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Abstract

An (r,A) overlap colouring of a graph G allocates r colours to
each vertex subject to the condition that any pair of adjacent vertices
shares exactly X colours. The (r,\) overlap chromatic number of G
is the least number of colours required for such a colouring. The
overlap chromatic numbers of bipartite graphs are easy to find; those
of odd cycle graphs have been already been established. In this paper
we find the overlap chromatic numbers of the wheel graphs.

1 Definitions and introduction

Throughout this paper, graphs are assumed to be simple and finite. The
multichromatic numbers of graphs have been studied for some decades, the
concept having been originated by Hilton, Rado and Scott [1] and inde-
pendently by Stahl [5]; see also the PhD thesis of Scott [4]. The r-fold
chromatic number of a graph G is denoted by x,(G) and is the least num-
ber of colours that are required in order that r colours may be assigned to
each vertex of G such that adjacent vertices are always assigned disjoint

colour sets.
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Later, Johnson and Holroyd [3] discussed the concept of an overlap
colouring of a graph; that is, a vertex colouring u with a fixed number r of
colours per vertex, such that any pair of adjacent vertices shares exactly A
colours. The palette P(u) of such a colouring is the set of all colours used.
The (r,\) chromatic number of G, denoted by xr(G), is the least possible
palette size |P(u)| for an (r,A) colouring u of G.

We use the notation Z* for the positive integers and N for the non-
negative integers. Throughout the paper we assume r € Z+, Ae N, A < 7.
(Of course, xr,r(G) = r for any non-empty graph G.)

2 Odd-order wheel graphs

We denote by C, the n-cycle graph and by Wy, the graph of order
n + 1 formed from C,, by adjoining a hub vertex h, adjacent to each vertex
V0, V1, .. -2 Un—1 Of Cn; these are the rim vertices. We label them in cyclic
order, considering the subscripts modulo n.

Before proceeding to the overlap chromatic numbers of wheel graphs, it
is worth noting the results for bipartite graphs and for odd cycles. These
are given both in [6] and in [2] and are as follows.

Theorem 1 Let G be any bipartite graph; then
xrA(G) =2r — A

Theorem 2 Let p € Z*. Then
2p+1)(r—A)

. ],27‘—)\}.

Xr2(Capt1) = max{ |-

Corollary 3 Let p € Z*. Then
Xra(Wopt1) = max{3(r — A),2r — A}.

Proof Wy contains at least one triangle; thus, xr,x(W2p+1) 2 xrA(C3) =
max{3(r — A),2r — A}.

Let p be an (7, A) colouring of Cs with |P(u)| = max{3(r — A),2r — A}.
There is 2 homomorphism ¢: Wap41 — Cs; then po ¢ is an (7, A) colouring

of Wap41 using the same palette as p.
(]

3 Even-order wheel graphs

The even-order wheels are considerably more difficult to deal with. It turns
out that the expression for xr,(W2pt+2) depends on the ratio A/r, four



distinct expressions being required, and that the (2,1) chromatic number
nevertheless requires separate treatment. The full result is as follows.

Theorem 4 x2,1(Wap+2) = 5. For all other values of (r, A):

@_PﬂM],s(r-A), 3r—2A—I_-2—-p%J,2r—)\}.

XT,A(W2P+2) = max{r+[ P

That is, for (v, A) # (2,1):
1. if0 S A< g, then xra(Waps2) =7+ "gze-a-l)pgr—zxz‘l;

2. if J55 < A< 5B, then xr A (Waps2) = 3(r — A);

p+2 = 7 = 2p+1?
; +1
3. if By S A< GEE, then xra(Wapra) = 3r — 22 — | 58 |;

4. if EEHE <A <7, then xrp (Waps2) =27 — A,

Note that Wapy2 is the graph-theoretic join Cppy1 + {h} where {h}
is a singleton vertex. Of course, for any two graphs G, H, there is the
straightforward result x(G + H) = x»(G) + x~(H), so it is of interest that
the position for overlap colourings is considerably more complex, even when
H is a singleton vertex.

Let 1, u2 be, respectively, an (r1, A1) and an (72, A2) overlap colouring
of a graph G, using disjoint palettes. The sum p; + 2 is the colouring
resulting from placing the colour set p1(v) Upg(v) at each vertex v € V(G);
this is an (71 + 72, A1 + A2) colouring. More generally, if uy, o, ..., ux are
overlap colourings of G and ay,...,ax € N, then Zf=1 a;u; represents (up
to choice of palette) the overlap colouring arising from taking a; isomor-
phic copies of u; (1 < @ < k), all palettes being disjoint, and placing the
appropriate unions of colour sets at each vertex of G.

Now let ¢ be an (7, A) overlap colouring of W5,.2. The restriction prim
of p to the rim vertices is an (r,A) overlap colouring of Capi;, and we
consider prim to be the sum uy + pr of two colourings, the first involving
only colours that are on the hub and the second involving only colours that
are not found on the hub. Thus, ux and pg allocate, respectively, A and
r — X colours to each vertex of Czp41. Then,

[P(p)] =7+ |P(ug)l,

despite the possibility that |P(un)| < r.

In most cases, uy and pR are true overlap colourings as defined above,
but occasionally it is necessary to allow that, considered separately, uy and
R do not have constant overlap. For example, consider the following (5, 2)

colouring of Wj.
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4,5,6,7,8

1,2,3,4,5

1,4,8,9,10 1,3,6,7,10

Figure 1

Then, pg allocates the colour sets {4,5}, {1,3}, {1,4} while ur allocates
colour sets {6,7,8}, {6,7,10}, {8,9,10}. It is not difficult to check that
any (5,2) colouring p of Wy where uy and pp are true overlap colourings

requires at least 11 colours.
‘We shall see that Wy is the only wheel for which, to minimize the palette

size, uy and puR are sometimes required to have the above property.

The proof of Theorem 4

We deal first with the case (r,A) = (2,1). The remainder of the proof is
then divided into lower-bound and upper-bound stages.

Proof that x2,1(Wap+2) =5

Consider the following (2, 1) colouring p of Wap42:

p(h) = {1,2}; P(pn) = {1}; P(ur)={3,4,5},
where py and pR are respectively (1,1) and (1,0) colourings.

Thus, x2,1(Wap+2) < 5.

To show the lower bound, suppose p is a (2, 1) colouring of W, 2 with
|P(k)| < 4, and let pu(h) = {1,2}. It is clear that at least two further colours
are needed; suppose P(u) = {1,2,3,4}. We may assume u(vw) = {1,3}.
Then it is straightforward to check that, for 1 < i < p, we have p(vz;) =
{1,3} or {2, 4}, contradicting the requirement that |u(vep) N pi(wo)| = 1. O

Before dealing with the remaining cases, we prove the following straight-
forward property of finite sets.

Lemma 5 Let Qo,Q1,...,Qn be finite sets (wheren > 2). Then
|Qn\Qo| < 30,1 1Qi\Qi-1.
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Proof For each € Q,\Qo, let j(z) be the least i such that £ € Q;; then
1< J(x) <nandz€ QJ(z)\Q;)(z) 1. Thus QB\QO c Uz=1(Q \Qt—-l); a-nd
the result follows.

The remaining cases: proof of lower bound

Note first that in Cases 2 and 4 (533 < A < 357 and %ﬁlh <ALr), by
Corollary 3 the theorem states that XrA(Wapi2) = xr,2(C3). Since Wap,o
contains triangles, the lower bound follows immediately in these cases.

To obtain the lower bound in Cases 1 and 3, we use an extension of a
lower-bound argument in Stahl’s early paper [5].

Case 1: 0S A< ;5

Let  be an (7, A) colouring of Wap2 with [P(p)] = xr,a(Wap+2)
= 2r — A + s; note that s > 0 since W5y, 5 contains edges. Consider the
colourings pH, #r (we allow them to be ‘improper’ colourings), with palettes
Py and Pr; thus |Py| <7, |[Prl|=7-A+s.

For 0 < i < 2p, let S; = pr(w), Ti = pu(vi), Wi = S; N Siyq,
X; =T;NTiy1 (see Figure 2 for i =0), and for 0 <i<p—1let
Y; = S2i42\52i, Zi = Toi42\T2i. We use the corresponding lower-case
symbols for the sizes of these sets. Thus s; =r— A t; = A\, w; +2; =
A (0 <i < 2p). We now find a bound on yo.

Py
4
X,
0 T L
Py
Figure 2

Let A= }DR\(S(,USI), B = S1\So; then Yy = (Yo A) U(YonB) Now
[Al=r=-A+8-2(r—A)+wo=A—r+3+wp,and oNnB C W\, giving
Yo<A—-r+s+w+w.

The argument is independent of ¢; thus

YiSA-r+st+writwin (05i<p-1). (1)
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Now vy, is adjacent to vo; thus |Sgp\So| = r — A — wyp; moreover, by
Lemma 5,

p-1
S2p\Sol £ ) 1S2i42\S2il,
=0
that is,
2p-1
r—A-wyp< Zy.<p()‘-r+3)+zwz ()
=0 j=0

A little rearrangement gives

2p
ps > (p+1)(r=X)—Y w2 (p+1)(r—X) - (2p+ 1A
i=0

Thus, |[Prf=7r—A+s82 [Qﬁé'—ﬁ], and so

(2p+ 1)(r - 2)\)‘|

Xrr(Wappa) 2 74 [

giving the required lower bound for Case 1.

+1
Case 3: zE7 <A< %’—_HE
Note that
T2 [T UTi]| =22 —z; (0 < i < 2p),
so that z; > 2\ — r. Proceeding as above, the analogues of equations (1)

and (2) are
2z ST -2 4+ T2+ 2241 (0<i<p-1),

and
p—-1
A—z2p < Z 24y
i=0
yielding
2p
Y z2(2p+1)A-pr. (3)
i=0

Thus, for some index j we have z; > A — 5,;%, and so

pr
; K —,
Yi= o1
Thus, |S; U Sj41] 2 2(r — A) — 2p+1, giving, as required,
pr
>3 =2\ — | ———
X,-',\(sz_,.z) P 3r 2)\ l2p+ 1-|'
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The remaining cases: proof of upper bound

We deal with the simple cases 1, 2, 4 first.
Cases 1 and 2: 0 < A < 5B

Let u; be a (),0) colouring of Csp41 with |P(u1)| < r; this is possible
by Theorem 2, since r > [Qﬂ-:—l)-)-‘-]. Next, let uz be an (r — A, A) colouring

of Capy1 With |P(p2)] = xr-2,x(Cop+1). Thus, |P(us)| = [Z2ELE=2X7 i

0 < A< 55 [P(p2)l = 2r = 3A if 545 < A < 325, Then, there is an (r, A)
colouring p of Wap 2 such that g = p1 and pr = po. Thus,

lP(u)l = ma.x{r + "w] y3(r — A)},

as required.

Case4:%)155)\sr

Let 1 be the trivial (r—A, 7—A) colouring of Cs,41 with |P(u)] = r—A,
and let 2 be a (A,2X — ) colouring of Cypyy with |P(ug)| < 7; this is
possible by Theorem 2. Again, there is an (r, A) colouring p of Wyp42 with
pH = p1 and pR = pe2, giving

|P(u)| = 2r — A.
Case 3: 52~ < A < {gtlr

2p+1 = 2p+1

When 7 < 3, the only relevant pair for Case 3 is (r,A) = (2, 1), which
has been considered separately. Thus we may now assume r > 3.
There are two subcases.

Subcase 3(a): p>2
We require the following technical lemma.

Lemma 6 Letr2>3,p2>2,L = [51;%] and )\ > #;then

r
L> PET’ (4)

@p+1)(r—A— L)*,

2(r-,\)-Lz[ .

(5)
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Proof

(i) Note that
T,
2p+1 2p+1°7

whenever p > 2 and r > 3, except for the cases (p,7) = (2,3), (2,4), (3,3).
Thus (4) holds except possibly for these three instances, which may be
checked by hand.
(ii) From (4) we obtain (p+ 1)L > %%%.

Now r— A < %’%12, and hence

(P+1)LZT—A,

2p(r —A)+ (p+1)L 2 (2p+ 1)(r - A),
2p(r —A) —pL > (2p+1)(r — A - L),

2r-N-L3 (2p+1)(;—/\—L)’
and since 2(r — A) — L € N, (5) follows. O
Let L = [gﬁ—lj. Since 511,% < A, we may consider a (A, A — L) colouring
u1 of Copyr. Then |P(p1)] < r by Theorem 2, since

r > max{[ GZELEY A 4 L},

Next, let uz be an (r — ML) colouring of Copyy with
|P(u2)| = 2(r — A) — L; this is possible by Theorem 2 and (5).

Arguing as in the previous cases, there is an (r, A) colouring u of Wap4o
with ug = p1 and pr = o, thus giving the required upper bound.

Case 8(b): p=1

In this case, Wap42 is the complete graph K4. We note the existence of
the following colourings of W, (Figure 3).

e Trivially there is a (1,1) colouring p11 with |P(u11)| = 1.
e By Case 2 there is a (3,1) colouring ua; with |P(us;)| = 6.
e By Case 4 there is a (3,2) colouring u32 with |P(uaz)| = 4.
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1 14,5 2,34

1 1 3,56 24,6 1,2,4
Figure 3

Finally, recall that the (5,2) colouring presented in Figure 1 (which we

now denote by us2) has |P(usz)| = 10.
Now let 7 = 3L + g (where 0 < ¢ < 2).

Subcase 1: ¢ =0

Then A =L+ k where 0 < k< L.
For each such value of k, the colouring u = (L — k)us; + kuss is a
(3L, L + k) colouring of Wy with |P(u)] = 6L — 2k =3r — 2\ — L.

Subcase 2: g=1

Then A = L + k where again 1 <k < L.
For each such value, the colouring p = pi13 + (L —k+1)p3; + (k — 1)uaz
isa (3L +1, L+ k) colouring of Wy with |P(u)| = 6L —2k+3 = 3r—2A—L.

Subcase 8: ¢ =2

Then A=L+kwherel<k<L+1

If k=1, take p = (L — 1)pa1 + ps2; this is a (3L + 2, L + 1) colouring
of Wy with |P(u)| =6L+4=3r—2\-L.

Otherwise, take p = 2p11 + (L — k + 2)ua1 + (k — 2)uap; this is a
(3L +2, L + k) colouring of Wy with |[P(u)| =6L—2k+6=38r—2A—-L. O
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