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Abstract

In [A.G. Chetwynd and A.J.W. Hilton, Critical star multigraphs,
Graphs and Combinatorics 2 (1986), 209-221] Chetwynd and Hilton
started the investigations of the edge-chromatic properties of a par-
ticular class of multigraphs, which they called star multigraphs. A
star multigraph is a multigraph such that there exists a vertex v* that
is incident with each multiple edge. Star multigraphs turn out to be
useful tools in the study of the chromatic index of simple graphs.
The main goal of this paper is to provide shorter and simpler proofs
of all the main theorems contained in the above mentioned paper.
Most simplifications are achieved by means of a formula for the chro-
matic index recently obtained by the author and by a careful use of
arguments involving fans.
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1 Introduction

All graphs considered in this paper are loopless, undirected and finite, but
may contain multiple edges. The terms “multigraph” and “graph” will
have, in this paper, the same meaning. Let G be a graph. The vertex set
and edge set of G shall be denoted by V(G) and E(G), respectively. The
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degree of a vertex v in G, denoted by dg(v), is the number of edges incident
with v in G. A(G) denotes the mazimum degree of G. If u, v are vertices of
G, we denote by uv the set of edges joining u and v. The cardinality of uv
is denoted by p(uv) and called the multiplicity of uv. If u(uv) = 1, we say
that uv is a simple edge and, if u(uv) > 1, we say that uv is a multiple edge.
A graph is simple if all its edges are simple. If an edge e joins the vertices
u and v, we denote this fact by e € uv, or e = uv when uv is a simple
edge. Two edges are adjacent if they are distinct and have at least one
common endpoint, and parallel if they are distinct and have two common
endpoints. If S is a set of vertices or edges of G, we denote by G — S the
graph obtained from G by deleting all the elements of S, together with the
edges incident to any vertex in S if any.

An edge-colouring of G is a map ¢ : E(G) — C, where C is a set, called
the colour-set, whose elements are called colours, and ¢ assigns distinct
colours to every pair of adjacent edges. If C is chosen so that |C| is mini-
mum, then ¢ is called an optimal colouring and the integer |C| is called the
chromatic indez of G, denoted by x'(G). G is said to be k-edge-colourable
if k > x'(G).

Clearly x'(G) > A(G), since all the edges incident with a vertex of
maximum degree must receive a distinct colour. If x'(G) = A(G), we say
that G is Class 1 and, otherwise, we say that G is Class 2. An edge e of G
is called critical if X' (G — €) < X'(G). G itself is called critical if it is Class
2, has no isolated vertices, and all its edges are critical. It is well known and
easy to see that every Class 2 graph G contains a critical subgraph with
the same chromatic index. For an introduction to edge-colouring, and for
graph-theoretic notation and terminology, not explicitly introduced here,
we refer the reader to Fiorini and Wilson [8].

A celebrated theorem of Vizing [12] is equivalent to the statement that
every Class 2 simple graph G satisfies x'(G) = A(G) + 1. An extension of
this theorem (Theorem 2 below) was first proved by Chetwynd and Hilton
in [5], where the study of a new class of graphs, known as star multigraphs,
was begun. A star multigraph is a graph G such that there exists a vertex
v* (called a star centre) to which all multiple edges of G are incident.
Equivalently, G is a star multigraph if there exists a vertex v* such that
G — v* is a simple graph. Thus a star centre may not be unique, but is
unique unless G is a simple graph or there exists only one multiple edge in
G. Star multigraphs, as stated in (5], are “vital tools in the investigations
of the chromatic index of certain kinds of simple graphs”. The underlying
philosophy is that, if the chromatic index of a certain simple graph H is
unknown, it may be helpful to embed H into a star multigraph G (typically
by the addition of a vertex v* and suitably chosen multiple edges joining
v* to the vertices of H) in the attempt to draw information about H from
the knowledge of the edge-colouring properties of G. It was this line of
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investigation that led Chetwynd and Hilton in [6] to formulate the Overfull
Congecture, which is now considered one of the most interesting and difficult
conjectures in edge-colouring. Thus, it appears that star multigraphs offer
a very fruitful line of investigation.

In [5] Chetwynd and Hilton completely classified star multigraphs with
at most two vertices of maximum degree. In [6] they classified certain star
multigraphs with three vertices of maximum degree. (To the best of our
knowledge the problem of the classification of all the star multigraphs with
three vertices of maximum degree remains open to this date.) The proofs
of the results contained in [6] are considerably more involved than those in
[5], and we shall not be concerned with them in this paper. Instead, we
shall provide simplifications to the proofs of all the main results of [5], and
sometimes our simplifications will be substantial. We remark that all the
proofs contained in (5] and [6] are (in the style of the authors) very precise
and, at times, ingenious. However the reading of [5] and [6] can prove to be
difficult for those readers not accustomed with edge colouring, in particular
for those parts of the proofs where fans or the so-called fan argument is
used. One of our goals will be to provide some conceptual simplifications
to the Chetwynd-Hilton proofs. Indeed, having put on a formal basis the
theory of fans in [2], we shall use some of the results proved there to express,
very succinctly, facts concerning fans in a rigorous way, in the hope to give
to the reader a better understanding and to increase the clarity of the
material presented. In particular, we shall frequently use an expression
for the chromatic index of a Class 2 multigraph which we recently obtained
[3, 4] (Lemma. 1 below). We call this expression the Fan Formula. A similar
formula has been discovered independently by Favrholdt et al. [7]. Quite
unexpectedly, the Fan Formula gives an exact expression for the chromatic
index of a Class 2 graph under very general conditions. Thus the paper may
also be viewed as an attempt to show the power and wide applicability of
this formula. Before we state it, however, we need to give some technical
definitions.

An e-tense colouring ¢ of a graph G is a partial edge-colouring of G
which assigns no colour to e and whose restriction to E(G —e) is an optimal
colouring of G — e. The colour set of ¢ is defined to be the colour set of its
restriction to G — e. The edge e is called the uncoloured edge.

Given an e-tense colouring ¢ of G with colour set C, and a vertex w €
V(G), we say that a colour a € C is missing at w (or that w is missing the
colour ) if there is no edge, having w as an endpoint, which is assigned
the colour a by ¢.

Let e be an edge of G and let u be an endpoint of e. Let ¢ be an e-tense
colouring of G. A fan at u with respect to ¢ is a sequence of edges of the

form
F= [eO’ €1,€2,... ,ek—laek]!
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where eg = e, e; € uv;, and where the vertex v; is missing the colour of the
edge eiy1, for every i = 0,1,...,k — 1. The vertex u is called the pivot of
the fan. The fan F is said to terminate at the edge ex. A fan is mazimal if
it cannot be extended to a larger fan. An edge f is called a fan edge at u if
it appears in at least one fan at u. A vertex w is called a fan vertez at w if
it is joined to u by at least one fan edge. The set! of fan vertices is denoted
by V(F). If w is a fan vertex at u, we denote by u*(uw) the number of fan
edges joining « and w, and call p*(uw) the fan multiplicity of the edge uw.
We are now ready to state the Fan Formula [4, 3].

Lemma 1 Let G be a Class 2 multigraph and let e € uv be a critical edge.
Let ¢ be a tense colouring with respect to the edge e, and let V(F) be the
set of fan vertices at u with respect to ¢. Then

X (G) = i - Twevir) (dega(w) + u*(uw)) + 72

= [viry - Lwevir)(dege(w) + u°(uw))]

We shall say that the Fan Formula is written at u, to indicate that the
pivot of the fans is the vertex u. Notice that |V(F)| > 2 holds always under
the hypotheses of Lemma 1, from which the second equality above follows
easily. The Fan Formula is a direct consequence of [2, Theorem 3], which
was named “Fan Theorem”.

We shall often use the following property, discovered independently by
Andersen [1] and Goldberg [9, 10] and implicit in the work of Vizing (see
{2, Lemma 2]).

Lemma 2 Let G be a Class 2 graph, let e be a critical edge and let ¢ be
an e-tense colouring of G. Let u be an endpoint of e. Let V(F) be the set
of fan vertices at u. Then, for any colour ¢, there is at most one vertex
z € V(F) U {uv} which is missing colour a.

The exposition and the organization of the results of this paper does not
necessarily follow the same order of [5]. Instead the paper is organized as
follows. Section 2 is dedicated to star multigraphs with one vertex of maxi-
mum degree and to the proof that every Class 2 star multigraph G satisfies
x'(G) = A(G) + 1. In Section 3 we completely classify star multigraphs
with two vertices of maximum degree. There are some additional results in
5] which we will not prove. Their proof is, in our view, sufficiently simple
as it is in the original source, and most of them are corollaries of the results

1As the notation suggests, the set of fan vertices is the vertex set of a graph, which
is called the Fan Digraph and was introduced and studied in [2]. However, this concept
will not be necessary in the present context. We refer the reader to [2] for further details.
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proved by us, or can be proved by an easy adaptation of the arguments
adopted by us.

2 Star multigraphs with one vertex of maxi-
mum degree

The first of our theorems will be stated in terms of list-colouring and is a
partial extension of [5, Theorem 1]. We first give some relevant definitions.
If G is a graph, an edge-list-assignment L is a function which assigns to
each edge e of G a list L(e) of colours (i.e. a set). We say that G is
L-choosable if it is possible to select a colour from each list and assign
it to the corresponding edge in such a way that the resulting colouring
is a proper edge-colouring. If all the lists have cardinality k, we call £
a k-list-assignment. G is said to be k-edge-choosable if, for every k-list-
assignment £, G is L-choosable. The minimum integer k for which G is
k-edge-choosable is called the list-chromatic index of G and denoted by
x}(G). Clearly x}j(G) > x'(G), as may be seen by taking all the lists to
be coincident with a fixed colour-set C, and the well known List-Colouring
Conjecture asserts that xj(G) = x/(G) for any graph G.

We are ready to prove our first theorem. We shall use the simple fact
that the List-Colouring Conjecture holds for graphs G with A(G) <2 and
a result of Harris [11] to the effect that, if a simple graph satisfies A(G) > 3,

then x}(G) < 2A(G) - 2.

Theorem 1 Let G be a star multigraph such that every vertex is incident
with a multiple edge. Then

AG)+1 if|V(G)| =3 and |[E(G)| = A(G) + 1;

xi(G) = x'(G) = { '
A(G) otherwise.

Proof. If |V(G)| < 3 the statement of the theorem is immediate, so we
can assume |V(G)| > 4. Let v* be the star centre (which is necessarily
unique in this case) and let V(G) = {v*,v1,vs,...,v,}, where s > 3. Let
p(v*v;)) = k; for all i =1,2,...,s. By assumption, k; > 2, so v* has degree
A(G). Let £ = {L(e) : e € E(G)} be a A(G)-list-assignment. Choose a
distinct colour from each of the lists assigned to the edges incident with
v*, thus obtaining a partial colouring ¥. We now aim to extend ¢ to
the edges of the simple graph H = G — v*. Consider the list-assignment
Ly = {Li(e) : e € E(H)}, where, if e = v;v;, Ly(e) is obtained from L(e)
by suppressing the colours assigned by 4 to the edges of the form v*v; and
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v*v;. Clearly G is L-choosable if H is £,-choosable. By construction,

\L1(e)| = |L(e)|—ki—k; = A(G)—ki—k; = ) ke > 2(s-2) > 2A(H) -2,
e£i,5

1)
where we have used the fact that dg(v*) = Y j_, ke = A(G) and s =
|V(H)| > A(H) + 1. By Harris’ theorem and (1), H is £;-choosable as
long as A(H) > 3. We may then assume A(H) < 2. If A(H) = 0, there
is clearly nothing to prove. If A(H) = 1, then H is £;-choosable unless
there is an edge e € E(H) such that Li(e) = 0. But, in view of (1), this
may occur only if s = 2, which is contrary to assumption. If A(H) = 2
and H contains no odd cycle, then xj(H) = 2, and hence, from (1), H is
Li-choosable. If A(H) =2 and H contains an odd cycle, then xj(H) = 3;
in this case it suffices to show that at least one of the inequalities in (1) is
strict. If 3 > 4, the last inequality is strict. Hence we may assume that
s = 3. It is easy to see that, by a different initial choice for the partial list-
colouring v, the first inequality in (1) may be assumed to be strict for all
the edges of H. Hence, in any case, H may be assumed to be £;-choosable
and thus G is L-choosable, concluding the proof. 0

Using Theorem 1, we can now prove [5, Theorem 1], i.e. the assertion
that Vizing’s theorem for simple graphs extends to star multigraphs. Our
proof is very short.

Theorem 2 Let G be a star multigraph. Then x'(G) < A(G) + 1.

Proof. Without loss of generality, we may assume that G is Class 2. Fur-
thermore, replacing G with a critical subgraph with the same chromatic
index, we may assume that G is critical. If every vertex is incident with a
multiple edge, then, by Theorem 1, G is (A(G) + 1)-edge-choosable, and
hence (A(G) + 1)-edge-colourable. Therefore we may assume the existence
of a vertex u incident only with simple edges. Choosing an arbitrary edge e
incident with © and any e-tense colouring ¢, and writing the Fan Formula

at u, we have

X' (G) = [wiry - Luev(r)(dega(w) + #* (ww))]

< [wimn * Lwevir)(dege(w) +1)] < A(G) +1,

where we have used the fact that p*(vw) = p(uw) = 1 for any w € V(F).
This proves the theorem. o

By Theorem 2, any Class 2 star multigraph with maximum degree A has
necessarily chromatic index A+1. We proceed to consider star multigraphs
with only one vertex of maximum degree.
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Theorem 3 Let G be a star multigraph with only one vertex of maximum
degree. Then G is Class 2 if and only if G contains a subgraph on 3 vertices

with A(G) +1 > 3 edges.

Proof. If G contains a subgraph on 3 vertices as stated by the theorem
then G is clearly Class 2. Assume now that G is Class 2. Replacing G
with any of its critical subgraphs with the same chromatic index, we may
assume that G is critical. If every vertex of G is incident with a multiple
edge, then G, in view of Theorem 1, has necessarily the form prescribed by
the theorem. Hence we may assume that G has a vertex u incident with
simple edges only. Writing the Fan Formula at « (with respect to any edge
e incident with » and any e-tense colouring ¢), we have

X(G) = Wl - Tuevir)(degaw) + e (ww)) + =2
= WA Lwev(r)(dega(w) +1) + %ﬁ—z
< A(G) + iy + ¥ = 4@ + L < AG) +1,

where we have used the fact that at most one of the neighbours of u has
degree A(G). Hence G is Class 1, contradicting the assumption. This
contradiction proves the theorem. m]

3 Star multigraphs with two vertices of max-
imum degree

We now prove a simple lemma which will be helpful in the sequel. For
positive integers n,r, we denote? by K" the complete graph K, with one
edge replaced by an edge of multiplicity 7. It is obvious that K}" is Class
2 for every r, and easy to see that K7 is Class 1 for every r and n. Indeed

X(K3N) <X (Kam)+r—1=2n+r—2= A(KF).

The following lemma deals with the remaining cases. We shall use the fact
that K2n41 is Class 2 for every n and, in each optimal colouring of Kp,,1,
every vertex is missing a distinct colour.

Lemma 3 Let r,n be integers, where n > 2, > 2. Then the following are
equivalent properties:

:The corresponding notation for the graph K& 2 in the Chetwynd-Hilton paper is
K.
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(8)r=2;
(b) K37, is Class 2;

(c) K37, is critical.

Proof. Assume r = 2. We prove that K32, ; is Class 2. This is immediate
since, if K2n+1 was Class 1, it would have a (2n + 1) edge-colouring; but
then we would have a (2n + 1)-edge-colouring of Kany1 with two vertices
missing the same colour, which is impossible. Hence K32, is Class 2.
We now prove that it is critical. Let zy be the multiple edge of Kz,, 1
Removmg one of the two parallel edges yields the graph Kj,41 and, since
K32, is Class 2, we have x'(K, 52.1) > 2n+1=x'(Kzn41). Remove now
any other edge of Kz,, ‘+1) say e, and consider the graph Kp,) —e. It
is easy to construct a (2n + 1)-edge-colouring of K2n41 — e with the two
vertices T,y missing the same colour ¢, and hence it is possible to colour
with colour o an additional edge joining z and y, proving the inequality
X'(K3%, —€) = 2n+1 < x/(K32,,). Hence K3 P is critical. Assume
now r = 3. Let zy be the multiple edge of K2n+1 and let e € zy. Let
f # e be an edge of K;i% | not incident with e (which certainly exists
since n > 2). Since K32, = K}, — e is critical, we can assume the
existence of a colouring ¢ of KQ‘,?H — e with colours 1,2,...,2n + 2, such
that ¢~1(2n + 3) = {f}. Clearly such a colouring can be extended to a
colouring of K32, by colouring the edge e with colour 2n + 2. Thus

X' (K3230) =X (K32,) = 2n+2 = AKS,),
and hence K32, is Class 1. It follows by an easy induction argument that,
for every r > 4, K7, , is Class 1, since
X (K3T1) SXERD) +1=2n+r = AKH,)-
Thus the proof is completed. O
We are now ready to prove the following theorem.

Theorem 4 Let G be a star multigraph with two vertices of maximum
degree, one of which is a star centre. Then G is Class 2 if and onIy ifG
contains a subgraph on 3 vertices and A(G) + 1 edges or G = K2n+1! for
somen 2 2.
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Proof. If G has the form prescribed by the theorem then clearly G is Class
2. Assume now that G is Class 2. Let H be a critical subgraph of G with
the same chromatic index (and hence with the same maximum degree).
Arguing by contradiction, we assume that H has more than 3 vertices. By
Theorem 3 and the assumption of criticality, H must have two vertices of
maximum degree, and hence H and G have the same vertices of maximum
degree. Let v* be a star centre. If there is a vertex u of H not adjacent to
v*, then, using the Fan Formula at « and the fact that u is adjacent to at
most one vertex of maximum degree of H, we have

X () = iy - Cuevim(dega(w) + u*(uw)) + L72
= TWI?YI Y wevir)(dege(w) +1) + L4

< AG) + vy + T2 = A0) + B < AG) +1,

whence a contradiction with the fact that H is Class 2. It follows that every
vertex is either adjacent or coincident with v*. Let V(H) = {v*,v1,vs,...,%s},
where dy(v*) = dy(u) = A(H), and let k; = p(v*v;) for every i =
1,2,...,s. Then

A(H) = Z" -k1+Zk (2)
=2
and
dr(v1) = k1 +t = A(H), 3)

where ¢ is the number of neighbours of v; in J = H — v*. By comparison
of (2) and (3), we see that

t=s-1 (4)
and
k; =1foreveryi=2,3,...,s. 5)
It follows that
Hc K} (6)
and
A(H) = A(K[F) )

for somen > 4 and r > 2. Since H is Class 2, it follows from (6) and (7) that
K} is Class 2 and, by Lemma3, that n is odd, n > 5 and r = 2. That is to
say, we have HC K2n+1 for some n > 2 and A(H) = A( 2n+1) =2n+1.
Since K2, is critical and H is Class 2 and A(H) = A(K32,,), we conclude
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that H = K.j,fH. Hence every vertex of H has degree 2n, except v* and
v1, which have degree 2n + 1. The addition of any edge incident with any
vertex of H would therefore either increase the maximum degree of H or
increase the number of vertices of maximum degree in H. Since H has
the same maximum degree and the same number of vertices of maximum
degree as G, it follows that G = H, and the proof is completed. (m]

To complete the classification of star multigraphs with two vertices of
maximum degree, we now prove the following.

Theorem 5 Let G be a star multigraph with two vertices of maximum
degree, neither of which is a star centre. Then G is Class 1.

Proof. We argue by contradiction, so let us assume that G is Class 2. Re-
placing G by a critical subgraph with the same maximum degree (which
must necessarily satisfy the same conditions) we may assume that G is
critical. Let v* be a star centre and let v, v2 be the vertices of maximum
degree. By assumption, v* # v1,v2. If every vertex of G was adjacent
or coincident to v*, then v* would have maximum degree in G, contrary
to assumption. Hence there exists a vertex u which is not adjacent to v*.
Writing the Fan Formula at u with respect to any edge e incident with u
and any e-tense colouring, we see that

x'(G) = W{l.i"ﬂ Ywev(r)(dega(w) + p”(uw)) + L‘%}l_ﬁ—z

= wim - Suevin (dego(w) +1) + Ly
< AG) + iy + S = AG) +1,

where we have used the fact that there are at most two neighbours of u of
maximum degree. Since the sign of equality must hold in the last inequality
above, both v; and v, are fan vertices at u, and in particular u is adjacent to
both v; and v2 and hence is distinct from v, and v, (which implies that both
v, and vy are adjacent to v*, otherwise, replacing u with one of them and
repeating the argument, we reach a contradiction). Now, deleting® the edge
uv, and adding an edge joining u to v*, we obtain a star multigraph G’ with
star centre v* and with A(G) = A(G’). Let A = A(G) = A(G’). Notice
that G’ has at most two vertices of degree A, namely v; and (possibly) v*.
Suppose G’ was Class 2. Then, by Theorem 3 and Theorem 4, either G’
contains a subgraph on 3 vertices and A + 1 edges (which is impossible,

3The following ingenious argument is the same used by Chetwynd and Hilton in (5,
Lemma 15]. However the present proof is considerably shorter because we do not prove,
as a preliminary step, that A(G) < |[V(G)| — 1, which is unnecessary for our purposes.
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since this would force v* to have only two neighbours in G’, whereas has
the three neighbours u, v, v2),or G' = K;;f_,_l for some n > 2 (which is also
impossible, since G’ contains two non-adjacent vertices, namely u and vs).
We conclude that G is Class 1. Thus there exists a A-edge-colouring of G,
and hence there exists a A-edge-colouring ¢ of G’ — uv* = G — uvy such
that » and v* are missing the same colour &. We can view ¢ as an e tense
colouring of G, where ey = uv, is the uncoloured edge. Then u is a fan
vertex at vs missing colour o and, consequently, v* cannot be a fan vertex
at vg, since it is also missing colour a. Since dg(u) < A, there are at least
two missing colours at u, say o and §, and two maximal fans Fy, F5, one of
which of the form Fy = [eg, ey, ...], where e; is coloured , and the other
of the form [eg, f1,...], where f) is coloured 8. Since no fan vertex at v,
is joined to vz by a multiple edge, it follows that all the edges of F} (and,
similarly, of F3) are incident with distinct fan vertices, and the fan vertices
of F; are distinct from those of F3, except for u, which is an endpoint of eg.
Moreover both F; and F, must terminate with a fan edge incident with a
vertex of maximum degree, which is necessarily v;. Hence F} and F; both
contain v; as a fan vertex, contradicting the fact that the only common fan
vertex is u, and this contradiction establishes the theorem. o

Final Remarks: In this paper we have obtained simplifications of the
proofs of the main results of (5] using some theoretical tool, viz. the Fan
Formula. Such tool may be applied to the study of the classification problem
of star multigraphs with more than two vertices of maximum degree, or to
the classification of classes of graphs other than star multigraphs.
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