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Abstract

We consider a storage/scheduling problem which, in addition to
the standard restriction involving pairs of elements that cannot be
placed together, considers pairs of elements that must be placed to-
gether. A set S is a colored-independent set if, for each color class V;,
SnV; =V; or SNV, = @. In particular, Bpr7r(G), the independence-
partition number, is determined for all paths of order n. Finally, we
show that the resulting decision problem for graphs is NP-complete
even when the input graph is a path.

1 Introduction

Suppose we have ten items to be stored/scheduled but certain pairs of the
items cannot be stored/scheduled in the same place/time period. Each
item can be represented by the vertex of a graph G, and the conflicts can
be represented by edges. For example, ten items can be identified with the
vertices of graph P in Figure 1. There are 15 = |E(P)| conflicts indicated
by the graph P = (V(P), E(P)) where, for example, items/vertices v; and
vg can not be stored/scheduled together because {v;,v} € E(P). Note
that items v;,vg and vg can be placed together because S = {v;,vs,v9} is
an independent set in P, that is, no two vertices in S are adjacent. We
denote the independence number of a graph G, the maximum order of an
independent vertex set in G, by §(G). While S is a maximal independent
set in P, it is not maximum. We have B(P) = 4 = |{v1, 3, v9, v10}|. Note
that {{v1,vs,vs,v10}, {v2,v4, v}, {Vs, v7,vs}} shows that we can place the
ten items into three storage/time units with no conflicts.
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In this paper we restrict our attention to the independence number, the
maximum number of items that can be placed into one unit. We can think
of each vertex as representing a person with the objective of forming as
large a committee/team as possible, where each edge represents a pair of
people who will not be together on the team.

In addition to the conflicts, suppose that there are sets of people each of
whom will be on the team only if all of the members of the set containing
him or her are also on the team. Suppose the conflicts among ten people
are those of graph P in Figure 1. In addition, suppose the ten people
are actually five couples A,B,C,D and E, and no individual will serve
without the spouse. If we have couples A = {v;,v3}, B = {vo,13},C =
{va,v7}, D = {vs,ve} and E = {vg, v10}, then we can form a team AUE =
{v1,vs,vs,v10}. However, if A = {v1,v8}, B = {v2,v0},C = {v3,v10},D =
{v4,v6} and E = {vs,vr}, then any two couples have at least one conflict
between them, and the maximum team size is two.

Figure 1: Fifteen conflicts among ten people.

We model these storage/scheduling/team forming problems with both
conflicts and bonds as “colored-independence” problems for graphs. Colored-
independence and the related colored-domination were discussed by Slater

in [6]. See also[3, 4, 5, 7, 8].
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2 Colored-Independence

Given a graph G = (V, E), let 6 = {V1,V4,...,V;} be a partition of the
vertex set V(G). For I C {1,2,...,t} = [t], let &1 = U;esV;. A vertex
set R C V(G) is called &-independent if R is independent and R = &; for
some I C [t]. The G-independence number of G is B(G; 6) = max{|S| :
I C [t], &y is independent}. That is, 3(G; &) is the maximum cardinality
of an independent set S C V(G) such that either SNV, =0 or SNV; =V
for 1 <1 < t. Noting that if any two vertices in a V; are adjacent then one
must have S N V; = @, for the following parameters we assume that each
V: is independent. That is, thinking of & as being a coloring of G with V;
being color class i, only proper colorings are being allowed.

The independence-partition number of graph G is
Bprr(G) = min{B(G;S) : 6 is a partition of V(G) into independent
sets}. For the graph P in Figure 1 we considered the case where there
were couples involved. The coupled-independence number of G is Bcpi(G) =
min{B(G; &) : G is a partition of V(G) into independent sets V; with each
Vil < 2}-
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Figure 2: Double star Sg s.

For the double star Sg s in Figure 2, |V(Sgg)| =n = 18 and 5(Sss) =
n—2 = 16. For Bci(Sss) let & be any proper partition containing
{z,v1} and {y,u1}, and we have Bpi(Sss) = B(Ss,8;6) = 14. For Gy =
{{z,v1,v2,...,v8}, {y,v1, U2, ..., us}} we have Bppr(Ss,8) < B(Ss,8;Go) =
9. But one can do better! In fact, BprT(Sss) = B(Sss;{{z,v1,v2, -
cee ,"’5}; {y: Uy, U2, .. 7“5}! {'Us,'v'(, Vs, U6, u7’u3}} =6.

In general, we let oi(G) be the collection of all partitions & =
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Figure 3: Bepi(Psj) = 25.
{1, Va,..., i} of V(G) with |V;| < k for 1 < i <t. Then, Bpara)(G)

min{3(G;S) : & € ox(G) is a proper coloring}. Clearly Bppr(1)(G)
B(G), Brrr(2)(G) = Bcpi(G), and the next theorem is obvious.

Theorem 1 (Slater [7]) For every graph G, B(G) = Bprr(1)(G) 2 Bepi(G) =
gpar((%()@) 2 Bprr(3)(G) = ... 2 Brrr)(G) = BPrT(k+1)(G) = ... 2
PRT(().

Theorem 2 (Slater [7]) For the path P, on n wvertices, Bepi(Psj) = 2j,
Bept(Paj+1) = Bept(Psjw2) = 25+1, Bept(Paj+3) = Bept(FPaj+a) = Bept(Pajrs) =
Bept(Pajie) = 2§ +2, and Bept(Psj47) = 25 +3.

Note that Bepi(Psj+7) = 25 + 3 > Bepi(Poj+s) = 25 +2.

3 Colored-independence for paths.

In this section we determine BpgT(F,) for all values of n. Nevertheless, we
show that deciding if 3(G; &) > K is an NP-complete problem for a given
partition G of V(G) even when G is restricted to be a path.

Theorem 3 For a path P, of order n, Bprru)(Pn) 2 7 and
Bprrk)(Pak3;) = ki = 3k-

Proof. Consider a linear forest LF,, of order n with some partition & =
{81, S2, ..., St} where maz<i<:|Si| < k. We will construct an independent
set A=S; CV(LF,).

Take a vertex v such that deg(v) < 1. Vertex v is in some color class S;.
Put S; in A. Delete from LF, all vertices of the set S;U{S; : 3u € Sj,v e S;
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and wv € E(LF,)}. That is, delete every vertex in color class S; and every
vertex in a color class that contains an element that is a neighbor of a
vertex in color class S;. Notice that |.S;| elements have been added to A
and at most |:S;| + k£(2|S;| — 1) total vertices have been deleted from LF,,:

|Si| from color class S; and the remaining k(2|S;| — 1) vertices from other

color classes. This leads to the ratio W—I'S'lillﬁm = W,%ATI?)T[ > 2%

Pick another vertex u in the deleted linear forest such that the degree
of u in the deleted linear forest is no more than 1. Vertex u is in some color
class S;,. Add Sy, to A and delete vertices from the deleted linear forest as
above. Continue this process until no more vertices are remaining. Since

for each color class S; included in A we have the ratio Hﬂﬁ%'llrl?'[ > -7;,
for any vertex in A at most 2k vertices were deleted from LF,. This
implies that for the given partition, ﬂ(LF,,, S) > .. But, this holds for
any partition where mazi<i<:|Si| < k. Thus, ﬂpRT(k)(LF) 2 . In
particular, Bprr(x)(Pr) 2 3%

Now we will show that ﬂpRT(k)(P2k?j) = kj. By the above work, we
already know that ﬂpRT(k)(szﬂj) Z o = kj, so it will be shown that
Bprr(k)(Pax2;) < - Suppose j = 1. leen k, we can use 2k color classes,
each of order k, to construct a partition &. We will construct the partition
G so that for 1 < i < j £ 2k there exists some element v; € S; and
v; € S; such that v;v; € E(ngz) This will ensure that only one color
class can be in any independent set and so Spar(k)(Pax2) < k = k- Let
V(Paya) = {v1,v2,... ,Ugka } where v;v;41 € E(Pya) for 1 <4 < 2k2 - 1,
let and V(H) = {uy,u,...,us} where H is a multigraph constructed
by starting with a complete graph on 2k ‘vertices and adding the k — 1
edges uglgk—1,U3Ugk—2, . --> Uk—1Uk+2 aNd uguxy;. Note that degree of
uy and the degree of ug, are both odd while the degrees of the vertices
Ug, U3, ..., Usk—g and ugg—; are all even. This implies that an Eulerian
trail exists on H that begins at u; and ends at ug;. This Eulerian trail
contains exactly 2k® vertices each of which is repeated exactly k times.
This trail will be used to define the partition G on the path. Each vertex
v; on the path will be placed into the color class S, ; Where u; is the ith
vertex in the trail on H. For example, consider the case k = 3. The path
has the vertex set V(Pig) = {v1,v2,...,v18} and the multigraph H has the
vertex set V(H) = {u1,u2,...,ug}. H is constructed by starting with the
complete graph Kg on six vertices and adding the edges uous and ugug.
We use the Eulerian trail ujusuguqusuguaususuuqusuguquousuug of H
to construct the partition & on the path. In fact, & = {$1,5,,...,Ss}.
Since u; is the first vertex in the trail, the first vertex in the path, v, is
placed into the color class S;. Similarly, since u; is the second vertex in the
trail, v, is placed into the color class S;. By placing each vertex v; into the
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color class defined by the it vertex in the trail, $) = {v1,v10,v17},52 =
{ve,v7,v15}, Sz = {v3,v9,v12}, 4 = {v4,v11,v14}, S5 = {v5,v8,v16} and
Ss = {ve, 13, v18}

For color classes S; and S; with 1 < ¢ < j < 2k, there are vertices
v; € S; and v; € S; such that v;v; is an edge in the path since in the
multigraph H the edge u;u; was traversed by the Eulerian trail. Thus,
any G-independent set can contain no more than one color class, and so
B(Pra; ) < k.

Now let j = 2. Define a second multigraph H; constructed from a
complete graph on 2k vertices with the same k — 1 added edges. However,
let V(H3) = {uok+1,U2k+2,...,%ar}. Assign the first 2k? vertices on the
path the same way as before. For the second 2k? vertices, assign their color
classes in the same manner using an Eulerian trail on H; that begins at
ugk+1 and ends at ugk. Only one color class from each of the two groups of
2k? vertices can be in an independent set so B(P(zx2)2; G) < 2k.

Let j be any value. For each set of 2k vertices use a new multigraph H;
where V(H;) = {u2r(i-1)+1,
Uok(i-1)421 - - - ,u4k(,-_1)} for 1 < i < j to assign the vertices in the path to
color classes. Again, for each group of 2k vertices only one color class can
be in an independent set so that B(Psk24,S) < kj = g. Since there exists
a partition & which achieves B(Pa2j; &) < kj, Brrr(k)(Par2;) = kj = 3.

O

Proposition 4 For a path of order 2t2, we have Bprr(Pap) = t.

Proof. From Theorem 3, there exists a partition G such that 8(Py2; S) =
t. Then, Bprr(Pai2) < B(Par2; &) =t. So, we will show that Sppr(Pya) >
t.

Let & = {Sl’ Sz, ceey Sr} bea partition of V(ngz). Let J = maxlSiSrl.S"-l.
If J > t, then clearly 8(Py2; G) > t. Otherwise J < t. By previous work,
B(Pa2;6) 2 Bprrny(Perr) 2 35 > 5 = 3‘,;; = t. &, however, was an
arbitrary partition, so Bprr(Pa:2) = t. Therefore, Bpp(Papa) =t.

O

We would now like to determine Bpgrr(P,) for all values of n. The
following Lemma is an essential step for proving these values.

Lemma 5 For any path P, of order n where n > 2(t — 1)2, we have
ﬂPRT(Pn) 2t
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Proof. Let & = {5,8,,...,5} be a partition of V(P,) such that
B(Pn; 6) = BprT(Pn). Let J = maxi<i<r|Si|. If J > ¢, then B(Py; S) > t.
Otherwise, J < ¢t — 1. Then Bprr(Pn) = B(Prn; ) > Bprr(s)(Pa) 2 & >

12
e > 22txz-11 =t~—1. So, Bprr(FPn) 2 t.
O
Theorem 6 Fort > 3 and a path P, of order n = 2(t — 1)® + b, we have
t—1, ifb=0
BrrT(Pat-1)245) = t, f1<b<3t-2
t+1, f3t—1<b<4t-3

Proof. Notice that this has already been proven in Theorem 3 for the
case when b = 0. By Lemma 5, Bprr(P(e-1)245) > t for 1 < b < 4t — 3.
Consider cases for different values of b.

Case1l. 1<j<2(t-1)=2t-2.

We will show that Bprr(Paqt-1)248) < t. By previous work, there
is a partition & = {S1,853,..., 5} such that the first 2(t — 1)? vertices
are partitioned in such a way that for color classes S; and S; there exist
vertices v; € S; and v; € S; such that v;v; is an edge in the path for
1 <i<j<2t-1), maxicicr|Si| < t —1 and vertex vo_1y2 is an
element of color class S(;_1). Partition the remaining b vertices as 1 —2 —
3 —...—b. Each color class is increased by no more than one element so
that max;<i<»|Si| < t. But then Bprr(Paqi-1)245) < B(Poz—1)246; 6) < t.
Thus, BprT(P(t-1)2+5) =t

Case 2. 26 —1<b<3t—2

Again, we will show that Bprr(Pa(:—1)243) < t. We will use 2t —1 color
classes to construct the partition &. Again, we will construct & so that
for color classes S; and S; there exist v; € S; and v; € S; such that v €
E(Py(t—1)245)- This will ensure that only one color class can be in any
G-independent set and thus Bprr(Pae-1)245) < t. Let V(Pye-1)240) =
{v1,v2,..., U2(t-1)2+b} and V(H) = {u1,uy,... yUg¢—1} where H is the com-
plete graph on 2t — 1 vertices. Since every vertex in H has even degree,
there is an Eulerian cycle on H that can be listed as uy,uz,...,ug1,1
that begins and ends at vertex u;. In this list vertex v, is repeated ¢ times
and the remaining vertices uz,us,...,u2t—2 and ug;_; are repeated ¢t — 1
times. Furthermore, there are (*;) +1 = 2t — 3t 42 vertices in this cycle
list. For the first 2¢2 — 3¢ + 2 vertices in the path, each v; will be assigned
color class S,; where u; is the i*® vertex of the Eulerian cycle list on H.
Note that at this point |Sy| = ¢ and |S;| =t -1 for 2 < i < 2¢t — 1. Note
that n — (2t2 — 3t +2) = 2(t — 1)2 + b — (2t2 — 3t + 2) vertices remain to be
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assigned a color class. Thus, at least 2(t—1)2+2t—1— (2t2-3t+2) =t-1
vertices and at most = 2(t — 1)2 + 3t — 2 — (2t2 — 3t + 2) = 2t — 2 vertices
remain. For these remaining vertices, assign in order the color classes S
through S2;—1. At most, each of these 2t —2 color classes receives one more
element. Thus max;<i<2:-1]Si| < t. As usual, notice that for color classes
S; and S; there are vertices v; € S; and v; € S; such that v;v; is an edge
in the path for 1 < ¢ < j < 2(t — 1) so that only one color class can be in
an G-independent set. So, BpRT(Pa(t-1)2+5) < B(Py(t-1)245; S) = t. Thus,
Bprr(Pae-1y24b) = 1.
Case 3. 3t—-1<b<4t-3

We will begin by showing that Bprr(Pai—1)245) < ¢t + 1. Let
V(Pz(g_1)2+b) = {vlin,...,v,(,_l)z_‘,b} and V(H) = {ult U2y .oy u2t—l} where
H is the complete graph on 2t — 1 vertices. Since every vertex in H has
even degree, there exists an Eulerian cycle on H that can be listed as
Uy, Uz, - . ., Uge—1, U1 SO that it begins and ends at vertex u; and vertex u, is
repeated ¢ times in the list and the remaining vertices ug, us, ..., us:—2 and
ugy—; are repeated t — 1 times in the list. As before, for the first 262 — 3t +2
vertices, assign vertex v; in the path the color class S,; where u; is the
ith vertex of the Eulerian cycle list on H. At this point, |S;| = ¢ and
|Si] =t —1for 2 < i< 2t—1. Again, there are n — (2t2 — 3t + 2) =
2(t — 1)% + b — (2t — 3t + 2) vertices remaining. Thus, there are at
least (2(t — 1) + 3t — 1) — (2t> — 3¢t + 2) = 2t — 1 vertices and at most
(2(t —1)2+4t — 3) — (2t2 — 3t +2) = 3¢ —3 vertices remaining to be assigned
to a color class. Assign the remaining vertices in order to the color classes S,
through Sz.—1 and then to S; through S5, or until reaching the end of the
path. With this partition &, maxi<i<2t-1|Si| =t + 1 and for color classes
S; and S; there are vertices v; € S; and v; € S; such that v;v; is an edge
in the path for 1 < i < j < 2(¢ — 1) so that at most one color class can be
in an G-independent set, and BpRT(Pat—1)2+45) < B(Po(e—1)245;6) =t +1.

Next, we will show that Bprr(Pz(t-1)2+5) = t +1. We can assume that
for each color class S; there is a vertex v; € S; and v; € S; such that v;v;
is an edge in the path for 1 < i < j <. If not, any two independent color
classes can be combined into a single color class. If there exists a partition
G such that B(P,; &) = t where 2t2 —t+1 < n < 2t2 — 1 then there
must be at least 2t color classes. Otherwise, n < 2¢2 —t which implies that
b < 3t — 2. If the number of color classes is greater than 2¢ then n > (2‘;'1)
= 2t2 4+t which implies that b > 5¢ — 2. Thus, if such a partition exists it
must have 2t color classes. However, since only one color class can be in an
G-independent set there must exists an Eulerian trail on the multigraph H
constructed from the complete graph on 2t vertices. Thus, we must add the
t — 1 edges uguge—1, Uaugt—2,. - -, Ut—1Ut+2 and w4+ to H which implies
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that n > (2t2 —t) + (¢ — 1) + 1 where n = 2(t — 1)2 + b. Thus, b > 4t — 2.

Since b < 4t—3, no such partition & exists. Thus, BprT(Pas—1)246) > t+1
and so BprT(P2(t-1)246) =t + 1.
Hence, the theorem is proved.

0

It is important to note the nonmonotonicity when n = 2t2 of the se-
quence for Bprr(P.). In particular, note that Bprr(Poa_y) =t+1>t =

BprT(Pas3).

To construct the NP-completeness theorem, we will define the decision
problem of colored-independence and show a reduction from independence.
Figure 4 shows the construction of a colored-independence problem on a
path from a small graph, namely Hg, while Figure 5 shows the general con-
struction.

Colored-Independence (COLIND)

INSTANCE: Graph G = (V(G), E(G)), pattition & = {5, S5,...,S;} of
V(G), K e Z*, K < |V(G)|

QUESTION: Is 8(G; &) 2 K?

Independence (IND)
INSTANCE: Graph H = (V(H), E(H)), J € Z*, J < [V(H)|
QUESTION: Is (H) > J?

Theorem 7 The colored-independence problem, B(G;G) is NP-complete,
even when G is restricted to be a path.

Proof. It is easy to see that 3(G; ) is in NP since a nondeterministic
algorithm need only choose I’ C [t], a collection of color classes, &;, and
verify that U;er-S; contains no more than one endpoint of every edge and
that | Usep S| = K.

We will reduce the known NP-complete independence problem IND to
the problem COLIND. Now consider a graph H with V(H) = {v;,vs,...,v,}
and E(H) = {e1,€2,...,em} with &; = {u;,w;} and J < |V(H)| = n. As-
sume that deg(v;) = A(H). We will construct the path G with a partition
that has n+3 = ¢ elements. Denote the color classes by 53,53, .. .,5,, Sz, Sy,
and S,. Write the edges of H as a set of K3’s. Add a P; in front of uyw;
and color them as y —z — 2z —y — 2 —y — z — u;. To connect the K5’s add
a P3 from w; to u;4q colored z —y— 2 fori =1 to m — 1. We will make
every S;,1 <t < n, have |S;] = A(H) = d;. Note that v; appears in d; of
the K»’s. Consider d; —ds, the difference between the degrees of v; and vs.
Extend G by adding the path colored £ —y — z — vs a total of d; —d» times.
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Figure 4: The graph Hg transformed to a colored path.
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Now add the path colored £ — y — z — v3 a total of d; — d3 times. Continue
with this process so that the colored path z —y — z — v; is added d; — d;
times. When z — y — z — v, has been added d; — d,, times, G is completely
constructed as shown in Figure 5. Notice that G has p = 4(dyn + 1) — 3m
vertices and each color class Sy, S, ..., Sy has cardinality d;. Furthermore,
classes S; and S, have cardinality 2 + (m — 1) + > [ ,(d1 — d;) = ¢ and
class Sy has cardinality 3 + (m — 1) + 2_{_,(d1 —di) = ¢+ 1. Finally, G
can clearly be constructed in time polynomial in 7.

Let K =Jdy+3+(m—1)+Y i o(di —di) =Jd1 +din+2—m. We
will show that B(H) > J if and only if 8(G;G) > K.

Suppose that there is a set S C V(H) that is an independent set and
|S| > J. For each vertex v; € S, add the color class S; to the set R C
V(G). These vertices in G must be independent since any two vertices v;
and v; were independent in H. Since the color class S, is independent
of all of the color classes S;,S2,...,5q, the color class S, can also be
added to the set R. Clearly R is a colored independent set in G with
|R| = Jdi + (3+(m—1)+ Y1 o(d1 — di)) = Jdi +din + 2 — m and so
B(G;6) 2 Jdy +din+2—m.

Conversely, suppose that 3(G;S) > Jd, +din+2 - m. Let Rbe a
B(G; &)-set. Notice that only one color class from the classes Sz, S, and
S, can be in a colored independent set since each of these color classes is
adjacent to both of the others. Since the cardinality of the color class S, is
greater than the cardinality of color class S, or S;, and S, is not adjacent
to color class S; with 1 < i < n, any colored independent set that uses
color class S, or color class S, can be revised to use color class S,. This
implies that at least J color classes are used from the set {51,53,...,5,}
to contribute at least Jd; vertices to the independent set. Let S = {v; €
V(H) : Si C R}. Clearly, |S| > J. Since any two color classes S; and
S; in the independent set in G imply that all vertices colored v; and v;
are independent, then there does not exist edge ex € E(G) such that e =
{vi,v;}. However, every edge in H is also an edge in G, thus v; and v; are
independent in the graph H. Thus, S is an independent set and (H) > J.

So B(H) > J if and only if 8(G; &) = K, and colored-independence is
NP-complete even for paths.

(]

As noted by Garey and Johnson in [1], the independence problem (IND)
is NP-complete for cubic (planar) graphs as shown by Garey, Johnson, and
Stockmeyer (see [2]). Note that if we restrict the input graph H for IND to
be cubic, each color class i for 1 < i < |V(H)| has a cardinality of at most
three in G. That is, the partition & can be restricted so that & € o3.
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Theorem 8 The colored-independence problem, B(G; &) is NP-complete
when G is restricted to be a path and & € o3.

To prove Theorem 8, one can modify the proof of Theorem 7 as follows.
Figure 6 illustrates the transformation of one cubic graph, H, into a colored
path where each color class has cardinality no greater than three. This
construction is quite similar to the one in Theorem 7 and begins in the
same manner; each edge in the cubic graph H is listed as a K. These K»’s
are connected by Fy’s colored z; — y; — 2; — z; — y; — y; — z; where
1 < j < m— 1. Notice that |S;,| = 2 and |S,,| = |S, | = 3 Furthermore,
since H is a cubic graph, each vertex is listed exactly three times in the
K,’s so that each color class S; for 1 < ¢ < |V(H)| already has the same
cardinality, namely three. The resulting graph G is a path on 10m — 8
vertices. Letting K = 3J + 3(m — 1), we have (H) > J if and only if
B(G;6) > K.

Last, note that the Ps’s connecting the K»’s could be extended to Py’s
colored T; —y; —T; —2; —Y;j —2; —T;—Y;—2; for 1 < j < m—1 so that every
color class has cardinality exactly three, and we have the following theorem.

EXACT-3-COLORED-INDEPENDENCE (X3COLIND)

INSTANCE: Graph G = (V(G), E(G)), partition & = {51, S,,...,5:} of
V(G) where |S;| =3for1<i<t K€ Z*, K <|V(G)|

QUESTION: Is 8(G; 6) > K?

Theorem 9 The decision problem X3COLIND is NP-complete even when
G is restricted to be a path.
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@ @ O @

T n z 1 W
@ @ @

2 n z 1 3
@ @ @ @ @
z2 Y2 z 2 Y2
@ O @

22 Y2 z 1 5
O @ O @ @
z3 Y3 z 3 Y3
@ @ @

23 Y3 Z 4
@ @ @ @ @
T4 Ya 4 4 Y4
@ @ @

24 Y 24 6
@ @ @ @ @
s Ys Ts 5 Ys
@ @ O

z5 Ys 2 4
@ @ @ @ @
Tg Ye Zs 6 Ys
@ @ @

2g Ye 28 4 6
@ @ @ @ @
Ty kg Z 7 yr
O @ O

27 Y7 z 5 3
@ @ @ @
Is Ys T3 8 Ys
@ @ U

zg Ys zg 5 6

Figure 6: A cubic graph transformed into a colored path where the partition
S e 3.
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