k-Port Line Broadcasting in Trees

A. Averbuch* R. Hollander Shabtai t Y. Roditty ?

Abstract

Broadcasting is the process of message transmission in a commu-
nication network. The communication network is modeled by a graph
G = (V, E), where the set of vertices V represents the network members
and the set of edges F represents the communication links between two
given vertices. We assume that G is connected and undirected. One
vertex, called the originator of the graph holds a message that has to
be transmitted to all vertices of the network by placing a series of calls
over the network.

A k- port line broadcasting in G is a model in which an informed
vertex can call, at each time unit, at most k vertices and transmit a
message through a path, as long as, two transmissions do not use the
same edge at the same time. In case k is not bounded the model is
called all-port line model.

In this paper, we extend Cohen'’s work [6], that handles the all-port

line model.

1 Introduction

Broadcasting is the process of message transmission in a communication net-
work. The communication network is modeled by a graph G = (V, E) , |V| =
n, where the set of vertices V represents the network members and the set

*School of Computer Sciences Tel Aviv University, Tel Aviv 69978, Israel
tSchool of Computer Sciences Tel Aviv University, Tel Aviv 69978, Israel
#School of Computer Sciences, Tel Aviv University, Tel Aviv 69978, Israel and School

of Computer Sciences, The Academic College of Tel-Aviv-Yaffo, Tel-Aviv 61161, Israel.

email: jr@post.tau.ac.il

JCMCC 77 (2011), pp. 125-160

of edges E represents the communication links between two given vertices.
We assume that G is connected and undirected. One vertex, called the
originator of the graph holds a message that has to be transmitted to all
vertices of the network by placing a series of calls over the network. A k-port
broadcasting is the process in which each vertex transmits the message to
at most k of its neighbours at each time unit, where each call requires one
time unit. Each call involves only two vertices - the sender and the receiver.
In case k is not bounded the model is called all-port model. In the k-port
model we assume that k < A where A is the maximal degree in the graph
(for k > A, the problem is equal to the all-port problem). Line broadcasting
is the process in which a vertex transmits the message to any vertex in the
graph through a path in any length in just one time unit. Two calls can
not use the same edge during a specific time unit, i.e., the paths used by
two calls must be edge disjoint. The cost of a call is the number of edges
used by the call, which is the number of edges in the path between the call’s
transmitter and receiver. Two paths may intersect during a given time unit
only in vertices. A broadcasting scheme is a specification of which calls are
scheduled at each time unit (in any broadcasting model) and which paths
are used in each call.

The line model is related to circuit-switched networks, wormhole routing,
optical networks, ATM switching and networks supporting connected mode
routing protocols.

We count the total time and the cumulative cost of the broadcasting
scheme. The total time of the broadcasting scheme is equal to the number
of time units the broadcasting scheme needs to complete the broadcasting.
The cumulative cost is the sum of the number of edges used by all calls at
each time unit cumulated on all time units.

In this work, we introduce an algorithm for the k-port line broadcasting
problem in trees. This extends Cohen's algorithm [6], that handles the all-

port model.
It is easily observed that the lower bound on the number of time units

126

needed to broadcast (using the k-port model) in a graph G is [logk+1n], 1 <
k < A + 1. The possibility to reach this lower bound depends on the tree
topology.

In this work we present the exact broadcasting time in stars and in
complete trees, and give an upper bound for any tree. For stars the total
time of the k-port line broadcasting scheme is [log, (25 + 1)] + 1 and the
cumulative cost of the scheme is 2(n — 1) — & [log; (2% +1)]. In case of
complete tree we have that, the total time of the k-port line broadcasting
scheme is h[loga(§ + 1)], where k is the tree height and p is the number of
children of each non-leaf vertex in the tree. This total time meets the lower
bound O(loga+1n) on the broadcasting scheme total time. The cumulative
cost of the scheme in a complete tree is %1- [2p — k [log (§ +1)]] . The
cumulative cost of the scheme is bounded by 2(n — 1).

The paper is organized as follows: In chapter 2 we summarize the related
work. Chapter 3 includes the notations and definitions that are relevant to
this work. In chapter 4 we give an optimal k-port line broadcasting scheme in
stars and complete trees, and a general algorithm for any tree. We prove the
algorithm’s correctness, analyze the total time of the algorithm and calculate

the total time and its cumulative cost in the star and in the complete tree

topologies.

2 Related Work

Broadcasting in communication networks has been investigated in the liter-
ature since the early 1950’s (see the survey on broadcasting under various
models and different topologies [13],[14]). With the growing interest in par-
allel and telecommunication systems, a vast literature has been devoted to
specific group of communication setups on specific network topologies.

The general broadcasting problem under the single-port local model has
been shown to be NP-complete, however, if the graph is a tree, finding an
optimal broadcasting scheme was shown to be polynomial [18, 20].

Other topologies that have been investigated are complete graph, torus

127

graph, ring, grid, hypercube, shuffle-exchange and butterfly graph, with a
recent generalization of weighted trees in [2].

Analysis of broadcasting in grids was first investigated by Farley and
Hedetniemi [10]. Van-Scoy and Brooks [21] extended their result to broad-
casting of m messages from a corner of a 2- and 3-dimensional grid. These
results were extended to a d-dimensional grid by Roditty and Shoham [19],
where they also showed an efficient broadcasting algorithm from any origi-
nator in & d-dimensional grid.

The line-broadcasting model is an approximation model of the wormhole
and cut-through communication protocols. It was introduced by Farley [8].
In his work, he studied the problem of line broadcasting in general trees
under the edge-disjoint single-port model. He proved that a minimum-time
line broadcasting scheme, that runs in [logyn] time units, always exists
in any undirected graph by presenting & minimum-time line broadcasting
scheme on any given tree. The scheme is generated in polynomial time.

Cohen, Fraigniaud, and Mitjana [5] summarized the known results and
proposed new schemes how to achieve minimum-time line broadcasting in
trees and directed trees. In the single-port edge-disjoint path model, the
result is that every undirected graph (and hence a tree) has a broadcasting
time [log, n] ([8]). For directed trees, Cohen, Fraigniaud, and Mitjana [5]
showed a O(n?)-time algorithm in which, given any directed tree T" rooted
at s, returns an optimal broadcasting protocol from s to the vertices of T'. In
the all-port edge-disjoint model they showed that there is an O(n log n)-time
algorithm which, given any directed tree T rooted at s, returns an optimal
broadcasting protocol from s to the vertices of T. In the same model, they
also presented an O(n log n)-time algorithm which, given any undirected tree
T rooted at s, returns an optimal broadcasting protocol from s to T.

A restriction to the general single-port model in which the length of
the calls is limited by a given parameter k was proposed by Fujita and
Farley [9] and investigated by Gaber in [12]. Gaber introduced an algorithm

where a given tree and a parameter k which is a limit of the length of a

128

call, the algorithm produces an efficient line-broadcasting scheme. This is a
generalization of the line model of Farley ([8]) for k =n —1.

When a minimum-time single-port line broadcasting scheme is explored,
the question is how to minimize the cumulative cost of such a scheme. The
cost of Farley’s scheme in [8] is at most (n — 1)[logan] where n is the num-
ber of vertices in the graph. Following his work, other researchers focused
on specific graphs whose structure was known in advance, and presented
minimum-time schemes that minimize the cumulative cost.

Kane and Peters [17] determined the value of the minimum cost for a
minimum-time line broadcasting in any cycle with n vertices. For n = 2%
they gave an exact value, while for other choices of n an upper bound was
presented. In each case the cost is about % of Farley’s upper bound.

Fujita and Farley [9] discussed minimum-time line broadcasting in paths.
The cost of their scheme depends on the position of the originator in the
path. They proved that the end-vertex of a path has the greatest cost of
any source vertex, and that a minimum-cost line broadcasting scheme from
any source vertex in a path P, has cost that is not more than that from an
end vertex and not less than that cost minus n — 2.

Averbuch, Roditty and Shoham [3] obtained efficient line broadcasting
algorithms in a d-dimensional grid, which produce a linear cost as a function
of the number of vertices in the graph.

Averbuch, Gaber and Roditty [1] studied the line broadcasting in com-
plete binary trees. They provided a minimum-time line broadcasting scheme
that minimizes the cumulative cost.

Another model that was investigated by Cohen in [6] was the all-port
model in [6]. Although it clearly yields faster schemes than those derived
for the single-port model, it was shown that the decision problem for general
graphs is NP-complete (see [7]). Few specific topologies have been investi-

gated. Efficient schemes for trees were given.

129

3 Notation and Definitions

In this section we present the notations and definitions that are relevant to
our work. Graphs here are finite, simple and undirected. To the sequel we
denote by G a graph G = (V,E), [V| = n and by T = (V, E) a tree. For
other Graph Theoretical definitions we refer to [21].

1. Let G = (V, E),|V| = n be a graph.

(a) For each veV, we denote by d(v) the degree of v in G.

(b) For each z,yeV, d(z,y) denotes the distance between z and y,
which is the length of a shortest path between them.

The next notations and definitions refer to a tree T = (V, E), |V| = n,

rooted at u.

2. The height, h, or hy of T (related to u) is the number of edges on a
path from u to the farthest leaf.

3. For each veV, l(v) or ! is the level of v in T'. Observe that [= d(u,v)

since there is a unique path between u and v in T
4. For each veV, let I(v) be the complementary level of v. Then,

—_— hy if v is the root
l(v)=
hy — d(u,v) otherwise

For example: I(u) = h,1(v) = h—1, for any child v of u, v and I(v) = 0
if v is a farthest leaf from the root u.
5. For each veV, denote by P, its parent.

6. Let T, and T, be the two trees obtained by deleting from T the edge

e = (P,,v) where T, is the subtree rooted at v.

130

Figure 1: Example for Definition 6.

7. Let T = (V,E) be atree with V = {v},va,...,v,}. Fort = [loggn],n =
|V| let Mixn be the matrix where the values of its entries are from the
set {0,1,...,k}, where k refers to k-port line broadcasting. At the
beginning all entries of M;xn are 0. At each step of the algorithm,
each entry M; ;, 1 <i < [logyn}, 1 < j < n, contains the number of
vertices that vertex v; calls at time unit <. For example, M;; = p iff

the vertex v; broadcasts to p,0 < p < k, vertices at time unit 3.

8. Denote by {z — y} a call from a vertex z to a vertex y in 7.

Define two types of non-particular calls: {S — z} is a call from a non-
particular informed source S to a particular vertex zeV. {z — D} is

a call from a particular informed vertex z in T to some destination D.

9. br(k) is the number of time units needed to complete k-port line broad-

131

casting in the tree T = (V, E)) where |V| = n, from any originator.

10. Define a CpT to be a complete tree, where each internal vertex is of

degree p.

4 A k-Port Line Broadcasting Algorithm in Trees

In this section, an algorithm for k-Port Line broadcasting in general trees is

presented.

4.1 k-Port Line Broadcasting in Trees Algorithm Description

4.1.1 General Description

The algorithm input is the tree T rooted in an arbitrary vertex u called,
the originator. The output is a k-Port Line broadcasting scheme from wu.
The broadcasting scheme here is a list of calls for each time unit. Each call
specifies the call sender and receiver. We deduce from the scheme the total
broadcasting time.

The broadcasting scheme construction is recursive from the leaves to the
root u of T. For any vertex v in T, the algorithm constructs a broadcast
scheme, Ay, in T,

At the beginning of this algorithm all the schemes of all vertices are
empty. During the scheme construction, the algorithm adds either particular
calls or non-particular calls as to the scheme of the relevant vertex. The
algorithm also merges couples of non-particular calls {z — D} and {S — v}
into one particular call {z = v}.

To simplify the notation, the time units are counted from the end of the
broadcast scheme. i.e., time unit 1 is counted first, but in fact it is the last
time unit.

The k-port line broadcasting algorithm is divided into two phases:

Phase 1: Scheme cpnstruction of the leaves of T. For each leaf v

in T the broadcasting scheme A, is trivial and contains only one non-

132

particular call {S — v} at time unit 1 (the last time unit). This is a
dummy call that stands for a call where v receives the message from
some vertex in T, which is not specified at this step of the construction.
The time unit where a leaf v is informed may be changed by the
algorithm in future steps.

Phase 2: Scheme construction of the non-leaf vertices of T. Given
all schemes Ay, for all the leaves of T', the algorithm constructs a broad-
casting scheme for all the internal (non-leaf) vertices in T. For each
internal vertex v in T, the construction of the scheme is based on all
communication schemes A, where y is a child of v in T,,. That is,
assuming that for all vertices y of level of at most I(v) (see definition
4) the communication scheme Ay is known, the algorithm constructs

a communication scheme A, where v is at level [(v) + 1.

The algorithm merges not yet specified calls of two types as defined in

definition 8 in section 3:

1. The non-particular calls of type {z — D} means that z is already
informed and z calls a not yet specified vertex D in T'; at a specific
time unit.

2. Calls of type {S — z} means that z is called by a not yet specified

vertex S in T, at a specific time unit.

4.2 The k-port Line Broadcasting in Trees Scheme Construc-
tion

Let A,[¢] be the set of calls of the broadcast scheme A, at time unit ;. Three

cases are considered below: v is a leaf, v is an internal vertex (d(v) # 1,v #

u) and v = u, is the root.

1. v is a leaf. Let Sp, be a star rooted at P, where the leaves are the
vertices which are adjacent to P, in T'. The star, Sp,, is a subtree of

T. As described above, at the beginning of the algorithm, v receives

133

the message at time unit £ = 1. When the algorithm constructs the
scheme for P,, the time unit where v receives the message may change,
if d(Py) — 1 > k, and v is informed at time unit ¢, 1 < ¢ < bs, (k).
In this case, the vertex that informs v may be either P,, one of v’s

siblings or another vertex from one of v’s siblings branches in T'.

. v is an internal vertex, i.e., d(v) # 1,v # u. At this step, the
broadcasting scheme A, for every child y of v is known. The algorithm
merges the schemes {A,|y is a child of v} into the scheme A,.

Notice that at this step of the algorithm, the scheme may include non-
particular calls of both types: {§ — x} and {x — D}. The calls of
type {z — D} may or may not become specified calls by the end of
the algorithm.

Next, we describe the scheme construction for the internal vertices:

Let

t= _ max _ {number of time units of the broadcast schemes A,}.
yis achild of v

Let 7, be the time unit in which v is informed.

The algorithm computes the scheme for v by scanning the time units
from the last time unit 1, to time unit maz{ry,t}. 7, > t, means that
during the scheme construction of v the algorithm adds at least one
time unit to the scheme. This is done only if necessary. Otherwise,

7, < t and no time unit is added to the scheme at this step.

. v is the root u (i.e., the originator). All the broadcasting schemes
Ay, where y is a child of u, are merged into the scheme A,. A similar
process as computed for the internal vertices, is computed for u, except
that at each time unit all non-particular calls of type {S — z} are

deleted from A,. Thus, in the end of the construction there are no

uninformed vertices.

- 134

4.3 The Procedures of the Algorithm

In this section we introduce the procedures that the algorithm uses. We

introduce first the four supporting procedures and then the main procedure

of the algorithm.

4.3.1 The Algorithm Supporting Procedures

Following is the pseudo codes and descriptions of the four procedures that

the algorithm uses. The procedures can access the stored data in ¢, in the

matrix M and in the sets R; and Q;.

o The procedure: make_calls_from_v.
Input: The tree T, the vertex v, current time unit 7, and k, the k-
port constraint.
Process: The procedure schedules up to & calls from v to its prede-
cessors at time unit 7,. The vertices that v informs are the vertices r,
where a call {S — r} at time unit 7, j < 7,,, was scheduled in previous
steps of the algorithm. If j < 7y, i.e., r receives the message before
the desired time unit. A non-particular call {r — D} is added to the
scheme for each time unit m, where j <m < 1, — 1.
Output: The scheme A, with additional calls. The procedure also
updates the matrix M and deletes vertices from the sets R; and Q;.

make_calls_from_v(T,v,7, ,k)

1. i:=1
2. // add calls from v to up to k of its children
while (i < k) and M(ry,v] < k and (j # O where
. _ | min{(1ir|R; # ¢} if U;;: Rj#¢
)= X) do
0 otherwise

3. [/vtr its the ge to at most k of its uninformed children.

Let r be the first vertex in R; where if r is not a child of v then the
ancestor of r, Pr, is a child of v and follows:{v = P.} ¢ Ay|ry)

4. Aury) = Au[r) U {v = r}, delete call {S — r} from A,

5. inec M(ry,v]

135

6. inct
7. delete r from Ry

8. // update the new informed child as a potential sender in later time units.
If (7v > j) or (r is a leaf) then

9. for m := 1y — 1 down to j do
10. add r to Qm and Ay[m] = Ay[m|U {r = D}
11. endWhile

¢ The procedure: make_calls_from_v_predecessors.
Input: The tree T, the vertex v, and the current time unit 7.

Process: The procedure schedules calls from v’s informed predeces-
sors that are available to transmit the message at time unit 7, to v’s
uninformed predecessors. The informed vertices are r vertices where a
call {S — r} was scheduled at time unit m,m < 7, in previous steps of
the algorithm. If m < 7, i.e., r receives the message before the desired
time unit, an unparticular call {r — D} is added to the scheme for

each time unit j, wherem < j <7, — 1.

Output: A, with additional calls. The procedure also updates the

matrix M and deletes members from the sets R; and Q;.

make_calls_from_v_predecessors(T, v, 7,)

1. for m := Ty down to 1 do

2. while (Qm # ¢) and (UL, Rn # ¢) do
3 Let g be the first vertex in Qm
4. Let r be the first vertex in Rp where p = max{{ Inm|Rn # ¢}
5 if Mlrv,v] <k
6. Ay[m] = Ay[m) U {g = r} delete call {S — r} and delete call {¢ —+ D} from
Av
7. delete all calls {y =+ D} where t € T, at time unit m
8. if r is a leaf then
9. for j :=m —1 down to pdo
10. add » to Qm
1L Avli] = Avljlu{r — D}
12. endFor

136

13. inc M[m, q], delete q from Qm, delete r from R,

14. endIf
15. endWhile
16. endFor

o The procedure: more_time_units.

Input: The tree T, the vertex v, the time unit 7, ¢ and p[7,).
Process: The procedure checks first if v is active as a transmitter at
time unit 7. If v is active, then an additional time unit is needed and
the procedure returns true. Otherwise, the procedure checks if at each
time unit m, 7, + 1 £ m < ¢, there is more than one vertex in T, that
must receive the message from a vertex in T,.

Output: True, when additional time units are needed to complete

broadcasting in minimal time and false otherwise.

more_time_units(T, v, 7, t, p[1y])

1. not.end = true
2. if (p[7v] < 0) and (d(v) < k) and (v # u) then
3. notend := false

4 form:=7y+1luptotdo
5. if (p[m] > 1) then

6. not.end := true

7. endFor

8. endlf

9. return not.end

e The procedure: inform_v_and_clear_unnecessary_calls
Input: The tree T', the vertex v, the time unit 7, and ¢ as defined in
the algorithm.

Process: The procedure first checks if v receives the message from a
vertex in T3,. In this case, a call is scheduled from the closest vertex in

T, to v at time unit 7,. Otherwise, an unparticular call is scheduled

137

from an unknown vertex in T, to v at time unit 7, and the procedure

deletes all the unparticular calls from vertices in 7, at time unit 7,.

The last operation executed by this procedure is to delete calls in
time units later than 7,; the procedure scans all time units which are
later then time unit 7,. At each such time unit where v informs less
than k vertices, it can inform one more vertex in T,. Therefore, an
unparticular call {v — D} from v to yet unknown vertex is added at
the relevant time unit. In such case v may use the edge that connects
it to T, and therefore all other calls from vertices in T, are deleted in
order to avoid edge conflicts. If v can’t inform a vertex in T,, all calls
are deleted except for one call from the highest vertex in T, (this is
done to reduce the total cost).

Output: A, with additional scheduled calls and after the deletion of

other calls. The procedure also updates the matrix M.
inform_v_and_clear_unnecessary_calls(T, v, 7,,t)

1. // if the time unit for v to receive the message < ¢ then v receives
// the message from a vertez in Ty. Then, add a call to v from a vertez in Ty.
// Otherwise, add an unparticular call to v from a vertez in To
if (v S t) and (Qr, # ¢) and M[ry,z] < k then
2. //there exist a call {z — D} in Ay{ry]
Av[ry) i= Av[re] U{z — y} where z is the first element in Qr, delete call {z — D}
inc M(rv,z]
else
Ay[rv] = Au[r] {5 = v}
delete all calls {y =+ D} from Au[ry]
. endif

. // if v is available to send the message to a vertex in T,
// clear all unparticular calls from v predecessors.

// Otherwise, delete all unparticular calls in Ty

//ezcept one unparticular call from v's highest predecessor.
For each time unit i := 7y —1to 1 do

® N o oo s ow

9. if (M[i,v] < k) then
10. delete all calls {y — D} where y € Ty, at time unit i
11. Auli] := Auli) U{v — D}

138

12. else
13. delete all calls {y — D} where y € Ty, at time unit i,
except one call of highest vertex in T,

14. EndFor

4.3.2 The Main Procedure of the Algorithm

make k-port line broadcasting scheme(T, u, k)

1.

2.

Let h be the height of a tree T = (V, E) rooted at u.

// M is a matriz that indicates for each vertez vin T

// at each time unit 1 < i < log|V|, the number of

// vertices that receive the message from v

Let Mjog v|1x|v| be 8 matrix of integers (0...k). Initialize each entry in M to 0

//This loop writes for each leaf in T a non-particular call in time unit 1
For each leaf v in T do

Au(l) :={S = v}

. End For

// A loop that scans the tree internal vertices level by level from level 1 to the originator

children
Forl:=1tohdo

For each vertex v of level T do
Let ¢t be max number of time units of Ay where y € T},
Let p = bs, (k) + a, where

o= 0, if all v children are leaves
max num of time units in Ay of non-leaf y € 1, otherwise

Let Ry, Ry,..., R, be sorted linked lists of predecessors of v,

where y € R; iff {S = y} € Ayli].

The vertices in R; are sorted by the decreasing order of level I(v).

Let @1,Qz,...,Qp be sorted linked lists of predecessors of v, where y € Q; iff {y —
D} € Ayli).

The vertices in Q; are sorted by the decreasing order of level T(;)

Ty := 1, not_end := true

// This is the main loop that constructs the k-Line broadcasting scheme A, and finds
// the best time unit for v for receiving the message
while (U?,=1 R; # ¢) and (not_end = true) do

139

14. plr] = |R7o| = Q| + |C|, where C = {{S — z}|zeTy Ad(z) = 1A 7 # 1}

15. // add calls from v to up to k of ils predecessors
if (p[rv] 2 1) or (d(v) > k) then

16. make_calls_from.v (T, v, 7v)

17. // add calls from free predecessors of v to other nodes in Ty,
make_calls_from.v_predecessors(T, v, Tv)

18. //check if v can be informed at current time unit or more time units are needed
not.end=more-time_units(T, v, Tv, t, p[To])

19. if (not.end=true) then

20. inc 7y

21. endWhile

22. // if the time unit that receives the message < ¢, add a call to v from a vertez in T,.

// Otherwise, add an unparticular call to v from a vertez in To.
if (v # u) then

23, inform .v.and_clear.unnecessary.calls(T, v, Tv, t)

24. if not_end = false then

25. form=7y+1totdo

26. make.calls_from_v.predecessors(T, v, m)

27. EndFor

28. EndFor

// End of pseudo code.

4.4 Example

In this section we demonstrate the k-port line broadcasting in trees for k = 2.

In table 1 we describe the k-port line broadcasting scheme produced by the

algorithm i.e. the list of calls that the algorithm schedules at each time unit

i, 1 < i < t. In table 2 we describe the values of the matrix M at the end

of the algorithm. Each column represents a vertex and each row represents
a time unit. The value in each entry M;; < k,1<i<¢,1<j<mn,isthe
number of vertices the vertex v; calls at time unit <. Table 3 includes the

140

values of the variables used in the main procedure of the algorithm Make
k-port line broadcasting scheme. Each column refers to an iteration
that handles a specific vertex. Some of the table entries include more than
one value. Such entries describe the changes that the algorithm makes to
a value of a variable (the values should be read from left to right). When

a variable does not get a value in a specific time unit, the relevant entry in

the table is empty.

4.4.1 Example: k-Port Line Broadcasting in a Tree

@ @ @ @ @ @ @
()

EEEEE) CEEE) 6

Figure 2: k-Port Line Broadcasting in a General Tree.

In this example, k = 2 and the scheme total time is t = 4.

141

calls

{ca = diH{es — bro}{bo — c1}{by — 2}
{a2 — be}{a2 — b7}

{a1 = bi1}{a1 — ba}{b3 — bs}{c3 — bs}
{u = az}{u = a4}{as — ag}{ar = ag}

{b4 - a5}

{a1 - ba}{al - b4}
{bg - 63}{59 - az}

{u = ag}{u = a7}

{'u. - am}{u - 04}

{v = a1 }{u — bo}

Table 1: The k-port line broadcasting scheme

v
u |al | a2 | a3 | a4 | a5 | a6 |{ a7 | a8 | a9 | al0
2 ({2 }2)]0 |0 }oO 1 1]0o }]oO 0
2 /2 [o}o {o (0o [0 |O O |O 0
2 o |[o]Jo o |0 O |O jO |O 0
2 |o |[0o]o |o |o o |O JO O 0
b1 [b2 | b3 | b4 | b5 | %6 | b7 | b8 | b9 | 10 | cl c2 dl
0|0 1 1 o |0 |Oo |O |2 (O 0 0 0
o{o {o o |o Jo |o |oOo |2 |O 0 0 0
o|/o |o|o |]o |o |oOo |o |Oo |O 0 0 0
oo |o o]Jo |]o o O |JO |O 0 0 0

Table 2: The entries of the matrix M

142

l 1 2 3 3 3 4

v c4 bo a1 as ag u

t 1 1 2 3 2 4

P 1 1 2 5 7

Ty 12 123 123 |1234 (1 123456
not.end | True | True | True | True True | True

Ry dy c1—cs | bi—bs | bs—bg |9 aq — ayo
1 ¢ ¢ ¢ c3 ¢ ®

Ry ¢ 4 ¢ ¢

Q2 ¢ by ¢ ¢

Ry by

Qs

Ry

Qs

p(1] 1 3 5 2

2 o 1

pl3] 1

Table 3: Instance of the variables of the algorithm when T is a general tree.

4.5 Algorithm Correctness

In this section we prove the correctness of the k-port line broadcasting in
trees algorithm presented in this section. In lemma 4.1 we prove that all
vertices are informed in the k-port line broadcasting scheme produced by
the algorithm. In lemma 4.2 we prove that the algorithm respects the paths
edge disjoint constraint.

Let T be a tree, u the originator, A, the broadcasting scheme produced

by the algorithm and let
t=__ max _ {No. of time units of the broadcast schemes 4,}.
v is a child of

Lemma 4.1. After t time units the algorithm completes broadcasting in T.

143

Proof. Let V = L|J A, where, L = {veV|d(v) = 1}, A = {veV]d(v) > 1}.

case 1: veL. For each leaf v in T, lines 3-5 in the algorithm determines tem-
porarily that v is informed at time unit 1 and writes a non-particular
call {S — v} in Ay[1]. In line 10, v is inserted to R;. In lines 13-21
the main loop of the algorithm constructs the scheme for the internal
vertices. We claim that v is informed either by one of its ancestors or

by the originator u.
Indeed, the algorithm does not exit from the loop in lines 13-21 until

one of the two following conditions is accomplished: The first condition
is U;-=1 R; = ¢. If this condition is satisfied then v € R;. v is deleted
from R; only after v is informed by u (procedure call in line 16) or by a
vertex from T, (procedure call in line 18). The second condition, where
the loop in lines 13-21 ends is not.end=False. Only in the procedure

more time units and only if v = u, not_end is assigned to false.

Thus, in this case the condition is not satisfied and therefore v is

informed.

case 2: wveA. For each internal vertex in T, the procedure inform v
and delete unnecessary calls (described in section 4.3) adds a call
that informs v. When there is a non-particular call from a vertex z
in T, the procedure adds the particular call {z — v} at time unit
7y(in line 2) and thus v is informed. Otherwise, the procedure adds a
non-particular call {S — v} at time unit 7, (in line 5). In the next
iterations of the main loop the algorithm constructs the scheme of the
ancestors of v. In each iteration until the call {S — v} is deleted,
v € R,,. From this step of the proof, this case is similar to the case
where v is a leaf. Thus, by the end of the algorithm either v is informed

by a vertex in T, other then the root, or v is informed by the root w.

a

144

Lemma 4.2. The algorithm keeps the edge disjoint constraint.

Proof. We will prove that at each time unit, each edge in T is used by exactly
one call. Let e = (P,,v) be the edge that connects the vertex v to T, where

P, is the parent of v. Let 7, be the time unit where v is informed.

o If v is a leaf then v is the only vertex in T,. At time unit 7, the
message passes from P, to v and there are no edge conflicts in e and
no other call passes from P, to v in other time units. At each time
unit p, 1 € p < 7, the algorithm adds a single non-particular call
{v = D}. At these time units v is already informed and is available
to call a single vertex in T,. No other call where v is the sender or
receiver, is scheduled at other time units and therefore, the algorithm

respects the edge disjoint constraint for the edge e.

e If v is an internal vertex then v is informed at time unit 7,. We

divide the proof into three parts:

1. Time unit 7,:

v is informed by a vertex in T);:

If v is informed by a vertex in T, then the call that informs v
does not use the edge e. Moreover, all calls between vertices in
T., which are scheduled by the algorithm at time unit 7,, does not
use the edge e. If there are calls of type {z — D} in A,[r,], then
it is possible that a vertex in zeT, will inform a vertex in yeT,
at time unit 7,,. Line 4 in the procedure inform v and clear
unnecessary calls verifies that at most one call will be scheduled
at time unit 7, where the sender is in T, and the receiver is in
T». The procedure deletes non-particular calls in T, except one
call in which the sender is the vertex in the highest level in T},. In
this case, calls of type {S — z} do not exist in A, and therefore,
no call passes from T, to T,.

v is informed by a vertex in T,:

145

The call that informs v uses the edge e. The algorithm decides
that v receives the message at time unit 7, in the procedure
more time units. In this procedure the condition p[r,] < 0
is respected. This condition means that the number of potential
callers in T, is equal to or greater than the number of uninformed
vertices in T,,. When the procedure more time units ends, the
algorithm calls the procedure make calls from v predecessors.
In this procedure all uninformed vertices in T, are informed at
time unit 7, by vertices in T,,. Thus, at time unit 7, there are
no other calls from T, to T,. Moreover, after scheduling all calls
in T, by the procedure make calls from v predecessors, the
algorithm deletes all non-particular calls {z — D} from A, (line
7 in inform v and delete unnecessary calls). Therefore no
call from T, to T, is scheduled or will be scheduled later. Thus,

there are no edge conflicts in the edge e.

. At each time unit p, 1 < p < 7 The algorithm exits the
loop in line 13 when either U;___.l R = ¢ or not_end # true, is
respected. If U;-,__l R = ¢, then all vertices in T, are informed by
vertices in T}, and therefore, the edge e is not used at these time
units by calls from Ty, to T,,. If not_end # true, then conditions
(o] < 0), (d(v) < k) and (v # u) (in line 2 in the procedure
more time units) are respected. The algorithm changes not_end
to false and in later time units, 7, < p < t, p[ry] > 1. In this
case all vertices in T, are informed by vertices in T,,. Thus in this

case, there will be no conflicts on the edge e.

. At each time unit p, 7, < p < t: Let t,,, be the max number
of time units of A, where y € 77,(y). According to the procedure
more time units, there is at most one call of type {S — z}
where z € T, at each time unit p, 7, < p < t,,. Therefore,
at most one call can pass from T, to T, at each of these time

units. No call passes from T, to T as well. Line 5 in the proce-

146

dure more time units checks that at each of these time units,
P, plp] < 0 and therefore, all vertices in 7, are informed by ver-
tices in T,.

No call passes from T, to T}, or from T, to T, at each time unit

pitm<p<t
]

Lemma 4.3. At each time unit in the broadcasting scheme each informed

vertezx calls no more that k vertices.

Proof. Tt is easily observed that the algorithm adds a call from a vertex v
at time unit ¢ iff M[,v] < k. Meaning that v informs less than k vertices

at time unit ¢ and therefore at least one more call from v can be added at

time unit . O

4.6 Algorithm Analysis

In the following section we give the lower bound for the broadcasting time
on stars and on CpTs. In addition, we show that when the ge.neral algorithm
described in section 4 is operated on a star or on a CpT, the broadcasting
scheme generated by the algorithm meets the optimal broadcasting time for

each of these topologies.
4.6.1 A Lower Bound in a Star

Lemma 4.4. Given a star S of n vertices then

bs(k) > 1, k>n-—1
[logs (322 +1)] +1, otherwise

Proof. Assume that the originator is the root. When k& > n — 1, the broad-
casting completes within 1 time unit. Therefore, we assume & < n — 1.

Observe that the root can transmit the message to at most & vertices at

147

each time unit and each of the leaves can transmit the message to at most
one vertex at each time unit.

If there are m informed vertices after time unit 7 (including the root),
then after time unit ¢ + 1 there are at most m+k+m—-1=2m+ k-1
informed vertices: since the root informs at most k vertices and each of the
other m — 1 informed vertices informs at most one vertex.

Denote by a; the number of informed vertices after ¢ time units. Thus we
have the recurrence relation: a9 = 1, a; = 2a;—1 + k — 1 for 7 > 1, where its
solution is a; = (2 — 1)k + 1, 0 <i < bs(k).

Assume that after ¢ time units all vertices are informed. Thus,

a=(2-Dk+1>n

Then,

bs(k) =t > [log2 (n; LI 1)] .

Note that when the originator is a leaf, broadcasting takes at most one
additional time unit, e.g., [logy (2% + 1)] + 1, since the leaf informs first
the root and than we proceed as before. Notice, when k = 1 the leaf may

broadcast at the first time unit to any vertex in the star. O

4.6.2 Analysis of the Total Time of the k-Port Line Broadcasting
Scheme in Stars

Given a star of n vertices, assume the originator is the star root. The
algorithm schedules a call for all n — 1 star leaves at time unit 1. Then,
the algorithm constructs the broadcasting scheme for the originator. The
algorithm begins the construction at time unit 1 and adds more time units
if necessary. At each time unit, the algorithm calls first the procedure make
calls from v, which schedules & calls from the root to uninformed leaves.
Then, for each informed leaf v the algorithm schedules an open call {v — D}
at each later time unit. Then the algorithm calls the procedure make calls
from v predecessors which schedules calls from each of the informed

vertices to an uninformed vertex, v (a leaf in which there is an open call

148

{S — v}) at each later time unit. Thus, the algorithm constructs the
same broadcasting scheme as the optimal scheme described in section 4 and
therefor, the total time of the scheme and the cumulative cost are the same

as in the optimal scheme.

4.6.3 Analysis of the Total Cost of the Algorithm in stars

Lemma 4.5. Given a star with n vertices, the total cost of the k-port broad-

casting scheme is:

2n—1)—k l-logz ("T‘l + 1)]

Proof. Each transmission from the root to a leaf uses one edge and each
transmission from a leaf to another leaf uses two edges. Therefore, at each
time unit, ¢ (possibly not including the last one), the cost of all calls from
the root is k. The cost of all calls from the informed leaves is at most
2(2-1 — 1)k, where 2 < i < bg(k) and (2°~! — 1)k is the number of informed
leaves after time unit i —1 (again, possibly not including the last time unit).
Then, the total cost for each time unit 4 is k+2(2~1 - 1)k = k(2 —1). Thus,
the total cost of the star broadcasting scheme is at most By substituting the

bdund of lemma 4.3 we obtain,

bs (k) bs(k)

Y k@ -1) = k) 2 —kbs(k)

i=1 i=1

5 2k(hos:(—éﬂﬂ-l) . log2 (nT_l*'l)]
k

(15104 e (500

An—1)—k ’-logg ("—k- + 1)] .

v

149

4.6.4 A Lower Bound in a Complete Tree

Lemma 4.6. Given a CpT on n vertices and of height h. Assume the

originator is root,u. Then, for k> 1,

p - P
bopr(k) > [1og2 (,c + 1)] +(h-1) [1og2 (k+ -+ 1)] +1
where,
Ph+1 -1
p—1
Notice, that if the originator is not u, then at the first time unit the orig-

n=

inator broadcasts to u and as from the second time unit the broadcasting

continues as described in the case where the originator is u.

Proof. Let T be a CpT and let u be the root of T'. Suppose that the children
of each non leaf vertex in T are numbered from 1 to p. For each vertex v
inlevel {, 1 <! £ h, in T, we define a vector (i1,...,%;) of length !, where
1<i; <p 1< ;<1 Thei’ coordinate in each vector is the index of
the ancestor of v in level j. We denote each vertex v in level ! in T by
(i1, ..y31). Similarly, we denote by T'(v(iy,...,%1)) the branch in T that is
rooted at v(iy, ..., i1)-

The branches of u are T(j),1 < j < p, and T(j),1 < j < p are the
trees obtained by deleting the edge that connects the branch T'(j) to T.
Since there is a single edge that connects T'(5) to T(j), and since the broad-
casting model is an edge path disjoint, at each time unit, then each of the
branches T'(j) can receive only a single message from T'(j). Therefore, the
transmissions from a vertex in T(j) to a vertex in T(j) and from u to &
vertex in T'(j) are the same as in a star rooted at u with p leaves; u is acting
as the star root, which can transmit the message to at most k vertices at
each time unit. Moreover, in each branch only one vertex can transmit the
message to only one vertex in another branch. Suppose, W.L.O.G, that the
originator is not in T(p) and that T(p) is the last branch that receives the
message of all branches of u. Therefore, the first time unit that a vertex

from T'(p) receives the message is the minimum time needed to broadcast

150

a message in a star where the star root is u, that is [logy (§ +1)]. Simi-
larly, consider for each vertex v(%y,...,%) in level [/, the transmissions from
a vertex in T'(v(4y,...,%1)) to a vertex in T(v(ij,...,%)) and from u to a
vertex in T(v(i1,...,41)). In this case, there is one edge that connects the
branch T(v(31, ..., 1)) to T'(v(41, ...,%)) where a single message can be trans-
mitted to or from T(v(1,...,41)) at each time unit. Therefore, for each
vertex v(41, ..., %) in level [,2 <1 < h the transmissions from T'(v(3y, ..., %))
to T'(v(é1,...,41)) and vice versa, are the same as in a star composed of
v(i1,...,4) (the star root) and p + 1 vertices, acting as the star leaves, as
follows, p vertices belong to v(%1, ..., %;) branches and one vertex from each of
the branches of v and one additional vertex from T\(v(iy,...,4;)). The vertex
that belongs to T(v(41, ..., %)) is informed and all other vertices that belong
to T(v(is, ...,%)) are not informed. That is, before the first time unit there
are two informed vertices including the vertex v(3y,...,%;) in that star, and
p uninformed vertices.

Denote by a; the number of informed vertices after ¢ time units. Thus, we
have the recurrence relation: ap = 2,a; = 2a;_; + k — 1 for ¢ > 1, where its
solution is:

ai=(2"-1)k+2 +1, 0<i < bg(k)

Let ¢ be the number of time units the algorithm needs to complete broad-
casting in a star where the root and one additional vertex are informed at

the beginning of the broadcasting. Then,

a;=2-1)k+2"+1=p+2

S

This calculation holds for each 4, 2 < j < h, that is (A—1) l-logz (e + 1)]
time units are needed for 2 < j < h. Thus, bcyr(k), the minimum total

and therefore,

time for broadcasting in T is

I-logz (% + 1)] +(h=1) [bg?(k‘% + 1)] :
151

The lower bound for k& > p + 1 is the tree height h:

[mg2 (pilﬂﬂ +(h-1) [Iog2(1ﬁ+l)] =1+(h—1)‘=h.
O

4.6.5 Analysis of the Total Time of the k-Port Line Broadcasting
Scheme in Complete Trees

Lemma 4.7. The total time of the scheme generated by the algorithm on a
CpT is F(T,p,h,k) = h [logy (§ +1)].

Proof. Let T be a CpT with height h. In the first phase out of the two
phases of the general algorithm, an open call is scheduled for all T leaves
at time unit 1. Then, the algorithm constructs the scheme for the internal
vertices and for the originator u. For each vertex v, the algorithm constructs
a star scheme as described in section 4.1; At each time unit, at most k calls
are scheduled from v to its uninformed children. A single call is scheduled
from each informed child y of v that receives the message at time unit %,
to one of its siblings. Such call is scheduled at each time unit 1 < j < 4.
No calls from v ancestors to v predecessors are scheduled, since thé star
scheme construction for v completes only when all v children are informed
(see procedure more time units). Thus, the time unit where a vertex in
level [= 1 receives the message is: by(k) = [logs (§ + 1)], where S stands
for the star composed from the originator and its children. Thus, for each
vertex v in level i, where 1 < i < h, the time unit in which v receives
the message is: i [logy (§ +1)], yields that the total time of the k-port
broadcasting scheme in T to be: F(T,p,h, k).]

In the following paragraph, we evaluate the total time of the scheme
generated by this algorithm on a complete p-tree in relation to bcpr(k), as

described in section 4.1.

Lemma 4.8. The total broadcasting time of the algorithm needs at most

h — 1 more time units than the optimal time.

152

Proof. The optimal scheme total time is,

bepr(k) = l-logz (% + 1)] +(h—1) [logz (k T + 1).l

The difference between the total times is derived from the fact that our
algorithm does not schedule calls between some vertex in the complete tree
to its indirect predecessor. By subtracting the optimal total time from the

total time of our algorithm we receive that:

F(T,p,h,k) — bopr(k) =

h [logz (2 +1)] - [loga (£ +)]-(h-1)[1og2(k+;l+1ﬂ=
(=1 [oz (5 +1)] - [1oms (2 +1)] <

(-1 |log, * 52 |

=h-1

a

The algorithm is optimal for star topology and for most of the complete
trees. h < logpn and we showed that at most 2 — 1 more time unit are
needed to complete the broadcasting. Thus, for other complete trees the
algorithm is asymptotically optimal in time.

Note that u is the tree root. If u is not the root, the originator u
transmits the message to the root at the first time unit. Thus, at most one
more time unit is needed to complete the broadcasting. For some k and p
the additional time unit is not needed.

Following are a few examples. In each internal vertex we wrote the
vertex name. Under the name we wrote the time unit the vertex receives
the information and the vertex that sent the message. For example: 2/a3
meaning that the vertex receives the information at time unit 2 from vertex
as.

153

Figure 3: The Algorithm k-Port Line Broadcasting in a Complete Trinary
Tree.

The scheme generated by our algorithm for a complete trinary tree of

height 2, where k = 2. The total time is t = 4. The first time unit is time

unit 4.

Figure 4: Optimal Scheme of a k-Port Line Broadcasting in a Complete

Trinary Tree.

154

An optimal scheme for the complete trinary tree of height 2, where k = 2.

The total time is t = 3. The first time unit is time unit 1.

(W)
() () (@) ()

(B () () @) (@) (@) () (@) () () ()) () () G2 G

Figure 5: The Algorithm k-Port Line Broadcasting in a Complete 4-Tree.

The scheme generated by our algorithm for the complete 4-tree of height
2, where k = 2. The total time of the algorithm is t = 4 and meets the

optimal time. The first time unit is time unit 4.

4.6.6 Analysis of the Cumulative Cost of the k-Port Line Broad-

casting Scheme in Complete Trees

Lemma 4.9. The cumulative cost of the broadcasting scheme is at most

2=yt o ()]

Proof. For each internal vertex in a complete tree, the algorithm constructs

a star scheme. Therefore, the cumulative cost of all calls scheduled from each
internal vertex is the cumulative cost of a star scheme. Each call uses at
most 2 edges and there are exactly n — 1 calls and therefore, the cumulative
cost is bounded by: 2(n—1). More precisely, the number of internal vertices

in a complete p-tree of hight % is at most:

p-1 p—1

155

Using lemma 4.4, the total cost for a star rooted at each internal vertex with

p + 1 vertices the total cost of the scheme is:

E= oo+ s (5+1)])-

4.6.7 Analysis of the Algorithm Complexity

In this section an analysis of the algorithm complexity analysis on a tree
with n vertices is presented, i.e., an upper bound of the time of the scheme
construction is given. The complexity of each of the procedures is written
first and followed by the complexity analysis of the algorithm. The total
time of the scheme construction is O(n® log? n).

In these tables we analyze the algorithms procedures pseudo code lines.

Line Complexity | Remark

1 o(1) Constant time operations

2 o(t) At most t lists to check, each list in O(1) time
34,7 O(n) Insert/delete from a sorted list of size at most n
5.7,8-11 | O(1) Constant time operations

Total O(tn) t = O(logn) = total = O(nlogn)

Table 4: Make calls from v procedure complexity analysis

156

Line | Complexity | Remark

1 O(t) At most ¢ iterations

2 Oof(t) At most t lists to check, each list in O(1) time
3,7 0(1) Constant time operations

4-6 O(n) Insert/delete from a sorted list size of at most n
8 o(t) At most t lists to check, each list in O(1) time
9,10 | O(1) Constant time operations

Total | O(t?n) t = O(log n) = total = O(nlog?n)

Table 5: Make calls from v predecessors procedure complexity analysis

Line | Complexity | Remark

1,3 0o(1) Constant time operations

2 O(n) At most n elements to count

4 o(t) At most ¢ iterations

5 O(n) At most n vertices to scan

6-9 0(1) Constant time operations

Total | O(tn?) t = O(logn) = total = O(n?logn)

Table 6: More time units procedure complexity analysis

Line | Complexity | Remark

1-5 | OQ1) Constant time operations

6 O(n) Deletion from a sorted list of size at most n
8 o(t) At most t iterations

9,11 | O(1) Constant time operations

10,13 | O(n) Deletion from a sorted list of size at most n
Total | O(tn) t = O(logn) = total = O(nlogn)

Table 7: Inform v and clear unnecessary calls procedure complexity

analysis

157

Line | Complexity | Remark

1 O(n) Calculating the tree height

2 O(nlogn) Initialization of nlogn entries

3-5 Oo(n) A single constant operation on at most n-1 leaves

6-7 | O(n) n iterations of both loops

8 O(n) In each call to the function the vertex v
calculates the maximum number of time units
of the scheme s of d(v) v’s branches. The totsl
cost of this line in all calls to this function is
n-number of leaves in T

9 O(n) At most n vertices to scan

10-11 | O(nlogn +t) | At most 2p lists are allocated in each iteration.
There are at most 2n vertices in all lists. The
vertices will be sorted in O(nlogn) time.

12 o(1) Constant time operations

13 o(t) At most ¢ iterations

14 O(n) At most n vertices to scan

15,17 | O(1) Constant time operation

16 O(nlogn) Shown in table above

17 O(nlog?n) Shown in table above

18 O(n?logn) Shown in table above

19-22 | O(1) Constant time operation

23 O(nlogn) Shown in table above

24 o(1) Constant time operation

25 o(t) At most t iteration

26 O(nlog?n) Shown in table above

Total | O(n3log®n)

Table 8: Make k-Port Line Broadcasting Algorithm complexity anal-

ysis

158

References

(1] A. Averbuch, I. Gaber, Y. Roditty. Low cost minimum-time line broad-
casting in complete binary trees. Networks 38(2001), 189-193.

[2] A. Averbuch, Y. Roditty, B. Shoham. Computation of broadcasting
multiple messages in a positive weighted tree. J. of Combinatorial Math-
ematics, Combinatorical Computation 35(2000),161-184.

(3] A. Averbuch, Y. Roditty, B. Shoham. Efficient line broadcast in a d—
dimensional grid. Discrete Applied Mathematics 113 (2001), 129-141.

[4] A. Averbuch, Y. Roditty, B. Shoham. Construction of minimum time-
relaxed broadcasting communication networks. J. of Combinatorial

Mathematics, Combinatorial Computation 43(2002), 123-134.

(5] J. Cohen, P. Fraigniaud, M. Mitjana. Polynomial time algorithms for
minimum-time broadcast in trees. Theory of Computing Systems, 35(6),

2002, 641-665.

[6] J. Cohen. Broadcasting, multicasting and gossiping in trees under the
all-port line model. In 10th ACM Symposium on Parallel Algorithms
and Architectures, SPAA 1998, 164-171.

[7} J. Cohen. Communications multipoints dans la modele commute. PhD
thesis, LRI, Universite Paris-Sud, Orsay, France, 1999.

(8] A. Farley. Minimum-time line broadcast networks. Networks 10(1980),
59-70 .

[9] S. Fujita, A. Férley. Minimum-cost line broadcasting in paths. Discrete
Applied Mathematics 75(1997), 255-268.

[10] A. Farley, S. Hedetniemi. Broadcasting in grid graphs. In proceedings of
the Ninth SE Conference on Combinatorics, Graph Theory and Com-
puting Winnipeg, 1978, 175-288.

159

[11) A. Farley, S. Hedetniemi, S. Mitchell, A. Proskurowski. Minimum
broadcast graphs. Discrete Math. 25(1979), 189-193.

[12] I. Gaber. Minimal-time k-line broadcasting. SIAM, J. on Descrete
Math. 18(2005), 769-777.

[13] S.M. Hedetniemi, S.T. Hedetniemi, A.L. Liestman. A survey of gossip-

ing and broadcasting in communication networks. Networks 18 (1988),

319-349.

[14] P. Fraigniaud and E. Lazard. Methods and Problems of Communication
in Usual Networks. Discrete Applied Mathematics 53 (1994), p. 79-133.

(15] H.A Harutyunyan, A.L.Leistman. k-Broadcasting in Trees. Networks
38(2001) No. 3, 163-168.

[16] H.A.Harutyunyan, A.L.Leistman. Improved Upper and Lower Bounds
for k-Broadcasting. Networks 37(2001) No. 2, 94-101.

[17] J.O. Kane, J.G. Peters. Line broadcasting in cycles. Discrete Applied
Mathematics 83(1998), 207-228.

(18) A. Proskurowski. Minimum broadcast trees. IEEE Transactions on
Computers ¢-30(1981), 363-366.

[19] Y. Roditty, B. Shoham. On broadcasting multiple messages in a
d—dimensional grid. Discrete Applied Mathematics, 75(1997), 277-284.

[20] P.J. Slater, E.J. Cockayne, S.T. Hedetniemi. Information dissemination
in trees. SIAM J. Comput. 10(1981) No. 4, 692-701.

[21] F.L. Van Scoy, J.A. Brooks. Broadcasting multiple messages in a grid.
Discrete Applied Mathematics 53(1994), 321-336.

[22] Douglas B. West. Introduction to Graph Theory. Prentice Hall (1996).

160

