 15 W(u) = W(Uigs,...i;) = ij+5;
(4) the number £, associated to a verteT wigi,...i; of An is €y = igiy..i; = 35 +1;
thus, the corresponding multiplicative factor my is My = Mygi i, =n—3; — 15
() the divisive-operator number dy = by.au has ay = t;; moreover, b, > 0 if
and only if either j =0 andig>1orj>0and2<ig <t <t £... < ty;
furthermore, if by > 0, then b, = 1, unless ip = t; = t2 = ... = t;, in which
case by =7+ 1.

4 The weight distribution of ST,

To compute the weight distribution of STy, a table 7, constructed from the
resulting pruned version of A and satisfying the following additional conditions
will be used: (a) the subindex strings %oy . . . i; of the vertices u;g;,...i, of An, are
distributed on columns according to their weights; (b) each row is to contain
the subindex strings of the vertices of an mhdp P of Ay, given from left to right
according to the orientation of P; (c) each mhdp is presented in lexicographical
order in its containing row; (d) the rows of each complete set of common-depth
mhdp’s are presented contiguously and in the decreasing order of their path
lengths, thus forming upper triangular matrices, because of item (a), above; (e)
these upper triangular matrices are given from top to bottom in the increasing
order of their depths.

Example. 7i is as follows, where a = 10 and b = 11, vertices with j = 2 and
ip = 3 previous to 366 do not appear since they were pruned, and one additional
row should be added for the 15-th column, containing solely the string 2468aa,
(which, for insufficient margin, remained excluded):

3 4 o [ 7 8 g a
22 23 24 256 26 27 28 29 2a
33 34 35 36 37 38 39 3a
44 45 46 47 48 49 4a
55 56 57 658 59 S5a

o0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
<

10



0 1 2 3 4 5§ 6 7 8 9 10 11 12 13 14

245 2 24
“d 582 a6 257 288 250 580

277 278 279 27a

366 367 368 369 36a
377 318 379 37a

399 39a
3aa
488 489 48a
499 49a
4aa
S5aa
2466 2467 2468 2469 246a
2477 2478 2479 247a
2488 2489 248a
2499 %Qa
aa
2588 2689 258a
2599 269a
teee
aa
3699 ggga
a
24688 24689 2468a
246 2469a
246aa
247aa

Each vertex u = uiy,...i; = fot1 ... i; of A,, reachable from ug = 0 by a path
P, has associated cardinality c(u) = M/(A.B), where: (a) M, (respectively A),
is the product of the numbers my;,..;; = n - i; — 1, (resp. Qigiy.iy = tj =
i — ij-1), of all tails igé; .. .4, of horizontal, (resp. vertical), arcs in P; (b) B
is the product of all the numbers b, ...i, of tails 4o . ..1; of vertical arcs in P
withig =1t =... =1;.

A procedure to compute the path from ug to any given vertex u of A,,
performed by going backwards from igi; . .. %; to 0 by means of table 7;,, consists
of the following steps: (1) set u = igé;...4;; (2) if u is not the first vertex of an
mhdp, then go backwards through the vertices of the mhdp containing iof; . . . i;;
(8) once arrived to the first vertex v of an mhdp, or in the case that u = v is such
a first vertex, consider its vertical predecessor, that is the tail z of the vertical
arc in A, with head v, (which is in the column previous to that containing v);
(4) set u = z and repeat item (2); (5) continue until vertex 0 is reached.
Example. Let igé;...4; = 2468aa be the vertex of A;; whose weight is 15,
(the one left out of the encased table above). This is the first (and only) vertex
of its (improper) mhdp. Its vertical predecessor, in column 14, is 2468a. This
is preceded horizontally by 24689 and this by 24688, in respective columns 13
and 12. The vertical predecessor of 24688 is 2468, in column 11, preceded
horizontally by 2467 and this by 2466, in respective columns 10 and 9. The
vertical predecessor of 2466 is 246, in column 8, preceded horizontally by 245
and this by 244, in respective columns 7 and 6. The vertical predecessor of 244
is 24, in column 5, preceded horizontally by 23 and this by 22, in respective
columns 4 and 3. The vertical predecessor of 22 is 2, in column 2, preceded
horizontally by 1 and this by 0 = ug, in respective columns 1 and 0. Thus we get
the following path, with commas replaced by superindices m,, for horizontal-arc
tails u, and subindices dy,, for vertical-arc tails u, respectively:

11



010192,22823724,244°245524602466424673246852468832468912468a102468aa.

We arrive at ¢(2468aa) =9 x 7x 5 x 3.
This generalizes to the following statement.

Theorem 2 If n = 2k + 1, then the paths realizing the diameter D(ST,) of
ST, and sterting at 12...n end up at ezactly (n — 2)(n — 4)...3 vertices u of
the form L(u) = 0103 ...0n, with 01 = 1 and I1(u) expressible as a product of
k + 1 independent transpositions.

A string ioiy...%; is said to be admissible if wiy,..; is a vertex of A.
Given a positive integer w < D(ST,), we want first to find an expression
for the cardinality of the set V., of vertices of Ae having w as their weight
in ST,4+1. Toward this end, we start exemplifying some sequences of admis-
sible strings for lower values of w, where subindex strings ipiy...u; of ver-
tices uiyi,..u; are expressed in a suitable order without commas and employ-
ing the following shorthand dot-notation rule for certain subsequences: let
i081 - . - tk—1%k-Tk+1 - . - 1j—1%; stand for the subsequence composed by all the ad-
missible strings iot1 . . . tk—1tk-tk+1 - - - Lj—-1%5 iD Ap with e 244, fork < €< j.
Examples. Some subsequences of admissible strings in Ao, are:

22 = 2.1 = (20,300,081} 1>2
24.4 = 244} 24.i3 = 1241'3 12643,...,212 iz{ ia>4
36.6 = 366 36.i2 = 36i3,37i3 yeery3igta i2>6
246.6 = 2466; 24643 = 246i3,24743,...,24i3i3 i3>6
369.9 = 3699 369.i3 = 369i3,36ai3,.. .,36!'31’:3, i3>9

For w = 0,1,...,15 = f we can express V,, as follows, where hexadecimal
notation is used:

Vo=1{0} Va=1{3, 3.3}
Vl'—‘{l; V4=14. 2.3
Va={2 Ve={5, 2.4;
Ve={6, 2.5, 24.4}
Ve={7, 2.6, 24.5}
Va={8, 2.7, 24., 36.6}
Vo={9, 28, 247, 36.7,
246.6}
Vu={a, 2.9, 24.8, 36.8, 48.8,
246.7, 257.7}
Vi={b, 2.6, 24.9, 36.9, 48.9,
246.8, 257.8,  268.8}
Vo={e, 2, 24.a 36.a, = 48.a, 5a.a,
248.9, 257.9, 2689,  279.9,
69.9
2468.8)
Va={d, 2.¢, 24.b, 36.b, 48.b, 6a.b,
246.a, 257.a, 268.4a, 279.a, 28a.a,
369.qa, 37a.a
2468.9,  2570.9}
Ve={e, 2d, 24.c 36.c 48.c, Ba.c, 6e.c,
2460, 257, 268,  279.b,  28a.b,29b.b,
369.b, 37a.b,  38b.b,
2468.a, 2579.a, 268a.a}
Vi={f, 2 244, 36.d, 48.d, 5a.d, 6e.d,
246.¢, 257., 268.e, 279.c,  28a.c,29b.c,2ac.c
369.c 37a.c, 38b.c, 39¢c.c ’
2468, 25795, 268a.b, 279b.b,
2468a.a}

12



The ten last V,, here are expressible as:

Ve=1{8, 2.5, 2.44] [V={9, 28, 2.47, 2.460} ]
V-,=I7, 2.6, 2.45} V,=§u. 29, 248, 2467

Va={8, 2.7, 2.46} | Vu={b, 2.q, 2.49, 2.468}
={c, 2, 2.4a, 2.469, 2.4688}

V¢=Id, 2.c, 24b, 2.46a, 2.4689

Ve={e, 2.d, 24c, 2.46b, 2.468a

Ve={f, 2., 24d, 2.46c, 2.4685, 2.468aa}

Let V¥ be the subset of strings of V,, starting at ip. We draw the following
conclusions, where the dot-notation rule is used: (1) A =1 happens in V,, just
for each subsequence w > 0, and only in V; (2) A = 2 happens in V,, for the
members of 2.(w — 1), where w > 3, and only in V2; (8) A = 3 happens in V,,:
(a) for the members of 24.(w — 2), where w > 6, and only in V2; (b) for the
members of 36.(w — 2), where w > 8, and only in V3; ... (z) for the members of
k(2k).(w — 2), where w > 2(k + 1), and only in V¥, (k > 2); (4) X = 4 happens
in V,: (a) for the members of 246.(w — 3) where w > 9, and only in V2; (b)
for the members of 369.(w — 3) where w > 12, and only in V3; ... (z) for the
members of k(2k)(3k).(w ~ 3), where w > 3(k + 1), and only in V¥, (k > 2).
The following result is obtained.

Theorem 3 (a) A =1 happens in V,,, and only for the strings of V,, starting
at ig; (b) for each k > 2, any fized A > 1 happens in V,, for the members of
k(2k)(3k)...((A = 1)k).(w — A+ 1), where w > (A — 1)(k + 1), and only for the
subsets Vk.

Let Wk C V,, consist of the strings of length A\ = k in the statement of
Theorem 3. Then |W}| = 1 and |[W}| = 0 whenever w < 3k, for k > 2.
Moreover, if S? = 1 and S} = ¥, Sp=Y, (h > 0), for every j > 1, so0
Sh— Sk, +8; 7  for h>0andj>1,then

j+h—1
S;.‘ = (] + b ), [W§| =S¥ =k andin general (1)
Left) Lefr! g
w—itk—i+k-1
Wil = ; Su—itkeny = ; ( k ), )
1= =

for every weight w valid in $T,41 and every string length k.

Theorem 4 For 0 < w € Z, the number of vertices of ST, 1, having weight w
is given by the finite sum |V, | = |W2| + |W2|+... + [Wk| +....

It is easy to establish the following expression for the diameter D(n) =
D(ST,) of ST,.

Proposition 8 The diameter of ST, is D(n) = |51 +n 1.
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Let V,,(n) be the set of vertices of A, having weight w. Let W%(n) be the
subset of admissible strings corresponding to vertices of V,,(n) whose length A
is equal to k. Then, from the tables 7,, we get:

|Wh(n)| = |WSl, (0<k<n); 3)
k—n

|WE(n) = Wk = D IW3l, (n < k < D(n)). (@)
=0

The main result of the section follows.

Theorem 6 The cardinality of the set of vertices of ST, having weight w is

D(n)
Vu ()| = IW3(n)] + [WE(n)] +... + IWPP () = 3 Wg,

i=0

where the terms of the displayed sum are obtained by means of equations (1),
(2), (3) and (4) presented above.

Proof. The equations and the statement of the theorem arise naturally from
the patterns in the tables 7;, and the previous results. o

5 Weight distributions of E-sets in ST,

It was proved in (3] that if 1 < i < n, then, the vertex subset C; of ST,
corresponding to the permutations 0102 ...0n With a fixed 0y = i forms an
E-set. This is the only way of getting an E-set in ST,,. Furthermore, it can be
seen that the E-sets of ST, form a partition of the vertex set of ST,,.

Having established in Section 4 the distribution of weights of vertices of STy,

we ask, How does such a distribution restricts to each C;?

Proposition 7 The vertices u of An with X(u) = 0102...0n and 0y = 1 repre-
sent all the vertices of ST, with o1 = 1. They have associated admissible strings
g8y ... 1j-1%5 with i;_1 = i;.

Proof. This is clear from the developments above. O
Let Vi(n) be the set of vertices of C; having weight w in STy, for 1 <i < n.

Theorem 8 The weight distribution of the subsets C; of STpy, for 2 < i <
n+ 1, is given by:

Vs(n+1)|=0;
Vitn+1)] = Vaor(n)l, forw=1,2,...,2| 25 ;
[Vpm+ny(n+1)| =0, for n even, (only case not covered above)
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Proof. Foreachi € {2,...,n+1}, the permutations 0103 ...0,41 Witho; =1
induce a copy H; of STy, in STy containing the identity permutation 12... (n+
1). Each vertex h of H; has a unique neighbor A’ in ST, ,1\H;. Then the
collection of all A’ is C;, for each i € {2,...n + 1} fixed. 0

Remark. According to Theorem 8, the n vertex subsets C; in ST, with
1 < i € n+ 1 have equivalent weight distributions. Thus, by multiplying the
quantities obtained in the theorems by n and substracting the results corre-
spondingly from those obtained for STy41, the case for C; can be obtained,
which uses that if n is odd then [Vp(n)| = (n—2)(n—4)... X 5 x 3, by Theorem
2.

6 Threading A, into an orientation of ST,

We now modify the Pruning Algorithm into a threading algorithm in order to
produce an orientation I', of ST,, whose vertices are those of A, (remaining
after applying the algorithm) and whose arc set contains the arc set of A,,.
The Threading Algorithm consists in running the Pruning Algorithm (on
the previously defined A,.), checking whether the last field b,a, of each line in
the table P, that is being generated has b, = 0 and a, > 2. If this is the
case, then a thread, meaning a new arc, is added to A, from u to a vertex (u)
determined as follows. It happens that the penultimate field C(u) was present
in a previous line of P, corresponding to the tail ¢(u) of a vertical arc e(u) of
An having head 1(u). Then 1)(u) is the head of e(u).
Example. Working with Py, the threads appearing by means of the Thre-
ading Algorithm are departing from the vertices u with subindex strings 35, 46,
47, 57, 58, 68, 257, 268, 368, whose values C(u) are respectively 32, 42, 43, 52,
53, 62, 232, 242, 332 and whose fields bya, = Oa, have a, = 2,2,3,2,3,2,2,2,2,
respectively. But the vertices ¢(u) with respective subindex strings 25, 26, 37,
27, 38, 28, 257, 268, 368, have the same corresponding values C(u), presented
in Py in nondecreasing order: 23, 24, 34, 25, 35, 26, 223, 224, 233, so the corre-
sponding 1-ics’s are the same in both cases. We obtain the desired orientation
of STy by adding a thread from each one of the eight mentioned vertices re-
spectively into the vertices 1(u) whose subindex strings are 255, 266, 377, 277,
388, 288, 2477, 2488, 2588, which are the heads of the respective arcs e(u) (that
departed from the vertices ¢(u) mentioned above).

Theorem 9 Any pair (u, ¢(u)) appearing during the running of the Threading
Algorithm has the vertices u and ¢(u) with C(u) = C(¢(u)), where the order
of the elements on each side of the equality is irrelevant. Thus, in the running
of the Threading Algorithm, each consideration of a vertez u of A, with C(u)
equal to the C(v) of a previously considered vertez v = ¢(u) determines a thread
Jrom u onto the corresponding 1(u).

Proof. The statement follows from the previous discussion and Theorem 1,
item 1. O

15



Remark. The Threading Algorithm insured by Theorem 9 produces an ori-
entation I',, of ST, whose vertices represent the 1-ics’s of the permutations on
n elements, that is each vertex of I',, represents all the permutations on = ele-
ments having a specific 1-ics, and there is a bijective correspondence between
the vertices of A,, and the 1-ics’s of permutations on n elements. Thus I';, may
be referred to as the l-ics orientation of ST,. Each arc of ST, projects into
a specific arc of I'». We still consider that the arcs of I', are ‘horizontal’ and
‘vertical’, as in the case of A, where threads of I', are ‘vertical’. Moreover, the
vertices and arcs of ', may be considered as preserving the indications they
inherit from A,, including the threads, which preserve the indications of the
arcs removed by the Pruning Algorithm. As said above, the indications of hor-
izontal arcs are of the form o4, so we still have that the orientations I', form
a nested sequence of indicated digraphs and that their limit indicated digraph
I is well defined and constitutes a universal graph for this situation. This
corresponds to the infinite star graph ST, that can be defined as the Cay-
ley graph of the symmetric group So With respect to the set of transpositions

O = {(14), i=2,...7,...}.

Theorem 10 T',, can be interpreted as an orientation of ST, via the map ®,, :
ST, — A, given by ®;(u) = p-equivalence class of T(u), for each verter u
of An. Then: (1) the value c(u) of each vertez u of I'n is the cardinality of
®;1(u) and (2) the inverse image &' of an horizontal, (vertical), arc e of An
is formed by c(u®), (c(ue)), arcs subdivided into c(u®)/me, (c(u.)/de), subsets
of me, (d.), arcs incident each to a common corresponding vertez in ®.(u.),

(@31 (w*))-
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