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ABSTRACT. Let P be a graph property and G a graph. G is said to be -
saturated if G does not have property P but the addition of any edge between
non-adjacent vertices of G results in a graph with property P. If ? is a bipartite
graph property and G is a bipartite graph not in P, but the addition of any
edge between non-adjacent vertices in different parts results in a graph in P,
then G is P-bisaturated. We characterize all P-saturated graphs, for which P is
the family of interval graphs, and show that this family is precisely the family
of maximally non-chordal graphs. We also present a conjectured characteriza-
tion of all P-bisaturated graphs, in the case where P is the family of interval
bigraphs, and prove it as far as current forbidden subgraph characterizations
allow. We demonstrate that extremal noninterval graphs and extremal non-
interval bigraphs are highly related, in that the former is simply a complete
graph with 2K removed and the latter is a complete bipartite graph with 3K,
removed.

1. INTRODUCTION

Definition 1.1. Let 8 be a family of open intervals on the real line, and G a graph
defined by the elements of 8 in the following way. For each interval s € 8 let v, be
a vertez of G and join vertices vs, v, in G if and only if the intervals s,t € 8 have a
non-empty intersection. We say that § is an interval representation of the graph G.
Every graph for which an interval representation ezists is called an interval graph.

Definition 1.2. A bipartite graph G = (X,Y) is an interval bigraph if every
vertez can be assoctated with an open interval on the real line in which two vertices
z € X,y € Y are adjacent in G if and only if their associated intervals have a
non-emptly intersection.

Note that we retain the bipartite property by not joining 21,z € X or g1, € Y
even if their associated intervals intersect.

Interval graphs, and related families including interval bigraphs, proper interval
graphs, and circular arc graphs, have been studied extensively, ([1], (2], [3], [6],
(8], [9], and [10]). Identification of interval graphs and bigraphs has been a. topic of
interest in graph theory for some time. Since Lekkerkerker and Boland determined a
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simple forbidden subgraph characterization of interval graphs in 1962 [9], it has been
assumed that a similar characterization could be found for interval bigraphs. Early
in their study [6] interval bigraphs were thought to be similar enough to interval
graphs that a simple translation of the forbidden family of asteroidal triples and
induced cycles of length at least four into the family of asteroidal triples of edges
and induced cycles of length at least six would suffice for determining whether or
not a graph was an interval bigraph. This family was shown to be insufficient in
[10], and we are currently left with the graphs in Theorems 3.4 and 3.5. This family
has not yet proven to be complete, and graphs like those in [7] may in fact confirm
that it is not.

We are primarily concerned with properties of these families related to edge-
maximality, which has thus far received little attention. In (4] Eckhoff examines
r-extremal interval graphs, those interval graphs with the maximum number of
edges among those with fixed order and clique number r, and characterizes them.
We extend the study of extremal interval graphs to those graphs that are not inter-
val graphs and have the maximum number of edges, and additionally we examine
related families. Although there is a known, simple forbidden subgraph character-
ization for interval graphs, and an as yet incomplete and very different forbidden
subgraph characterization for interval bigraphs, we show that the family of ex-
tremal noninterval graphs and a sub-family of extremal noninterval bigraphs are
very similar.

We will use P to represent both a graph property and the complete family of all

graphs with property P.
Definition 1.3. Let P be a graph property and let G be a graph not in P such that
for any edge € = zy € G° the graph G + ¢ is in P. Then G is P-saturated. If
H = (X,Y) is a bipartite graph not in P such that for any edge € = zy € H with
z€ X,y €Y the graph H +¢ is in P. We say that H is P-bisaturated.

For n a positive integer we let Sat(n, P) be the family of all P-saturated graphs
on n vertices.

In section 2 we characterize all P;-saturated graphs for P; the family of inter-
val graphs. We then characterize all Pp-bisaturated graphs, up to a conjectured
forbidden subgraph characterization, where Py is the family of interval bigraphs in
section 3. In section 4 we address the family of edge maximal split non-interval
graphs. We end by examining unit interval and circular arc graphs.

9. EDGE-MAXIMAL NON-INTERVAL GRAPHS

Let G be a graph. An asteroidal triple in G is a set A of three vertices such that
between any two vertices in A there is a path within G from one to the other that
avoids all neighbors of the third. An example is in the 3-sun in Fig. 1. Lekkerkerker
and Boland showed that all interval graphs are completely characterized by the
absence of both asteroidal triples and induced cycles of length greater than 3 in [9).

Lemma 2.1. Any graph containing an asteroidal triple contains an induced P,.

Proof. Let A = {z,y,2} C G be an asteroidal triple and assume that G does
not contain an induced P;. Between any two vertices in A, say z,y, there is a
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FIGURE 1. The 3-sun in which the white vertices form an AT

shortest path P(z,y) in G avoiding the neighbors of z. P(z,y) cannot have length
1 since there is a z,y path that avoids all neighbors of 2 and thus y cannot be
a neighbor of z. If P(z,y) has length 3 or greater then it contains an induced
P;. Therefore P(z,y), P(z,z), P(y,z) all have length 2. These three paths are
internally disjoint so G contains a 6-cycle zaybzca. If {a,b,c} are not mutually
adjacent then G contains an induced Py. Thus G contains the 3-sun as a subgraph.
If {a,b, ¢, z,v, 2z} does not induce the 3-sun then one of the asteroidal paths P(u,v)
between two vertices in A contains a neighbor of the third. However, the 3-sun,
and thus G, contains the induced P yacz. (]

Let P; denote the set of interval graphs.
Theorem 2.2. Sat(n,P;) = {CaV Kn_s},n >4

Proof. Say G € Sat(n,P;). By Lemma 2.1 G cannot contain an asteroidal triple
since the endpoints of an induced P can be joined to create an induced Cj, which
is another of our forbidden subgraphs. Therefore, G must contain an induced cycle
of length at least 4. If G contains an induced C,k > 4 then there is a pair of
vertices that when joined create an induced Cy. So, G must contain an induced
4-cycle C. If there is an edge € € G° — C° then G + ¢ still contains the induced
4-cycle, and thus is not an interval graph. Therefore, G must be a 4-cycle joined

to a complete graph. (]

Note that the family of maximally non-interval graphs is the collection of cliques
with an isolated pair of edges removed, precisely the same as the family of maxi-
mally non-chordal graphs. While there are non-interval chordal graphs containing
asteroidal triples, we have shown that no such graph is edge-maximally non-interval.

3. EDGE-MAXIMAL NON-INTERVAL BIGRAPHS

Throughout this section we are concerned with bipartite graphs G = (X,Y).
We sometimes choose to discuss part X or Y, but since there is no distinction
between parts X and Y this choice is merely made for convenience, and generality
should be assumed.

We begin by introducing some new structures.

Definition 3.1. [10] A set A = {a,c,e} of three edges of a graph G form an
asteriodal triple of edges (ATE) if for any two, say a,c, there is a path from one
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FIGURE 2. The bold edges form an asteriodal triple of edges
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FiGURE 3. Three graphs, called insects, that contain an exobiclique
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FIGURE 4. An edge asteroid of order 5. Note that joining either
vertex in e; to any vertex on the path between the two white
vertices, inclusive, eliminates this property.

endpoint of a to an endpoint of ¢ that avoids all neighbors of the endpoints of e,
(see Fig. 2).

Definition 3.2. [8] Two sets A, B are incomparable if AZ B and B € A. An
exobiclique is a bipartite graph H = (X,Y) containing a biclique with nonempty
parts M C X and N CY such that each of X — M andY — N contain three vertices
with incomparable neighborhoods in the biclique, (see Fig. 3).

Definition 3.3. [8] An edge-asteroid of order 2k +1 is a set of edges eg, ey, ..., e
such that, for each i =0,1,...,2k, there is a path containing both ¢; and e;y, that
avoids the neighbors of €irk+1; the subscript addition is modulo 2k + 1, (see Fig.

4)

Note that the cycle Cg contains an asteroidal triple of edges but is not an
edge-asteroid of order 3, since for any 3 pairwise non-incident edges any pair have
an endpoint in the neighborhood of the third, (see Fig. 5). Thus, although their
definitions are similar, an edge-asteroid is not simply a generalized asteroidal triple.

None of the structures in Definitions 3.1, 3.2, 3.3 are permitted as induced
subgraphs in an interval bigraph, as seen by the following theorems of Muller, Hell
and Huang, and Harary et al.
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FIGURE 5. An ATE that is not an EA of order 3

Theorem 3.4. A bipartite graph containing an induced asteroidal triple of edges
or an induced cycle with length greater than 4 is not an interval bigraph. [6]

Theorem 3.5. A bipartite graph containing an induced ezobicligue or an edge
asteroid is not an interval bigraph. [8]

Let P, be the family of interval bigraphs.

There is currently no forbidden subgraph characterization of interval bigraphs.
However, the preceding theorems provide the most extensive known collection of
forbidden subgraphs. Though there are currently proposed bipartite graphs [7] that
are not interval but do not fall into one of the cases addressed in Theorems 3.4 and
3.5 the authors are not aware of any examples without induced paths of length at
least 5. Since joining the endpoints of an induced P; creates an induced Cs no
graph containing an induced Ps is Py-saturated.

We will return to this issue at the end of this section.

Definition 3.6. Let G = (A,B),H = (C,D) be bipartite graphs. The
bipartite joins of G and H are the graphs consisting of a copy of G, a copy of
H, and either all adjacencies between A and C and between B and D, or all ad-
Jjacencies between A and D and between B and C. Denote by G x H the family of

bipartite joins of G and H.

Lemma 3.7. Let G = (X,Y) be a Py-bisaturated bipartite graph of order n. If G
contains an induced Cq then there is an integer m < n such that G is a graph in

06 * Km,n-m—6~

Proof. Assume not, and let C be an induced Cg in G. There is a non-adjacent pair
of vertices z € X,y € Y such that without loss of generality z ¢ C. The addition
of edge zy to G does not destroy the induced Cg and hence G is not an interval
bigraph. So, G must be of the form described. ]

Lemma 3.8. No Py-bisaturated bipartite graph contains an induced P;.
Proof. Let G be a bipartite graph with v1,v,...,vs an induced Ps. The addition

of edge vyvg creates an induced Cg in the new graph, and hence G is not P-
bisaturated. O

Lemma 3.9. Every bigraph containing an asteroidal triple of edges contains either
an induced Ps or an induced Cg.
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Proof. Let G = X UY be a bigraph with an asteroidal triple of edges, a = a;as,
b = b1bg, and ¢ = cicz such that ay,b1,¢1 € X and a2,bz,c2 € Y. Assume there
is no induced P or Cg in G, so a,b, and ¢ cannot be alternating edges of a Cs.
Therefore, we assume there exists at least one minimal asteroidal triple path, P?,
with length at least 2. Without loss of generality assume this path is between edges
a and b. If P! has 3 or more edges then it comprises an induced Pg with edges a and
b, so assume this path between a and b has length 2, and label the vertices a,,d, b;.
There exists a minimal path from edge b to ¢ that avoids the neighborhood of a,
call it P2. Again if P? has 3 or more edges then G contains an induced Ps, so P?
has 1 or 2 edges. If P2 has length 1 and the path is by cz, then the edge c;a; either
exists, creating an induced Cg with aza;dbiciciaz, or does not, in which case the
vertices form an induced P;. Now assume the edge comprising P2 is bac;. In this
situation, there are no more edges among these 6, and aza1dbibac; is an induced
Ps. Therefore, let us assume that P? has length 2. If P? = bjec; then, since there
are no more edges among these 6 vertices, a;dbec;c; is an induced Pg. So assume
the path is bpec;. Now consider possible adjacencies between e,d and az,c;. If
ed,azcy € E(G), then ciazaidecycy is an induced Cg. Otherwise, if neither edge is
in G then aga,db,bse is an induced Pg. Finally, if ed € E(G), but esc; ¢ E(G),
then agaydecycy is an induced Ps. If aze; € E(G), but ed ¢ E(G), then the 6
vertices create an induced Cs, which contains an induced Ps. Therefore, G has an

induced Ps or Cs. ]

By Lemmas 3.8 and 3.9 no bipartite graph with an asteroidal triple of edges is
P,-bisaturated unless it is of the form Cg * Ki,m for integers l,m.

Lemma 3.10. Every marimal exobiclique contains an induced Cs.

Proof. Let G = (A, B) be an exobiclique with the property that for any edge
€ € G°,G + ¢ is not an exobiclique. There are sets X,N C A and Y, M C B such
that H = (M, N) is a biclique and X, Y’ are sets of size at least 3 with incomparable
neighborhoods. There exist 1,22 € X with neighbors m;, mz € M, respectively,
such that z; »~ my and o » m;. Similarly there exist y1,y2 € Y with neighbors
ny,ng € N, respectively, such that 3 = nz and yz = ny. If z1y2 or 22y, is an edge
in G, then mynymaTayez1m; is an induced Cg. Otherwise, one of these edges can
be added without eliminating the property that G is an exobiclique, and thus G
remains a non-interval bigraph. O

By Lemmas 3.8 and 3.10 no bipartite graph containing an exobiclique is P;-
bisaturated unless it is of the form Cs * Kim for integers [, m.

Now consider G = (X,Y), a bipartite graph containing an edge asteroid
{eo,e1,. .. e2x} of order 2k + 1. For each i ¢; is the edge joining z; € X,y; € Y.
If the distance between the sets {z;,u:} and {zj,y;} is greater than 2 for some
0 < i,j < 2k then G contains an induced Pg, so we need only consider the case in
which the distance between any pair of edges in an edge asteroid is at most 2. Note
that for all 0 < i < 2k we have that no endpoints of either e; or e;4, is a neighbor
of either endpoint of €;4r+1.

Lemma 3.11. Ifk =1 then G contains an induced Pg.
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FIGURE 6. The addition of edge {Zi+1,¥i+k+1} creates an ATE

Proof. Let {zoyo, £1¥1,ZT2y2} be an edge asteroid of order 3 in G and assume that G
contains no induced Ps. The endpoints z; and y; are not adjacent for any distinct
pair ¢, j € {0,1,2}, so without loss of generality there is a path yyay; in G for some
vertex a that is not the endpoint of an edge in the EA. Similarly there is a distinct
vertex b that is not an endpoint of an edge in the EA such that either y;bys or
z1bz; is a path in G. Therefore, zoyoayibyz or Toyoay z1b is an induced P in
G. O

Now assume that k > 1. First, consider the case in which there is some i such
that Yi ~ Titk+2-
Lemma 3.12. If Yitht+1 ~ Zitka2 and T; ~ Yit1 then G is not Py-bisaturated.

Proof. Let €1 = ¥iZitk+2:€2 = Yi+1Ti+k+1,€3 = Yipk+1Titk+2. Note that €, €3
are edges in G and ¢ is not, (Fig. 6). The addition of €, however, results in the
asteroidal triple of edges {¢1,€2,€3}. By Lemma 3.9 G is not Py-bisaturated. [

Lemma 38.18. If Yitit1 » Tizhs2 OF Ti % Yiy1 then G is not Py-bisaturated.

Proof. In the former case let € = 41 ¥i+k+1, and in the latter let € = y; 1) Tipiq1.
Let €1 = ¥iTitk+1,€2 = €i41,€3 = €ipk4+1. The addition of edge € results in the
asteroidal triple of edges {€;, €2,€3}. By Lemma 3.9, G is not Py-bisaturated. [

Now, consider the alternate case in which there is no 7 such that y; ~ z;y449.

Lemma 3.14. Let G = (X,Y) contain an edge asteroid {eg, ey,..., e} of order
greater than three with the property that for all i, y; % Tiyrys and z; = yiyrys.
Then, G is not Pp-bisaturated.

Proof.

Case 1: Assume that there is an ¢ such that a shortest path between e; and €itk+1
includes the vertex a;, a shortest path between e;;; and e;;r42 includes
the vertex a1 # @i, e; is not adjacent to a;;;, and e;; is not adjacent to
;. Then, we have one of the graphs in Fig. 7 as a subgraph of G. There
is'a path from the endpoints of e; to the endpoints of e;;; that avoids the
neighbors of the endpoints of €;+k+1, and thus both graphs in the figure
contain an induced Pj that includes as a subpath yiaiyiik41Zisxs1. By
Lemma 3.8 G is not Py-bisaturated.
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FIGURE 9. Possible configurations when a;,a;+1 in different par-
tite sets

Case 2: Now say that for all i there is a vertex a; such that e;, €41, €i4k4+1 ~ ai, 8s
depicted in Figure 8.

Case 2a:

Case 2b:

There is an integer ¢ such that a; and a1 are distinct vertices, (Fig.
9). If a;,ai+1 are in the same partite set of G, set X, then let ¢ =
TiVit+k+2- The addition of € to G results in the asteroidal triple of
edges {ei, €41, €ivk+2)-

If a; € X,ai41 €Y, (Fig. 9), then either a; « a;41, in which case
GiYi41Ti+10i+1Ti+k+2Vi+k+2 forms an induced Pg, or ¢; ~ @iy, in
which case the addition of the edge z;¥i4+k+2 completes an asteroidal
triple of edges among {e, €i+k+2,@iGi+1.

There is a vertex e in G that satisfies a; =a for all 0 <i < 2k. Let A
be the collection of all such vertices, i.e. A= {a € V(G): a ~ ¢;Vi}.
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FIGURE 10. The forbidden subgraphs G; and G5

G’ = G — A has the same edge asteroid as G since no edge asteroid
path includes a vertex in A, and G’ contains no vertex adjacent to all
edges of the edge asteroid. So, G’ falls into Case 1 or Case 2a above,
and is an induced subgraph of G.

(u

Lemmas 3.7 through 3.14 lead us to the following conjecture.

Conjecture 3.15. G is Py-bisaturated if and only if G € Cg x Ky for some
integers l,m.

Note that this family of maximally non-interval bigraphs is precisely the family
of bicliques with 3 isolated edges removed.

Thus far we have assumed the forbidden subgraph characterization implied by
Theorems 3.4 and 3.5. While there are current attempts at constructing examples
of graphs that potentially invalidate this characterization, they are all quite large.
Because complete bipartite graphs are interval bigraphs any non-interval bigraph
that avoids the aforementioned forbidden subgraphs contains a high number of
non-adjacencies. Therefore, we expect that any bipartite graphs that violate the
characterization will contain rather long induced paths. We have examined one
such graph, briefly mentioned at the top of page 323 in [8], and supplied to us [7]
by the authors of [8], and we have found it to contain an induced P;.

4. EDGE-MAXIMAL SPLIT NON-INTERVAL GRAPHS

Definition 4.1. A graph G is a split graph if the vertices can be partitioned into
sets A and B such that the induced subgraph on A is a complete graph and the the
induced subgraph on B an independent set.

See Fig. 10 for examples in which the white vertices represent independent sets

and the black vertices cliques.

Let P, denote the property of being an interval graph or a non-split graph. Let
G, and G; be the graphs in Fig. 10, and let G2 denote the graph in Fig. 1.

Foldes and Hammer showed [5] that a split graph is interval if and only if it
does not contain an induced subgraph isomorphic to one of the graphs Gy, G, Gs.

Lemma 4.2. Gi,G; € Sat(n,P,), but G; is not.
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Proof. G, and G are both split graphs that contain asteroidal triples denoted by
white vertices in Figures 1 and 10. Any edge that can be added to either graph
without resulting in an interval graph is an edge that eliminates the split property.
However, the addition of edge ab to Gs, (see Fig. 10), does not destroy the asteroidal
triple nor result in a non-split graph. (]

Theorem 4.3. Sat(n,P,) = {G1V Kn-6,G2V Kn_g},n > 6

Proof. Say G € Sat(n,P,). One of {G;, G2} must therefore be a subgraph of G. If
n > 6 then G also contains least one other vertex v. The smaller graph G - v is a
split graph, with vertices appropriately partitioned into sets with induced subgraphs
A, a clique, and B, an independent set. Let u be a neighbor of v. If u is in B then
in order for G to be a split graph AU {v} must be a complete graph. We can also
join v to every other vertex in B without destroying either condition. So, v is is
adjacent to every vertex in G — {v}. If u is in A then either < V(4)U {v} > isa
clique, which again implies that v is adjacent to every vertex in G — {v}, or there is
a vertex a € A such that v = a and V(B) U {v} is an independent set. In this case
the edge va can be added to G without violating the split property, and therefore
AU {v} must be a clique. Hence v is adjacent to every vertex in B in order for G

to be P-saturated.
Therefore, Sat(n, P,) = {G1 V Kn—6,G2 V Kp—6} whenn > 6 (]

5. OTHER EXAMPLES

Definition 5.1. A graph G is a unit interval graph if it has an interval represen-
tation in which every verter is associated with an interval of length 1.

The following theorem of Roberts [11] will be useful.

Theorem 5.2. An interval graph G is a unit interval graph if and only if it does
not contain Ky 3 as an induced subgraph.

Let P, denote the family of unit interval graphs.
Theorem 5.3. Sat(n,P,) = {K1,3V Kn-4,CsV Kns},n 24

Proof. Let n > 4. We have already seen in Theorem 2.2 that Cy V K4 is an
edge maximal non-interval graph. Since the addition of an edge results in a clique
with a single edge removed, which does not contain an induced K g3, it is also
in Sat(n,P,). K13V Kn-4 is an interval graph, but by Theorem 5.2 is not unit
interval. However, any edge added to Kj 3V Kn—4, (in fact, there is only one such
edge without loss of generality), eliminates the induced K),3 without creating either
an asteroidal triple or a large induced cycle. So, this graph is also in Sat(n, P,).

Now say that G is a P,-saturated graph. Then G must contain either a large
cycle, an asteroidal triple, or a Kj 3 as an induced subgraph. Denote this induced
subgraph J. By Lemma 2.1 we know G cannot contain an asteroidal triple, and by
Theorem 2.2 there is no induced cycle with length greater than 4. So, G contains
either an induced Kj 3 or an induced Cy. If G is not precisely K13V K,_4 or
C4V Kn_4, then it is a proper subgraph of one of them. There is an edge that can
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FIGURE 11. The basic minimally non-circular arc graphs

A

FIGURE 12. A graph and its circular arc representation

be added to G without eliminating J as an induced subgraph. Hence, Sat(n, ?,) =
{K13V Kn—4,CsV Kn_y4} O

We now introduce a type of graph often studied alongside interval graphs.

Definition 5.4. A graph G is called a circular arc graph if it is an interval graph
of a family of arcs of a circle.

In other words, instead of modeling intervals in the real line, the vertices of a
circular arc graph can be represented by arcs on a circle. Note that all interval
graphs are easily seen to be circular arc graphs by applying an isomorphism from
the real line to the unit circle minus a point.

A graph G is minimally P if it has property P but no proper subgraph has
property P. Denote by G* the graph obtained from G by adding an isolated vertex.
We will use the following Lemma. from [12].

Lemma 5.5. The following graphs are minimally non-circular arc graphs: bipartite
claw, net*, n-net for alln > 3, umbrella®, (n-tent)* for alln > 3, and C3 for every
n > 4. Any other minimally non-circular arc graph is connected.

Bonomo et al. refers to the graphs above (see Fig. 11) as basic minimally
non-circular arc graphs in (1]. Let P, denote the family of circular arc graphs.

Theorem 5.8. The only P.-saturated basic minimally non-circular arc graph is
C;.
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Proof. 1t is easy to show that C} is P.-saturated, since the addition of any edge
results in either a C; with a pendant edge, realizable by the arcs

(0,2.1),(2,4.1), (4,6.1), (6,0.1), (1,1.5)

in radians (Fig. 12), or (K4 — €) U K, which is an interval graph and therefore a
circular arc graph. Now let G be a bipartite claw, net*®, n-net or umbrella*. The
addition of the edge ab as labeled in figure 11 creates an induced C} from the ab-
path, edge ab, and vertex c. In the n-tent if we add the edge joining vertices 1 and
n, then we get an induced C§ from the vertices: 1,d,e,n, and c. If n > 5 in the
Cz, then the addition of the edge between vertices 1 and n ~ 2 creates an induced
C; from the vertices: 1,n,n—1,n -2, and c. Therefore, the only basic minimally
non-circular arc graph in Sat(r, ?,) is Cj. 0

6. CONCLUSION

Given a family § of graphs characterized by a family F of forbidden induced
subgraphs it is not a surprise that any graph that is edge-maximal non-§ is the
join of a graph in F with a complete graph, as we saw in Theorem 2.2. What is
interesting, however, is how similar the families in Theorem 2.2 and Conjecture
3.15 are in light of the differences between the forbidden subgraphs associated
with interval graphs and interval bigraphs. It is of course our hope that any new
developments in the identification of interval bigraphs will support Conjecture 3.15.
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