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Abstract

The Stein-Lovéasz Theorem can be used to get existence re-
sults for some combinatorial problems using constructive meth-
ods rather than probabilistic methods. In this paper, we dis-
cuss applications of the Stein-Lovasz Theorem to some combi-
natorial set systems and arrays, including perfect hash families,
separating hash families, splitting systems, covering designs,
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lotto designs and A-free systems. We also compare some of
the bounds obtained from the Stein-Lovasz Theorem to those
using the basic probabilistic method.

1 Introduction

The Stein-Lovasz Theorem was first used by Stein [15] and Lovész
(13] in studying some combinatorial covering problems. In [10], the
authors applied this theorem to some problems in coding theory.
The Stein-Lovasz Theorem can be used to get existence results for
some combinatorial problems using constructive methods rather than
probabilistic methods. The Stein-Lovdsz Theorem is now stated and
the proof is included for completeness. The proof follows [15] and

[10].

Theorem 1.1 [10] Let A be a (0,1) matriz with N rows and M
columns. Assume that each row contains at least v ones, and each
column at most a ones. Then there ezists an N x K submatriz C
with

K < N/a+ (M/v)lna < (M/v)(1 +Ina),

such that C does not contain an all-zero row.

Proof: A constructive approach for producing C is presented. Let
A, = A and define A} to be any maximal set of columns from 4,
whose supports are pairwise disjoint and whose columns each have
a ones. Let K, = |A%|. Discard from A, the columns of A} and any
row with a one in A,. We are left with a kg X (M — K;) matrix A,_1,
where k, = N — aK,. Clearly, the columns of A,_; have at most
a — 1 ones (indeed, otherwise such a column could be added to the
previously discarded set, contradicting its maximality). We continue
by doing to A,—1 what we did to A,. That is we define 4;_, to be
any maximal set of columns from Aq—1 whose supports are pairwise
disjoint and whose columns each have a—1 ones. Let K,—1 = |4;_,|.
Then discard from A,_; the columns of A;_; and any row with a
one in A!,_, getting a ko—1 X (M — K; — Ko—1) matrix A,—2, where
ka—l =N — O,Ka - (a - l)Ka_l.
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The process will terminate after at most a steps. The union of
the columns of the discarded sets form the desired submatrix C with

K= i K;.
i=1
The first step of the algorithm gives
ke =N —aK,,
which we rewrite, setting k,41 = N, as

Ka - ka+l - ka.

Analogously, .
K; = _k“'L_‘, i=1,---,a.

Now we derive an upper bound for k; by counting the number of ones
in A;_; in two ways: every row of A;_; contains at least v ones, and
every column at most ¢ — 1 ones, thus

vk <(E-1)(M-K, - —Kip1) S (i - 1)M.
Furthermore,
K= ZKt z kz+1 kz
i=1
ka,+1 ka ka—l k2
T a a(a-—l)-'-(a—l)(a—2)_i-m-l_ri—k1

<Nfa+M/v(lja+1/(a—1)+..+1/2)

thus giving the resuit. 0

We now transform the above into a simple greedy algorithm which
we present following.
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Algorithm 1.1: STEIN-LOVASZ(A)

comment: A is an N x K matrix, each column has at most a ones
each row has at least v ones

comment: Returns a submatrix of A with no all-zero row

C+0

while A has at least one row
find a column c in A having maximum weight
delete all rows of A that contain a “1” in column ¢

do delete column ¢ from A
C«CUc
return (C)

Finding the maximum weight column can be done in O(NK).
The loop gets executed at most a times so the algorithm runs in
time O(aKN) € O(KN?). A tighter analysis may be performed
by taking into account that the number of rows decrease in each
iteration.

The remainder of the paper is organized as follows. In Section 2,
we discuss applications of the Stein-Lovéasz Theorem to some combi-
natorial set systems and arrays such as perfect hash families, sepa-
rating hash families, splitting systems, covering designs, lotto designs
and A-free systems. For most of these combinatorial structures, we
get roughly the same existence results compared to the classic proba-
bilistic method. In Section 3, we conclude the paper with a few final

remarks.

2 Applications of the Stein-Lovasz Theorem

Nonconstructive existence results can often be obtained by proba-
bilistic methods. The interested readers may refer to [1]. For all of
the combinatorial structures under discussion in this paper, bounds
of this type have been derived by the probabilistic method. In this
section, we present a unified treatment of several of these bounds by
the Stein-Lovész Theorem. Furthermore, we show that most of these
bounds are roughly the same as those obtained by the basic proba-
bilistic method. As a result, the Stein-Lovész Theorem can replace



the basic probabilistic method for some problems.

Most of the combinatorial structures discussed in this paper can
be viewed as set systems or arrays. We present some relevant def-
initions. A set system is a pair (X, B), where X is a set of points
and B is a set of subsets of X (called blocks). A set system (X, B)
is called k-uniform if |B| = k for each B € B. A set system can be
described by an incidence matrix. Let (X, B) be a set system where
X = {z1,z9,--- ,zn} and B = {Bi1,By,---,Br}. The incidence
matriz of (X, B) is the N x T matrix A = (a;;), where

v [ 1 ifziEB;
¥=10 ife ¢B;

2.1 Perfect Hash Families

An (n,m,w)-perfect hash family is a set of functions F, such that
Y|=mn,|X|=m, f:Y = X for each f € F, and for any C C
{1,2,...,n} such that |C] = w, there exists at least one f € F such
that f|c is one-to-one. When |F| = N, an (n,m,w)-perfect hash
family will be denoted by PHF(N; n, m, w).

A PHF(N;n,m,w) can be described as an (N, n, g)-array, A, sat-
isfying certain properties. The rows of A are indexed by the functions
in F, the columns are indexed by the elements of Y, and A(f,y) is
defined to be f(y), for all f € F and all y € Y. This array satisfies
the property that, for all choices of w columns of A, there exists a
row of A in which the entries in the w given columns are distinct.

The following result is essentially the bound proved by Mehlhorn
(see [14]) by the classic probabilistic method.

Theorem 2.1 There ezists a PHF(N;n,m,w) if

log (7))

—logg

where

mv

We can get the following result by the Stein-Lov4sz Theorem.
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Theorem 2.2 There ezists a PHF(N;n,m,w) with

v < im (s (3))

Proof: We construct the following incidence matrix A = (a;;), with
m™ columns labeled by all the vectors of length n over an alphabet
of cardinality m. The number of rows is (J}). There is natural corre-
spondence between the w-subsets and the numbers from 1 to (7). If,
in the vector labeling column j, the entries confined to the w-subset
with number i are distinct, then a;; = 1. Otherwise, a;; = 0.

Therefore, if there is a submatrix having N columns, with each
row having at least one “1”, then there exists a PHF(N;n,m,w).
We can now bound N by the Stein-Lovész Theorem.

Obviously, every row of A has weight w!([})m" . The weight
of every column is at most (J}). So by the Stein-Lovész Theorem,

NSw—T!rZ%)-(1+log(Z)),

which is the desired result. 0

Remark 2.3 It is easy to see that —log(l —z) = z. Letz = %—.},’ﬁ,
then we conclude that the two bounds from Theorem 2.1 and Theorem
2.2 are roughly the same. The algorithm as presented consiructs a
Perfect Hash Family one function at a time. At each stage, a new
function is added to the family that mazimizes the number of “new”

w-subsets that are separated. When all w-subsets are separated, the
algorithm stops. It seems quite interesting that such a simple greedy
strategy yields such good bounds. Indeed, Colbourn [5] has shown
these greedy bounds are often the best known even when the number

of columns is quite small.

It should be mentioned that Colbourn [5] has shown that gener-
ating hash families of fixed strength ¢ can be done in time that is
polynomial in the number of columns using an implicit formulation
of the Stein-Lovédsz method.



2.2 Separating Hash Families

We can use similar approach to prove bounds for separating hash
families.

An (n,m, {w1,ws})-separating hash family is a set of functions
F, such that |Y| =n, | X|=m, f: Y — X for each f € F, and
for any C;,C2 C {1,2,...,n} such that |Ci| = w;, |Cs| = w;y and
C1 N C; = 0, there exists at least one f € F such that

{fW:yeC}n{fy):yeCo}=0.

Let SHF(N;n,m, {w1, w2}) denote an (n, m, {w;, wp})-separating hash
family with |F| = N.

An SHF(N;n,m, {w1,ws}) yields an (N, n, ¢)-array, say A, which
satisfies the property that, for any choice of w; columns of A4, say C,
and for any choice of wa columns of A, say C3, where Cy [ C; = 9,
there exists a row of A in which the entries in the columns in C;
are different from the entries in the columns in C;. We only discuss
results where w; # wg. The cases when w; = wy can be handled in
a similar way.

The bounds for separating hash families depend on values of cer-
tain chromatic polynomials which we now define. Given a graph
G = (V, E), let II(G,m) be the chromatic polynomial of G, which is
defined as follows: For a positive integer m, let II{(G, m) denote the
number of m-colorings of G (i.e., the number of ways to color the ver-
tices of G using a specified set of m colors, such that no two vertices
having the same color are joined by an edge e € E). It is well-known
that II(G,m) is a polynomial in m of degree |V|. If the vertices of
G are colored independently, at random, using m colors, then the
probability that the result is an m-coloring is II(G,m)/mlV]. The
complete bipartite graph with parts wiand ws is denoted Ky, 4, .

The following result is given in [18] using the basic probabilistic
method.

Theorem 2.4 Ifw) # wp. Then there ezists a SHF(N;n,m, {w,, wa})

if
log (o) + log (";‘2‘")

—logp

N >
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where
H(le yW2y m)

p= 1- mwi1t+ws

Now we use the Stein-Lovdsz Theorem to get a similar result.

Theorem 2.5 There ezists a SHF(N;n, m, {w, w2}) with

m¥rtv2 n —w
N<—r——[1+1]
H(le,wzam) ( %8 ( 1) ( w2 ))

Proof: We construct the following incidence matrix A = (a;;), with
m™ columns labeled by all the vectors of length n over an alphabet of
cardinality m. The number of rows is (J ) (",")- Let us associate
to each row a double number, the first part being a number from
1to (o), and the second being a number from 1 to ("u2). For a
wl-subset and a disjoint we-subset, We can assign a double number
(21,%2 to it, where 1] € {1 2, ( 1)} and iy € {1 2,: (n—wl)}

Then we have a;j; = 1 if, in the vector labeling the column j, the
entries confined to the w;-subset with number i, are distinct from the
entries confined to the disjoint wq-subset with number é3. Otherwise,

= 0.

Therefore, if there is a submatrix having N columns, with each
row having at least one “1”, then there exists a SHF(NV; n, m, {w1, w2}).
Now we can evaluate the block number N by the Stein-Lovész The-
orem.

Obviously, every row of A has weight II(Ky, w,, m)m" %172,
The weight of every column is at most ()(";."). So by the Stein-
Lovész Theorem,

mW1tw? ( ( n ) (‘n —wy
N<— " _(1+0o ,
T(Kwy wer ™) g w w2 ))

which is the desired result. 0

Note that the analysis in Remark 2.3 also applies here, so the
two bounds from Theorem 2.4 and Theorem 2.5 are also roughly the

same.



2.3 Splitting systems
Suppose n and t are even integers, 0 < ¢ < n. An (n,t)-splitting
system is a pair (X, B) that satisfies the following properties:

1. |X| =n, and B is a set of 3-subsets of X, called blocks

2. for every Y C X such that |Y| = ¢, there exists a block B € B
such that |[BNY| =¢/2.

We will use the notation (N;n,t)-SS to denote an (m,t)-splitting
system having N blocks.

In [17], splitting systems were used in baby-step giant-step algo-
rithms for discrete logarithm problem with low hamming weight. In
these baby-step giant-step algorithms, better time complexity can be
achieved if the splitting system used fewer blocks..

The following result was proved by classic probabilistic method

in [17].
Theorem 2.6 A (N;n,t)-SS, where n and t are even, ezists when-

ever n
> log (t)
—logg

(+/2) ((n':; /2)

(n/2)

We can use the Stein-Lovasz Theorem to get a similar resuit.

where
g=1-

Theorem 2.7 A (N;m,t)-SS exists with

Ng-(;—)(é)z:?) (1+2ln(2))

Proof: We construct the following incidence matrix A = (ay;),
with () columns labeled by all the vectors of length n and weight

2
2, which ensures the set is uniform. We label the columns with

j=12--, (g) The number of rows is (}). Since there is natural
correspondence between the ¢-subsets and the numbers from 1 to ('t‘),
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denote the rows by i. If, in the vector labeling the column j, the ¢-
subset with number i has exactly ¢/2 ones, then a;; = 0. Otherwise,
a;; = 0.

Therefore, if there is a submatrix having N columns, with each
row having at least one “1”, then there exists a (n, t)-splitting system
on N blocks. Now we will bound the number of blocks, N. Obviously,

every row of A has weight v = (})(3=¢) and the weight of every

2
column is @ = (%) . Then, by the Stein-Lovédsz Theorem,

(LX)

which is the desired result. 0

2.4 Covering Designs
Suppose v, k, ¢ are integers and 0 < t < k < v. An (v,k,t) covering
design is a pair (X, B) such that

1. |X| = v and B is a set of k-subsets of X, called blocks and

2. every t-subset of X is a subset of at least one member of B.

Let C(v,k,t) denote the size of an (v, k,t) covering design with
the smallest number of blocks possible. It is clear that C(v, k,t) >

%I%.

t

In [16], Réd] showed that C(v,k,t) < (1+0(1))(%)/(5), using a
non-constructive probabilistic argument. We now show that we can

construct a (v, k, t) covering design with at most (z) / (’:) (1 +1In (’:))
blocks. This is not as sharp as Rodl’s result, but it is constructive.

Theorem 2.8 C(v,k,2) < (1)/(}) (1 +1n ()
Proof: Let X be a set of size v. We construct the following

incidence matrix A = (a;;), with (}) columns labeled by the k-subsets
of X. Label the rows of A with the ¢-subsets of X. Now, set a;; =1
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if the k-subset corresponding to the i** column of A contains the
t-subset corresponding to the j** row of A. Otherwise, set a;; = 0.
Notice that each row contains exactly (}_ t) entries that are 1 and
each column has exactly (¥) entries that are 1.

By the Stein-Lovész Theorem, there is a (}) x K submatrix C
such that C does not contain an all-zero row and K < (¥)/(YZ) (1 +

In (§). We see that (3)/(:2) (1+1n(5) = ()/(5) (1+1n(5)), s
() ) = () (1=%)- Therefore, there are at most (*)/(¥) (1 +In ('t‘))

columns in C. Finally, by definition of A and C, the k-subsets that
correspond to the columns of C form a (v, k,t) covering design.

It should also be mentioned that the Stein-Lovdsz method has
been used (in disguise) to make a related object, called covering
arrays, see Cohen et al. [6]. It has been shown that for covering
arrays, the method can be implemented in time that is polynomial
in the number of columns when ¢ is fixed. These results can be found
in Bryce and Colbourn [3, 4].

2.5 Lotto Designs

An (n, k,p, t)-lotto design or generalized covering is an n-set, V, of
elements and a set B of k-element subsets of V, so that for any p-set,
P of V, there is a k-set, B € B for which [PUB| > t. L(n,k,p,t)
denotes the smallest number of k-sets in any (n, k, p, t)-lotto design.

In (12], there is a survey of results on lotto designs. The volume

bound is L(n, k,p,t) > (7) /3 min(pik) (®)(3=?) and a general upper

bound is L(n, k,p,t) < fmil(l] There is no probabilistic upper

bound for lotto designs in the literature. However, one can get a
constructive upper bound with the following theorem.

1+In S[REnpk) (ky (n—k
Theorem 2.9 L(n,k,p,t) < (z) ZZ":‘Z‘(;"‘) (P)((.ZE:-;

k—i

Proof: A lotto design has the following incidence matrix 4 = (ay),

with (}) columns labeled by the k-subsets of V and with (") rows of
A labeled by the p—subsets of V. Now, set a;; = 1 if the p-subset cor-
responding to the i** row of A intersects the k-subset corresponding



to the j* column of A in ¢ or more elements. Otherwise, set a;; = 0.

Notice that each row contains exactly Y ""*) (2) ("~?) entries that

are 1 and each column has exactly ™) (k) (32%). entries that

are 1.
The Stein-Lovdsz Theorem can now be used to get the result.

2.6 A-free systems

A family of r sets is called a A- system of size r if any two of the r
sets have the same intersection. That is, By, ..., By is a A-system of
size r if

B;NBy =()iz1Bi

forall j,j € {1,...,7},j # 4. An (N,n,r) — A—free system is a set
system (X, B), with |X| = N and |B| = n, such that no subset of r
of the blocks in B forms a A- system of size 7. Denote by N(n,r)
the minimum integer N such that there exists an (N, n,r) — A—free
system. The problem of determining bounds on N(n,r) has a long
history and has been studied by many authors (for a paper on this
topic, see [8]). It has been observed as early as 1978 (see [9]) that
upper bounds on (N, n,r) can be obtained by using the probabilistic
method, though detailed results do not seem to have been published.
We can use the Stein-Lovész Theorem to get a bound. The proof
is a modification of the proof given in [7] and is similar to other
proofs we have presented in this paper, and therefore it is omitted.

Theorem 2.10 A (N,n,r) — A-free system ezists with
1 n
& _—
N< 1_q(1+1n(?_))
where

1
I r—1 — -— r =
g=p +7p (1 p) + (1 p) ' P ('I‘ _ 1)1/(r—2) +1




3 Concluding remarks

In this paper, we use the Stein-Lovédsz Theorem to get bounds for
some combinatorial structures, such as perfect hash families, sep-
arating hash families, splitting systems, covering designs, lotto de-
signs and A-free systems, and most of these bounds are roughly the
same as those obtained by the basic probabilistic method. Thus, the
Stein-Lovdsz Theorem, due to its constructive nature, can be looked
at as a de-randomized algorithm for the basic probabilistic meth-
ods for most of the discussed problems. Note that better bounds for
these problems have been obtained by more sophisticated probabilis-
tic methods, like the Lovész Local Lemma [7],or the second moment
method (see [1] or [16]). It is an interesting open problem to find the
corresponding de-randomized algorithms.
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