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Abstract

One natural extension of classical Ramsey numbers to multipar-
tite graphs is to consider 2-colorings of the complete multipartite
graph consisting of n parts, each of size k, denoted K,xx. We may
then ask for the minimum integer n such that K.xx — {G, H} for
two given graphs G and H. We study this number for the the cases
when G and H are paths or cycles and show some general bounds
and relations to classical Ramsey theory.
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1 Introduction

Classical Ramsey theory is a search for order in disorder. A graph G is
said to arrow a set of graphs {H;, Ha}, denoted G — {H;, H,}, if any
2-coloring of the edges of G contains a copy of H; in color i for some i.
Denoted R(G, H), the Ramsey number for graphs G and H is the smallest
integer n such that K, — {G,H}.

Define Ky xx to be the complete multipartite graph consisting of n parts
each of order k. There are two natural extensions of Ramsey theory to
multipartite graphs. One involves fixing the number of partite sets » and
finding the minimum number of vertices k in each set which will force the
desired subgraph.
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Definition. Given a positive integer n and graphs G and H, the size mul-
tipartite Ramsey number mu(G, H) is the minimum integer ko such that
Knxx — {G, H} for all k > ko.

See [2, 4, 6, 9] for some of the work done in this area. The other natural
extension to multipartite graphs, and the focus of this paper, is the following
as defined in [3].

Definition. Given a positive integer ¥ and graphs G and H, the multi-
partite Ramsey number Mi(G, H) is the minimum integer no such that
Kaxkx — {G,H} for all n > no.

Remark 1. My(G,H) < M1(G,H) = R(G, H) for all positive integers k.

This implies that, for any k, the multipartite Ramsey number is bounded
by the classical Ramsey number. In particular, Mx(G, H) is well-defined
for all graphs G, H.

2 Preliminaries

In this section, we present some easy observations and related corollaries.
Some of these observations will be used in later proofs.

Claim. If My(G, H) = 2 then My (G,H) =2 for all k' > k.

Proof. Mi(G,H) =1 only if there are no edges in G or H. For any non-
trivial graphs, My (G, H) > 2. Otherwise note Kikxn C Ki'xn- g

Proposition 1. Mi(Kn, Km) = R(Kn,Kn) for all positive integers k,n
and m.

Proof. By Remark 1, we know that Mi(Kn, Km) £ R(Ky, Km) so we need
only show Mi(Kn,Km) > R(Kn, Km). Let r = R(Kn, Ki) and consider a
2-coloring of K1 with no red K, and no blue K,,. Blow up this colored
graph by making k — 1 independent copies of each vertex copying all edges
(with colors) to other vertices and their copies. This provides a 2-coloring
of K(r—1)xx With no red K or blue Kn. O

Proposition 2. For graphs G and H and for integers k > 1 and k' > k,
letr = Mk(G, H) —1. Then My/(G,H) > ma-x{"" t Kpixwr © erk} +1.
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Proof. Let r = Mi(G,H) — 1 and let K be a 2-coloring of K,xx which
contains no red copy of G or blue copy of H. Let 7’ be any integer such
that Ky xx» C Krxk- Then the subgraph K’ C K corresponding to a
copy of Ky xs contains no red copy of G and no blue copy of H. Thus,
M (G,H) 27" +1. a

In particular, this implies the following corollary.
Corollary 1. Mi(G,H) > l“—”!ick—’{);!_l +1= I_Ric-:lz—lJ 1.

3 General Results

In this section, we provide more general results and relationships to classical
Ramsey theory. Our first result uses the chromatic number to provide a
general lower bound on the multipartite Ramsey number.

Theorem 1. If x(G) = z¢ and x(H) = zy, then Mi(G,H) > (z¢ —
1)(zyg —1)+1.

Proof. Let n = (z¢ —1)(zx — 1) and consider the following coloring of K.
Color z¢ — 1 copies of Kz, -1 with color 2 and the rest of the edges with
color 1. In order to produce a coloring of K,xx, we simply blow-up this
coloring of Ky, in the classical sense: Make k—1 copies of each vertex (for a
total of k of each) and copy not only the neighborhood but also the coloring
at each vertex. It is now easy to see that the resulting graph induced on
color 1 has chromatic number at most £g — 1, meaning that there can be no
subgraph isomorphic to G in color 1. Similarly, there can be no subgraph
isomorphic to H in color 2. 0

Conversely, we get the following from [4].
Theorem 2 ([4]). mi(Knxe, Koxt) ezists for any n,s > 2 and £,¢t > 1 if
and only if k > R(K,, K,).

This result implies the following corollary which is sharp since every
k-chromatic graph is a subgraph of a complete k-partite graph.
Corollary 2. For all graphs G and H, there exists an integer ko such that
Mi(G,H) £ R(Kx(G)aKx(H)) for all k > ky.

By using three colors to color a complete graph, we can actually get an
exact relationship to classical Ramsey theory.

Theorem 3. For all graphs G and H, M2(G, H) = [ﬁé’-@]-
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Proof. First we show that My(G, H) > [ ﬂ&;‘i&] Let n = R(G, H, P;)—
1 and consider a 3-coloring of K, which contains no red copy of G, no blue
copy of H and no green copy of Ps. In order to avoid a green Ps, no two
green edges share a vertex so the green edges form at most a matching. If n
is odd, remove a vertex which is not incident to a green edge. Let m =2 | 2|
be the order of the remaining graph. Now remove the edges of a perfect
matching by first removing all the green edges and then removing arbitrary
independent edges from the remaining edges. The remaining graph is a 2-
coloring of K(;/2)x2 Which contains no red G and no blue H. This means
that

Mz(G,H)Z%+1=|_2J+1=[

R(G, H, P3)'|
2 ?

2
as desired.
Next, we need to show that Mz(G,H) < l-ﬂg’{ﬂ]. Choose n =

My(G,H) — 1 and consider a 2-coloring of K,x2 which contains no red
copy of G and no blue copy of H. For every non-edge, we add a green edge.
This forms a 3-colored complete graph of order 2n which contains no red
G, no blue H and no green P3. Hence,

R(G,H,P3) > 2n+1=2My(G,H) - 1.
This implies M2(G,H) < [5@'2&&] as desired, completing the proof of
Theorem 3. O

4 Paths

This section concerns multipartite Ramsey numbers for paths. We begin
with specific numbers for some short paths and finally observe general re-

sults.
Proposition 3. My(Ps, Ps) =3 for k < 2 and Mi(Ps, Ps) =2 for k > 3.

Proof. If G contains a triangle or a vertex of degree at least 3, then any
2-coloring of G contains a monochromatic FPs.

For k = 1, the result follows from the easy fact that R(Ps, P3) = 3.
For k = 2, we observe that K2 = C4 so we color the edges of the Cy with
alternating colors. This coloring has no monochromatic P3 so Ma(Ps, Ps) >
3. The graph K22 contains a triangle so necessarily arrows P;.
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For k > 3, the graph K,k contains a vertex of degree at least 3, meaning
it also arrows Pj. a

Proposition 4. M;(Ps,2K3) =4 and My(P3,2K3) =2 for k > 2.

Proof. First note that any 2-coloring of a Cy contains either a red P; or
two disjoint blue edges. Since an all blue triangle contains no red P; and
no pair of blue independent edges, we get Mi(P;,2K32) > 4. The graph
K144 = K4 contains C4 so we get equality.

For k > 2, we have My(P;3,2K3) = 2 for k > 2 because G, x, contains
a copy of Cy for all k,n > 2. O

Proposition 5. M1(2K3,2K3) = 5, M3(2K>3,2K3) = 3 and, for k > 3,
M(2K2,2K5) = 2.

Proof. For k = 1, it is known [5] that R(2K;,2K3) = M1(2K>,2K>) = 5.
For k = 2, K32 = C4 = v1v2v3v4v1 can be colored so vjve and vz are
red while v3vs and v4v; are blue. Notice this coloring does not contain a
monochromatic 2P,. Hence, M3(2K>»,2K3) > 3.

If there exists a set of three independent edges, then two must have
the same color, producing a monochromatic 2K,. Since K322 and K3
each contain 3 independent edges, we know that M>(2K;,2K;) = 3 and
M. (2K2,2K3) = 2 for k > 3. O

Proposition 6. M(Py, Py) =5, Ma(Py, Ps) = 3 and M(Py, Py) = 2 for
k>3.

Proof. Clearly we have M1(Py, P,) =5 a8 R(Pn, Pp) =n+ 2] —1in [8].
When k = 2, we can color K32 = C3 = v1vv3v4v; as follows. As in the
previous proof, we color v1v2 and vovz with red while vavy and vqv, are
blue. This coloring contains no monochromatic Py so My(Py, Py) > 3.

Let K33 be the complete bipartite graph minus a single edge. For the
remainder of this proof, it suffices to show that K33 — {P4, Py} since
Ké_,a g K2'2,2 and Ké-,a g Kk,k for k Z 3.

Let G = Ks3 and label the vertices of one partite set with A =
{ay,a2,a3} and the other with B = {b1,b2,b3} and suppose asbs is the
missing edge. From a; to B, there must be two edges of the same color.
Without loss of generality, suppose a1b1 and a1b; are both red. If any edge
between {b1,b2} and {as, a3} is red, we have produced a red P, so all these
edges must be blue. This contains a blue P,. Hence, K33 — {P4, Py},
completing the proof. 0O
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We now cite two results for long paths from classical Ramsey theory.
Theorem 4 ([8]). R(Pp,Pr)=m+ [n/2]-1.
Theorem 5 ([7]). R(Pn,Pum,P3) =m+ |n/2] =1 for m > 6(n + 3)2.

Using Theorem 3, these results imply the following corollary for the case
when one path is much longer than the other and k is small.

Corollary 3. For m > 6(n + 3)% and k € {1,2}, we have My(P,, Pn) =

|-m+|n:(2|—1'| )

As k gets larger, this problem becomes more difficult and it is not easily
implied by classical Ramsey results. Hence, we pose the following problem.

Problem 1. Provide non-trivial general bounds on My (P,, Pp,).

5 Cycles

For a triangle versus a path, we get the following.

Theorem 6. Forn > 2k, we have lg@_‘ < Mi(Ks, P,) < [2(n,;-12‘| +1.

In particular, this means that Mi(K3, P,) = 3(",%12 +1lfor1<k<?2
and for n > 2k.

Proof. The lower bound comes from the classical construction of a 2-colored
Ky(n—1y with no red triangle or blue P,. This is two disjoint blue cliques of
order n — 1 with all other edges in red. This graph contains no red triangle
and no blue P, and the removal of a matching from this graph certainly

preserves this property.

For the upper bound, we let G be a 2-colored complete multipartite
graph with l-g%’ll-l + 1 parts each of order k. Notice that the degree of

each vertex is at least (2n — 2+ k) — k = 2n — 2. If every vertex has blue
degree at least n — 1, then there is a blue copy of P, in G so there exists
a vertex v with degree at most n — 2 in blue. This means v has at least n
edges in red. In order to avoid a red triangle, no edge among these vertices
can be red. Hence, there is a subgraph of G of size n with only blue edges.
This subgraph is complete except for the removal of the edges of disjoint
cliques of order at most k. Since n > 2k, this subgraph contains a copy of
P,. Hence, K[m] o {K3, P,} for n > 2k. 0
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For short cycles, we get the following table of values for My(Ch,Cy,).
Here“...” means My(C,, Cyr,) remains the same for larger values of k. Also,
the inequalities come from Corollary 1 and recall that, by Remark 1, these
sequences are monotone decreasing with k.

We prove one case of this (see Proposition 7). All other proofs are
similar or use a computer search.

k\n,m|3,3]3,4|3,5|3,6|4,4/4,5|4,6|55]5,6]|6,6
1 6 | 7 |9 11| 6 |7 |79 118
2 |l a5 6|44 4a4]5]|6]c:s
3 3| :|>4]| 3|3 >4| 3
4 ?2 |3 >2 ? [>2
5 2 7 7
] :

Proposition 7. M(C4,Cs) = 6, M2(Cy,Cs) = 4, M3(Cy,Cy) = 3,
M4(C4,Cq) =3 and Mi(C4,C4) =2 for all k > 5.

Proof. Clearly M;(C4,C4) = R(C4,C4) = 6. From [1], it is also known
that R(C4,C4, Pz) = 8 so, by Theorem 3, we get

Ma(Cs, Cs) = [g] =4

For the next case, we need a more substantial proof.

Claim 1. M3(C4,Cy) =3.

By Corollary 1, we know that M3(Cy,Cy) > Mé&t—l +1=3s0we
need only show that K333 — (C4,Cq). Consider any 2-coloring of K333
and let A, B,C be the three independent sets. If a pair of vertices in A
shares 2 blue (or red) neighbors, there would be a blue (respectively red)
C4 so each pair of vertices in A (similarly in B and C) shares at most two
monochromatic neighbors (at most one in each color). Suppose a pair shares
only one monochromatic neighbor, say a1 and as share only a blue neighbor
by € B. Then a; and a; disagree on colors to all 5 vertices in CU B\ b,. If
we let a3 be the remaining vertex of A, this means a3 must share at least
3 monochromatic neighbors with either a; or a2, a contradiction. Hence,
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every pair of vertices must share exactly two monochromatic neighbors, one
in each color.

First we will show that no single vertex is the red (or similarly blue)
shared neighbor of all the vertices in A (or similarly any other set). Suppose
by has all red edges to A. Each vertex in CU B\ b; has at most 1 red edge
to A meaning that each vertex has at least 2 blue edges to A. This clearly
creates a blue C4 so we know that no vertex is monochromatic to another

set.

Now suppose all red shared neighbors of pairs in A are in B. This
means that all blue shared neighbors of pairs in A are in C so the coloring
of edges between A and the rest of the graph is already fixed to be that
of Figure 1 (here red edges are represented by solid lines while blue edges
are represented by dotted lines). Each pair in B also needs a blue common
neighbor so this neighbor must be in C. Also each pair in C needs a red
common neighbor, which must be in B. This is clearly a contradiction.

Figure 1: Partial coloring of K33 3.

Finally, suppose two red shared neighbors of pairs in A are in B while
the third is in C. This also implies two blue shared neighbors are in C
while one is in B. Up to symmetry, we get the coloring in Figure 2.

The pairs c;,c3 and ¢z, c3 must share a red (solid) neighbor in B. This
means that cz3 must have 2 red edges to B. Since all other pairs in B share
a red neighbor already, these red edges must be c3b; and c3bz. Also, ¢3 and
¢, must share a blue (dashed) neighbor in B, so this shared neighbor must
be bs. Since we have eliminated the case where one vertex has all one color
to a set, this implies that c; b3 must be red. Now recall that ¢, and c3 must
share a red neighbor in B so ¢; has a red edge to either b; or b, either case
producing a red Cjy. Octaim 1
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Figure 2: Partial coloring of K33 3.

The coloring in Figure 3 shows that M;(Cj,C4) > 2 so, by Remark 1,
we know that M4(C4, 04) =3.

Figure 3: Coloring of K4 4.

Finally, by Theorem 1 and Remark 1, it suffices to show that K55 —
(C4,C4) to complete the proof of Proposition 7. Consider any 2-coloring
of K55 = AU B. Let a € A and notice that a has at least 3 edges of a
single color (suppose red) to B. Let B’ C B be a set of 3 vertices with
red edges to a. Then each vertex in A\ a must have at most one red edge
to B’. Hence, each vertex of A\ a has two blue edges to B’. There are 3
distinct pairs of vertices in B’ and 4 vertices in A\ a so, by the pigeon hole
principle, there must be two vertices in A4 \ a, each with red edges to the
same pair of vertices in B’, thereby creating a red C,. O
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