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Abstract

By means of the g-finite differences and the derivative operator,
we derive, from an alternating g-binomial sum identity with a free
variable z, several interesting identities concerning the generalized
g-harmonic numbers.

1 Introduction and Notation

Let N and Np be the sets of natural numbers and nonnegative integers
respectively. Define the generalized g-harmonic numbers by

n o gktm-1)
H(m)(z) = 0 and H("‘)(:z:) Zm form, neN; (1.1a)

HE™(z) = Oand K (z) = ) H

1Sky kg€ Sk Sn =1

—:z:qkl for m, n € N.(1.1b)
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When z = 1, we shall omit the variables and denote, respectively, the
corresponding higher g-harmonic numbers by H{™ and H{™. In particular
for m = 1, we shall write Hp(z) := H{(z) and Hp(z) := K (z) as well
H, := HY and ¥, :=H, for simplicity.

In 1982, Van Hamme [9] (cf. [1, Eq1.3]) found the following interesting
identity:
Z": [n] g("+) z": ¢
(-1)*! s =) — (1.2)
k=1 kll-g¢  Hl-4q
where the Gaussian binomial coefficient is defined by
[n] _@m ek (@
k (@9 (4 9)k(: Dn—k
with the g-shifted factorial given by

n—-1
(z;9)o=1 and (z;q)n = H(l —zq*) for neN.
k=0
For m € C but —m & N, Uchimura [14, 1987] generalized (1.2) as follows:
n (kg-l) ( . )
_1 k n q = q!q n . 1.3
fv;:‘,( ) [k] 1—gm™k (g™ @)n+1 (1.3)
Then in 1995 Dilcher [6] established a more general expression:
k
n N q(z)""""‘
3 (-1)+ PIIT = g, (1.4)
= [ kl(1-gom
Prodinger [11] discovered its dual relation

S ] S = (e (15)
k=1

Several generalizations of (1.3) and (1.4) are recently published by Bradley [2],
Fu-Lascoux [7] and Zeng [15].

In this paper, we will further investigate combinatorial identities concerning
the generalized g-harmonic numbers just mentioned. By means of the ¢-
finite differences and the derivative operator, we derive, from an alternating
g-binomial sum identity with a free variable z, several interesting identities
concerning q-harmonic numbers. Some of them generalize the identities

displayed in (1.3), (1.4) and (1.5).
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2 ¢-Finite Differences

As our starting point, we recall the following finite sum identity.

Lemma 1 (Zeng [15]). With n being a natural number and z an inde-
terminate, there is a useful algebraic identity:

_ (69n _ v n ¢(%)
Bl = G e ,g(_l)k[k]l—xq"'

Different from Zeng [15], this can be verified by means of the partial fraction
decomposition method. Writing F,,(z) in terms of simple fractions

n Ak
Fa(z) = ) ——
k=0 1- zq
and then determining the coefficients by the following limiting relation:
A = lim (1-2¢*) Fa(z) = (-1)F [z] g1
T—g~

we derive the identity stated in Lemma 1.
We will use the well-known g-analogue of the finite difference operator that
can be found explicitly in Carlitz [3]. Related operators were used earlier

by Heine, Rogers and Jackson (cf. [8, Ex 1.12]) and their applications can
be found, for example, in Charalambides [4] and Johnson [10).

For any given function f(z) and the fixed indeterminate q, we define
Aot (@) i= LELZTED g Anfla) = Ag(AT)f(a) forn = 2,3,

with the convention that A)f(z) = f(z) for the identity operator. By
means of induction principle, we can prove the following explicit formula

a3t = O[] ) 21a)

k=0
= z-"’goq"(‘iq,;;')"f( zg"). (2.1b)

Now we are ready to generalize (1.3) to the following identity.
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Theorem 2. For m,n € Ny and an indeterminate z, there hold two iden-
tities:

(zq 1 Dm+1 (@ Dm(Z; Dmtnr’
Z(_l)k [ ] ("3 ") (g @)m+k = (q;q)m q(";“)-i-mn. (2.2b)

pard (% @)m+r+1 (2" @)m+1

(2.2a)

Proof. Combining (2.1b) with the g-Chu-Vandermonde formula (cf. [8, II-
6]), we first compute the ¢-finite differences of a rational function:

1

1 - (g™ q)i q
Am — m L
9 (qu; q)n+1 § (Q1 Q)t (mqk+" Q)n+1

Z ™ @)i(zg*;q)i
(qu q)n+1 = (4, 9)i(zq™+*+1;g);
gk (@ Om
(zg*; Q)n+1 (xg™ 5+ 9)m

which leads us to

A™ 1 = qkm (q; Q)m+n )
7 (zg* Qnt1 (35 9)n (€0F; Dmins

When k = 0 and n = 0, we have two particular expressions:

(2.3)

m__1 - (4 @)msn

7 (Z; @)nt1 (2 Q) (3 Dmtntr’
m 1 _ km (q; Q)m
L Y

Then (2.2a) follows from applying A7 to both sides of Lemma 1.

The second identity (2.2b) results from the dual relation of (2.2a) in view
of the g-binomial inverse series relation (cf. [5, Eqs 02d-02¢]):

Fm) = 3-ur[p] e (2.40)
k=0
om = S -ut[f| 5P, (2.45)
k=0
This completes the proof of Theorem 2. O
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Corollary 3 (Two g-harmonic number identities).

= (£)4+mk g . _ge
—1)-1 | 4 - Jtmin m

g( 1) [k] (qk;q)m+1 (q; q)m ’ (2.5a)

n _1yk-1 n ";k) = (q;q)m n;-l mn

2 ["] A st = G g @ (250)

Proof. Reformulating (2.2a) and then applying the L’Héspital rule, we have

n () +mk 1 .
ERALES W L I AR T _ (G Dmtn
é( 1) [k] (qk;Q)m+1 zl}"ml{(5’:;q)'m-§-1 (q; Q)m(x;Q)m+n+l}
_ 1 [ (@@)m (@ @)min _
" @ Om ilf511{(x<1;¢1)m (=4; Q)min }/ (1-2)

- o [ (& Dmin _ (GD)m
T (@ Dm bl {(xq; @mtn Hmin(2) (= @)m %m(mq)}

which is equal to the right member displayed in (2.5a).

By invoking the following almost trivial binomial sum:
,,Z_;,(—l)k m ¢"3") =0 for n>0, (2.6)

we see that the second identity (2.5b) is the dual relation of (2.5a) in view
of the g-binomial inversions (2.4a-2.4b). O

3 Identities on Higher ¢-Harmonic Numbers

In this section we are going to compute derivatives of Lemma 1 with re-
spect to z. This will allow us to establish another interesting identity
(3.1a), which is similar to (2.2a) but with shifted factorial (zg*; q), in the
summand being replaced by the binomial factor (1 — zg*)™. It can be
considered as the common generalization of (1.3) and (1.4).

Theorem 4. For m,n € Ny and an indeterminate z, there hold two iden-
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tities:

(k+l)+m(k+l)
S(- ¥ (1] g = Fe@ERi /o), (3.1a)
k=0

n—k ("‘QH)"""(" 1)
kzzo(—l)k (] R 33 era) = e (81)

Proof. Obviously the first identity (3.1a) is equivalent to the following for-
mula on higher derivatives of F,,(z) with respect to z:

D7 Fa(z) = m!q‘"'Fn(x)ﬂf,‘,"j,’l(m/q) (3.2)
which can be verified by induction principle.

With slight difference from H{™ (z), we define, for convenience, the power
sum symmetric functions by

For m = 0, it is trivial to see that (3.2) is true. According to the definition
of F,(z), the first derivative of Fy,(x) reads as

D Fo(z) = Fo(z)1(z) (3.3)

which is consistent with (3.2).

Suppose that (3.2) is true for m < M. We proceed to show its validity
when the order of differentiation is equal to M + 1. Applying the Leibniz
rule to (3.3), we have

M
DUHIE,(5) = DM {Ful@p(@)} = 3 (2 )DFpi(@) DM Fula).

m=0
According to the induction hypothesis and
DZ'p1(z) = mlipm+1(z)
we get the following expression:

M
DMHIF, (z) = MIFa(z) Y pme1(2)a™ MHLT™ (/g).

m=0

178



Then the formula (3.2) for M + 1 follows if we can show that the last sum
admits the following closed form:

M
Y Pra (@)™ MHET™ (w/q) = (M +1)g~MHIHYE (2/g). (3.4)

m=0

This can be justified by means of generating function method.

For the exponential generating function defined by

Fir)=ep{>" 7m(z)}

21

it is not hard to check that this is the ordinary generating function of the
sequence {g~™HYY;(x/q)}mpo. The derivative of F(r) with respect to 7

reads as
F'(1) = F(1) Y _ ™ 'pu(2).
21

Extracting the coefficient of 7™ from both sides of the last equation, we
derive the recurrence relation (3.4). This proves (3.1a).

Recalling the inversion pair (2.4a-2.4b), we infer that the second identity
(3.1b) is just the dual formula of (3.1a). This completes the proof of The-

orem 4. 0

Specifying in (3.1a) and (3.1b) by z — ¢, n — n—1 and then making some

routine simplifications, we recover Dilcher’s formula (1.4) and its dual form:
q(;')+mn

z( l)k 1[ ] (ﬂ k)g_c(m) = m (3.5)

In addition, the limiting case n — oo of (3.1a) reads as the following
identity:

= (kg TImER ()
Z:( 1)%q = (3:9) Zl ,‘,",;_]"(x/q) (3.6)

(g 9)e(1 —zgt )™ (z59)00 25

which contains an 1dent1ty due to Uchimura [14, Theorem 3.1) as the very
particular case £ = g™ with M € N,.

Now we use (3.1a) to prove another interesting g-series identity.
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Theorem 5.

3 () @0 = el G0 e/
Proof. Recalling two binomial formulae
(iq)n = 2(—1)k[ ]q(ﬂ)x and Z( ) W

=0

we can manipulate the following infinite series:

Ig;(:z)xk(qk#;q)n = kz:( ) Z( 1),[] (1) ki
2 {9 2 () e

i=0
m - i (i-;x)-l-mi
0 [}

i=0

Evaluating the last sum by means of (3.1a), we get the identity stated in
the theorem. O

Specifying Theorem 5 by z = g, we find the identity below.
Corollary 6 (Extension of Dilcher [6, Corollary 2]).

(m)

o0
H
> ( ,’; )q"(q"“;q)n =1 _’;f,ﬁrl.

k=m

The limiting case n — oo of the last identity has appeared in Dilcher [6,
Corollary 2], which further includes Uchilmura [12, Theorem 2] as the case
m=1.

Finally we show an interesting identity similar to Theorem 5, but with the
binomial coefficient being replaced by its g-counterpart.

Proposition 7.

00 m+1.
Z [:1] x"(qk“;q)n = (q ’Q)n z™,

fem (T @) mtn+1
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It is interesting to observe that this identity has a simpler right member
than that stated in Theorem 5.

Proof. Similar to the proof of Theorem 5, applying the g-binomial expan-

sion
o m
3 [k] S
m (.'I!; Q)m+1

k=m

we can reduce the following infinite series:

gﬂ[:%] (g = ,g;,[ J kg( 1),[] (1) ki
- S )Z o

which leads us to the identity stated in the proposition thanks to (2.2a). O

Similarly, one can write down the limiting case n — oo and other formulae
corresponding to particular values of . We are not going to reproduce
them here.

4 Further Identities on Higher g-Harmonic
Numbers

In this section, we shall reformulate Lemma 1 as a g-binomial sum involving
generalized g-harmonic numbers. Then applying the derivative operator
and g-binomisl inversions, we further derive several identities concerning

higher g-harmonic numbers.

Lemma 8 (Equivalent form of Lemma 1).

Fa-s(oq) = {02 5:( 1)t []q(’i)Hk(x).
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Proof. Recalling the following simple binomial identity
(—l)k [:] q(k;—l) — z( 1)_7 [n+ 1] (J+l)

and substituting it into Lemma 1, we can then manipulate the double series
as follows:
(k+1

Fao) = L0 _ i(—n*[ | L

(% Qa1
+ 1] (i+1
- Y ,,kz< (3]

k—-O

= Z( 1)’ ["“] (3) Hj1(2/9).

Under parameter replacements £ — g, n = n—1and j — k — 1, we get
the identity stated in the lemma. O

Replacing z by z¢* in Lemma 8 and then applying the equation (2.6) and
Hyx(z) = Ha(z) + Hi(zg") for A €Ny,

we get

Fo_y(zg*h) = B 8n-t_ (9 @n-1 Z( _1)k- 1[ ]q(:)Hx+k(m). (4.1)

GPan &

Theorem 9. For m,n,A € N and an indeterminate z, there hold the
identities:

k_zo( —1)k- [ ]q<=> H{(2) = Faoi@@ U (20)g™,  (4.2a)

Z(—l)k— [ ]q( 2 )Fk 1(:z:q""‘1)9{‘""(:cq")— &"_;_*,"')(z)q(;)""'\.(4.2b)

Proof. On account of the m-time differentiation
D Fr_1(zg*!) = mIFn_y(zg* ) H (zg*)g™, (4.3)

we get immediately (4.2a) from (4.1). The second identity (4.2b) is the
dual formula of (4.2a) in view of g-binomial inversions (2.4a-2.4b). O

182



Combining (4.2a) with the case n — n — 1 and z = z¢**! of Theorem 5,
we obtain the following rather strange transformation formula:

(5 ) e dnm =2 S0 [7] €@ Hisate). 00
£=0

k=m

When z = 1, two identities (4.2a) and (4.2b) become the following ones.

Corollary 10.
n
- m a;49)n— m
S0+t 1] @mg = Eeto @, (4.58)

zn:(_l)k—l [ ]q( 2*)(%__&2_%9“@@“ H(m+1)q(”)—m)\ (4.5b)
k=1

Taking further A = 0 in the last identity, we recover Prodinger’s iden-
tity (1.5). For n — oo, we record the limiting cases of (4.2a) and (4.5a) as

follows:

i(—n""q() HE (@)= (x(q:q)oo Zﬂf‘“""(‘”ﬂ mAtn - (4.6a)

o @ PH Qo 2 Tz
o k=1,(%) . (m=1) (oA

(=1)+-1g(s FemD (%9 H (@) matn.

=) 1 = 4.6b
,;, (@~ ** (q"*“;q)oc,,%:'l 1—gn ¢ (4.60)

Alternatively, we can also apply the derivative operator to Theorem 2 and
get the following identities.

Theorem 11. For m,n,\A € N and an indeterminate x, there hold the
identities:

k i) (@ DAtk—1 0 (m
,g( 2 [ o )($Q;Q)A+k H(a) (4.72)
— (q;Q)X-l g{im)(zqn)q(;)+(¢\+m)n’

_(zqn+1.q)
Z( l)k[ .q(,)+(a\+m)k (g 9)a—1 5™ (20)

= (zg"+1;q)a

- (Q; Q)X+n— (m)
= (o Dagm - n @)

(4.7b)
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Proof. Making replacementS z — zq and m — A —1 in (2.2b), we obtain

S [1] I Bassen) = Bostaam g
k=0

Applying (3.2), (4.3) and differentiating the last equation m-times with
respect to x, we get the first identity. The second identity is in fact the
dual formula in view of g-binomial inversions (2.4a-2.4b). 0O

The case z = 1 of (4.7a) and (4.7b) read as follows:

= n] (n=ky HL G 9)A-1 nrem n
Z(—l)k [k] q( 2 )1 _;-;ﬁ-k = ((qn+1):\q):9(i )(qn)q(’)+('\+m)", (4.8a)
k=0 !

e n B+ tm)k (B DA=1 0oomy (& g{:n)n
S (-1 [k] (O GRS = s (@)

k=0
where the first identity resembles Prodinger’s identity (1.5).
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