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Abstract. A family G of connected graphs is a family with con-
stant metric dimension if dim(G) is finite and does not depend
upon the choice of G in G.

The metric dimension of some classes of convex polytopes has been
determined in [8-12] and an open problem was raised in [10): Let
G be the graph of a convez polytope which is obtained by joining
the graph of two different convex polytopes G, and Gz (such that
the outer cycle of G1 is the inner cycle of G2) both having constant
metric dimension. Is it the case that G will always have the con-
stant metric dimension?

In this paper, we study the metric dimension of an infinite classes
of convex polytopes which are obtained by the combinations of two
different graph of convex polytopes. It is shown that this infinite
class of convex polytoes has constant metric dimension and only
three vertices chosen appropriately suffice to resolve all the vertices
of these classes of convex polytopes.
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antiprism, convez polytopes

1 Notation and preliminary results

If G is a connected graph, the distance d(u,v) between two vertices
u,v € V(G) is the length of a shortest path between them. Let W =
{wy,ws,..., wx} be an ordered set of vertices of G and let v be a vertex
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of G. The representation r(v|W) of v with respect to W is the k-tuple
(d(v, w1),d(v, w3), d(v,w3),...,d(v,wx)). W is called a resolving set [6] or
locating set [20] if every vertex of G is uniquely identified by its distances
from the vertices of W, or equivalently, if distinct vertices of G have distinct
representations with respect to W. A resolving set of minimum cardinality
is called a basis for G and this cardinality is the metric dimension of G,
denoted by dim(G) [3]. The concepts of resolving set and metric basis have
previously appeared in the literature (see [3-6, 8-13, 16-23]).

For a given ordered set of vertices W = {w),ws, ..., wx} of a graph G, the
ith component of 7(v|W) is 0 if and only if v = w;. Thus, to show that W
is a resolving set it suffices to verify that r(z|W) # r(y|W) for each pair of
distinct vertices z,y € V(G)\W.

A useful property in finding dim(G) is the following lemma.:

Lemma 1. [23] Let W be a resolving set for a connected graph G and
u,v € V(G). If d(u,w) = d(v,w) for all vertices w € V(G) \ {u,v}, then
{u,v}NW £0.

Motivated by the problem of uniquely determining the location of an in-
truder in a network, the concept of metric dimension was introduced by
Slater in [20,21] and studied independently by Harary and Melter in (?].
Applications of this invariant to the navigation of robots in networks are
discussed in [17] and applications to chemistry in [6] while applications to
problem of pattern recognition and image processing, some of which involve
the use of hierarchical data structures are given in [18].

By denoting G + H the join of G and H a wheel W, is defined as W, =
K;+Chp,forn>3,a fanis f, = K1 + P, for n > 1 and Jahangir graph
Jon, (n > 2) (also known as gear graph) is obtained from the wheel W5, by
alternately deleting n spokes. Buczkowski et al. [3] determined the dimen-
sion of wheel W,,, Caceres et al. [5] the dimension of fan f, and Tomescu
and Javaid [22] the dimension of Jahangir graph Ja,.

Theorem 1. ([8], [5], [22]) Let W, be a wheel of order n > 3, f,, be fan
of order n > 1 and Jon be a Jahangir graph. Then

(i) For n 27, dim(W,) = | 2242 |,

(i1) For n > 7, dim(fa) = Lﬂ_"grz i;

(i#) For n > 4, dim(J2n) = | ).

The metric dimension of all these plane graphs depends upon the number
of vertices in the graph.

On the other hand, we say that a family G of connected graphs is a family
with constant metric dimension if dim(G) is finite and does not depend
upon the choice of G in G. In [6] it was shown that a graph has metric
dimension 1 if and only if it is a path, hence paths on n vertices constitute
a family of graphs with constant metric dimension. Similarly, cycles with
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n(> 3) vertices also constitute such a family of graphs as their metric di-
mension is 2 and does not depend upon on the number of vertices n. In [4]

it was proved that

2, if n is odd;

dim(Ppy x Cn)={ 3, if n is even.

Since prisms D, are the trivalent plane graphs obtained by the cross
product of path P, with a cycle C,. So prisms constitute a family of 3-
regular graphs with constant metric dimension. Javaid et al. proved in [13]
that the plane graph antiprism A, constitute a family of regular graphs
with constant metric dimension as dim(A,) = 3 for every n > 5. The prism
and the antiprism are Archimedean convex polytopes defined e.g. in [15].
The metric dimension of cartesian product of graphs has been discussed in
(4,19).

The metric dimension of some classes of convex polytopes has been deter-
mined in [8-12] where it was shown that these classes of convex polytopes
have constant metric dimension 3 and an open problem was raised in [10]:
Open problem [10]: Let G be the graph of a convex polytope which is
obtained by joining the graph of two different convez polytopes G, and G,
(such that the outer cycle of Gy is the inner cycle of G2) both having con-
stant metric dimension. Is it the case that G will always have the constant
metric dimension?

Note that the problem of determining whether dim(G) < k is an NP-
complete problem (7). Some bounds for this invariant, in terms of the di-
ameter of the graph, are given in [17] and it was shown in [6, 17-19)] that the
metric dimension of trees can be determined efficiently. It appears unlikely
that significant progress can be made in determining the dimension of a
graph unless it belongs to a class for which the distances between vertices
can be described in some systematic manner.

The metric dimension of some classes of convex polytopes which are ob-
tained by the combination of two different graphs of convex polytopes has
been recently studied in [10]. In this paper, we extend this study to an
infinite class of convex polytopes which are obtained by combination (such
that the outer cycle of graph G is the inner cycle of graph G2) of graph
of convex polytope Dy, [1] and graph of an antiprism [1]. We prove that
this infinite class of convex polytopes has constant metric dimension and
only three vertices appropriately chosen suffice to resolve all the vertices of
these classes of convex polytopes.

In what follows all indices ¢ which do not satisfy the given inequalities will
be taken modolu 7.
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2 The graph of convex polytope V,

The graph of convex polytope V;, is obtained as a combination of graph
of convex polytope D, [1] and graph of an antiprism A, [1] such that the
outer cycle of graph of an antiprism A,, is the inner cylce of graph of convex
polytope D,,.

For our purpose, we call the cycle induced by {a; : 1 < i < n}, the inner

Fig. 1. The graph of convex polytope V,

cycle, cycle induced by {b; : 1 < ¢ < n}, the interior cycle, cycle induced
by {ci : 1 i <n}U{d;:1< i< n}, the exterior cycle and cycle induced
by {e: : 1 <i < n}, the outer cycle.

The metric dimension of graph of convex polytope D, and graph of an
antiprism A, have been studied in [8] and [13]. In the next theorem, we
show that the metric dimension of the graph of convex polytope V,, is 3.
Note that, the choice of appropriate landmarks is very important.

Theorem 2. Let V;, denotes the graph of convex polytope; then dim(V,) =
3 for every n > 6.

Proof. We will prove the above equality by double inequalities. We consider
the two cases.

Case(i) When = is even.

In this case, we can write n = 2k, k > 3, k € Z*. Let W = {a;,a9, 541} C
V(V,,), we show that W is a resolving set for V, in this case. For this we
give representations of any vertex of V(V;)\W with respect to W.
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Representations for the vertices of inner cycle are

r(ailW) = (-1,i—2k—i+1), 3<i<k;
IVI=V(@k-i+1,2k—i+2i—k—1), k+2<i< 2k

Representations for the vertices of interior cycle are

(1,1,%), i=1;
tun ) Gyi—LE—i+2), 2<i<k:
rGW) =3 (k+1,k+1,1), i=k+1;

(k—i+1,2k—i+2,i—k), k+2<i< 2.

Representations for the vertices of exterior cycle are

2,2,k +1), i=1;
' _ ) G+1,4,k—i42), 2<i<k;
r@W) =1 (k+1,k+1,2), i=k+1;
(2k—i+2,2k-i+3,i—k+1), k+2<i<2k.
and
(3331k+1)1 i=1;
(+2i+1,k—7i+2), 2<i<k-1;
rdW) =9 (k+1,k+2,3), i=k+1;
(2k-i+2,2k—i+3,i—k+2), k+2<i<2k -1,
(3, 3,k + 2), i = 2k-
Representations for the vertices of outer cycle are
(4’4’k+2)7 t=1
(i+3,i+2,k—-i+3), 2<i<k-1;
r(e|W) =< (k+3,k+2,4), i=k;
2k—i+3,2k—i4+4,i—k+3), k+1<i<2k—1;
4,4,k +3), i=2k.

We note that there are no two vertices having the same representations
implying that dim(V,) < 3.

On the other hand, we show that dim(V},) > 3. Suppose on contrary that
dim(V,) = 2, then there are following possibilities to be discussed.

(1) Both vertices are in the inner cycle. Without loss of generality we sup-
pose that one resolving vertex is a;. Suppose that the second resolving
vertex is a; (2 <t < k+1). Then for 2 <¢ < k, we have r(an|{a1,a:}) =
r(bll{a'h a't}) = (11 t) and for ¢ = k+1’ r(azl{aia ak+l}) = T(anl{al, ak+l}) =
(1,k — 1), a contradiction.

(2) Both vertices are in the interior cycle. Without loss of generality we
suppose that one resolving vertex is b;. Suppose that the second resolving
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vertex is by (2 <t < k+1). Then for 2 <t < k, we have 7(a1|{b1,b:}) =
7(bn|{b1,be}) = (1,¢) and for ¢ = k+1,(ba2|{b1,bk+1}) = r(bn){b1, bk41}) =
(1,k — 1), a contradiction.

(3) Both vertices are in the exterior cycle. Here are the two subcases.

o Both vertices are in the set {¢; : 1 < i < n}. Without loss of general-
ity we suppose that one resolving vertex is c¢;. Suppose that the second
resolving vertex is ¢; (2 <t < k+1). Then for 2 < t < k, we have
r(a1l{er,et}) = 7(bal{c1,ee}) = (2,8 +1) and for t = k+1, r(dy|{c1, Ck41})
= r(dn|{c1,ck+1}) = (1,k + 3), a contradiction.

e Both vertices are in the set {d; : 1 < i < n}. Without loss of general-
ity we suppose that one resolving vertex is di. Suppose that the second
resolving vertex is d¢ (2 <t < k+1). Then for 2 <t < k + 1, we have
r(b1|{d1,d:}) = r(en|{d1,d:}) = (2,t + 1), a contradiction.

e One vertex is in the set {c; : 1 < i < n} and other in the set {d; : 1 <
i € n}. Without loss of generality we suppose that one resolving vertex is
¢;. Suppose that the second resolving vertex is d; (2 < ¢ < k +1). Then
for t = 1, we have r(b1|{c1,d1}) = r(dnl|{c1,d1}) = (1,2). If 2 < t < &,
we have r(az|{c1,d:}) = r(bi|{e1,d:}) = (1, +1) and for t = k + 1,
r(anl{c1, dk+1}) = 7(b1|{c1,dk+1}) = (1,k + 1), a contradiction.

(4) Both vertices are in the outer cycle. Without loss of generality we
suppose that one resolving vertex is e;. Suppose that the second resolving
vertex is e, (2 <t < k+1). Then for 2 <t < k, we have r(d;|{e1,e:}) =
r(enl{e1,€:}) = (1,t) and for t = k+1, r(ezl{e1, ex41}) =r(enl{e1, 41}) =
(1,k — 1), a contradiction.

(5) One vertex is in the inner cycle and other in the interior cycle. With-
out loss of generality we suppose that one resolving vertex is a;. Sup-
pose that the second resolving vertex is b (1 < ¢ < k +1). Then for
1 < t < k, we have r(bn|{a1,b:}) = r(c1l{a1,b}) = (2,t) and when
t =k +1, r(az|{a1, be+1}) = r(an|{a1,be+1}) = (1, k), a contradiction.

(8) One vertex is in the inner cycle and other in the exterior cycle. Here
are the two subcases.

e One vertex is in the inner cycle and other in the set {c; : 1 <% < n}.
Without loss of generality we suppose that one resolving vertex is a;. Sup-
pose that the second resolving vertex is ¢; (1 < ¢t < k + 1). Then for
t = 1, we have r(az|{a1,c1}) = r(anl{a1,c1}) = (1,3). 2 <t < k +1,
r(az|{a1,be}) = r(b1|{a1, b:}) = (1,¢), a contradiction.

e One vertex is in the inner cycle and other in the set {d; : 1 < i <
n}. Without loss of generality we suppose that one resolving vertex is
a;. Suppose that the second resolving vertex is dy (1 < t < k +1).
Then for t = 1, we have r(dz|{a1,d1}) = r(eal{a1,d1}) = (4,2). If 2 <
t < k, r(agl{a1,d:}) = r(b1l{a1,d:}) = (1,t +1) and when ¢t = k + 1,
r(anl|{a1,dk+1}) = r(b1l{a1,dr41}) = (1,k + 1), a contradiction.

(7) One vertex is in the inner cycle and other in the outer cycle. Without
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loss of generality we suppose that one resolving vertex is a;. Suppose that
the second resolving vertex ise; (1 < ¢ < k+1). Then for t = 1, we
have r(cz|{a1,e1}) = r(dn|{a1,e1}) = (1,3). If 2 < t <k, r(az|{a1,e:}) =
r(bil{a1,e:}) = (1,¢ +2) and when t = k + 1, r(an|{a1,€x+1}) =

r(b1|{a1, ex+1}) = (1,k + 3), a contradiction.

(8) One vertex is in the interior cycle and other in the exterior cycle. Here
are the two subcases.

e One vertex is in the interior cycle and other in the set {c; : 1 < i < n}.
Without loss of generality we suppose that one resolving vertex is b;. Sup-
pose that the second resolving vertex is ¢; (1 < ¢ < k+ 1). Then for
1 < t < k, we have r(a1]|{by,c:}) = 7(bal{b1,¢:}) = (1,¢ + 1) and when
t =k+1, r(ba|{b1, ck+1}) = 7(ba|{b1, ck+1}) = (1, k), a contradiction.

e One vertex is in the interior cycle and other in the set {d; : 1 <4 < n}.
Without loss of generality we suppose that one resolving vertex is b;. Sup-
pose that the second resolving vertex is d; (1 < t < k + 1). Then for
1<¢t< k- 1, we have T(all{blvdt}) = 7"(bnl{bhdt}) = (l,t + 2) For
t=k,k+1, r(an—z2|{b1,d:}) = r(en]{b1,ds}) = (3,t), 2 contradiction.

(9) One vertex is in the interior cycle and other in the outer cycle. With-
out loss of generality we suppose that one resolving vertex is b;. Sup-
pose that the second resolving vertex is ¢, (1 < ¢t < k + 1). Then for
1 <t < k-1, we have r(a1|{b1,e:}) = 7(bal{b1,e:}) = (1,¢ + 3). For
t = k, r(b2|{b1,ex}) = r(c1]{b1,ex}) = (1,k + 1) and when t = k + 1,
7(bn|{b1,ex+1}) = r(c1{{b1, €x+1}) = (1,k + 1), a contradiction.

(10) One vertex is in the exterior cycle and other in the outer cycle. Here
are the two subcases.

o One vertex is in the set {¢; : 1 <4 < n} and other in outer cycle. Due to
the symmetry of the graph, this subcase is analogous to second subcase of
case (8).

o One vertex is in the set {d; : 1 < i < n} and other in outer cycle. This
subcase is analogous to first subcase of case (8).

Hence, from above it follows that there is no resolving set with two vertices
for V(V,,) implying that dim(V},) = 3 in this case.

Case(ii) When = is odd.

In this case, we can write n = 2k+1,k > 3,k € Z*. Let W = {a, 03,441} C
V(V,.), we show that W is a resolving set for V;, in this case. For this we
give representations of any vertex of V(V,,)\W with respect to W.
Representations for the vertices of inner cycle are

(-1,i—2,k—-i+1), 3<iLk
r(a;|W) =< (k,k,1), i=k+42;
(26 —-i+2,2k-i4+3,i—k—1), k+3<i<2k+1.
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Representations for the vertices of interior cycle are

(1,1,k), i=1;
) Gi-Lk—-i+1), 2<i <k
rlW) =9 (k+1,k,1), i=k+1;

(2k—i+2,2k—i+3,i—k), k+2<i<2k+1.

Representations for the vertices of exterior cycle are

(212’k+1)$ i=1;
_ ) (G+1,4,k—i42), 2<i<k;
r@lWy=9 (k+2,k+1,2), i=k+1;
(2k—i+3,2k—i+4,i—k+l),k+25i$2k+1.
and
3,3,k +1), i=1;
(i+2,i+1,k—1i+2), 2<i<k-1;
_ _ ) (k+2,k+1,3), i=k;
r(@dW) =9 (k+2,k+2,3), = k+1;
(2k —i+3,2k—i+4,i—k+2), k+2<1i<2k;
(3,3,k+2), i =2k +1.
Representations for the vertices of outer cycle are
4,4,k +2), i=1;
(i+3,i+2,k—i+3), 2<i<k-1;
_ ) (k+3,k+2,4), i=k;
'r'(ei|W)'— (k+3,k+3,4), i=k+1;
(k—i+4,2k—i+5i—k+3), k+2<i<2%k;
(4,4,k + 3), i=2k+1.

Again we see that there are no two vertices having the same representations

which implies that dim(V,) < 3 in this case.

On the other hand, suppose that dim(V,) = 2, then there are the same
subcases as in case (i) and contradiction can be obtained analogously. This

implies that dim(V,,) = 3 in this case, which completes the proof.
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