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Abstract. A family G of connected graphs is a family with con-
stant metric dimension if dim(G) is finite and does not depend
upon the choice of G in G.

The metric dimension of some classes of plane graphs has been de-
termined in (3], [4], (5], [10], [13) and [18] while metric dimension
of some classes of convex polytopes has been determined in [8] and
a question was raised as an open problem: Is it the case that the
graph of every convex polytope has constant metric dimension?
In this paper, we study the metric dimension of two classes of con-
vex polytopes. It is shown that these classes of convex polytopes
have constant metric dimension and only three vertices chosen ap-
propriately suffice to resolve all the vertices of these classes of con-
vex polytopes. It is natural to ask for the characterization of classes
of convex polytopes with constant metric dimension.

Keywords: Metric dimension, basis, resolving set, plane graph, antiprism,
convez polytopes

1 Notation and preliminary results

If G is a connected graph, the distance d(u,v) between two vertices
u,v € V(G) is the length of a shortest path between them. Let W =
{w1, w2, ....,wr} be an ordered set of vertices of G and let v be a vertex
of G. The representation T(v|W) of v with respect to W is the k-tuple
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(d(v, w), d(v, w2), ....., d(v, wx)). If distinct vertices of G have distinct rep-
resentations with respect to W, then W is called a resolving set for G [3].
A resolving set of minimum cardinality is called a basis for G and this car-
dinality is the metric dimension of G, denoted by dim(G). The concepts
of resolving set and metric basis have previously appeared in the literature
(see [3-6, 8-11, 13-18]).

For a given ordered set of vertices W = {w;, w2, ..., wx} of a graph G, the
ith component of r(v|W) is 0 if and only if v = w;. Thus, to show that W
is a resolving set it suffices to verify that r(z|W) # r(y|W) for each pair of
distinct vertices z,y € V(G)\W.

A useful property in finding dim(G) is the following:

Lemma 1. [17] Let W be a resolving set for a connected graph G and
u,v € V(G). If d(u,w) = d(v,w) for all vertices w € V(G) \ {u,v}, then
{u, v} "W #0.

Slater refereed to the metric dimension of a graph as its location number
and motivated the study of this invariant by its application to the place-
ment of a minimum number of sonar/loran detecting devices in a network
so that the position of every vertex in the network can be uniquely de-
scribed in terms of its distances to the devices in the set ([15],(16]). These
concepts have also some applications in chemistry for representing chemi-
cal compounds ([6],{11]) or to problems of pattern recognition and image
processing, some of which involve the use of hierarchical data structures
[14].

By denoting G + H, we mean the join of G and H. A wheel W, is de-
fined as W, = Ky +Cp,forn > 3,2 fanis fo = K1 + P, forn > 1
and Jahangir graph Jon,(n > 2) (also known as gear graph) is obtained
from the wheel Wa, by alternately deleting n spokes. Buczkowski et al. [3]
determined the dimension of wheel W,, Caceres et al. [5] the dimension
of fan f, and Tomescu and Javaid [18] the dimension of Jahangir graph

Jon.

Theorem 1. ([3], [5], [18]) Let W, be a wheel of order n > 3, f, be fan
of order n > 1 and Ja,, be a Jahangir graph. Then

(i) For n > 7, dim(W,) = | 2£2];

(ii) Forn > 7, dim(fn) = [J- I;

(iii) For n > 4, dim(J2p) = [ .

The metric dimension of all these plane graphs depends upon the number
of vertices in the graph.

On the other hand, we say that a family G of connected graphs is a family
with constant metric dimension if dim(G) is finite and does not depend
upon the choice of G in G. In (6] it was shown that a graph has metric
dimension 1 if and only if it is a path, hence paths on n vertices constitute
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a family of graphs with constant metric dimension. Similarly, cycles with
n(> 3) vertices also constitute such a family of graphs as their metric di-
mension is 2 and does not depend upon on the number of vertices n. In [4]
it was proved that

2, if n is odd;

dim( P, x Cn)'_‘{ 3, if n is even.

Since prisms Dy, are the trivalent plane graphs obtained by the cross prod-
uct of path P, with a cycle Cy,, this implies that

2, if n is odd;

dzm(Dn)={ 3, if n is even.

So, prisms constitute a family of 3-regular graphs with constant metric
dimension. Javaid et al. proved in [10] that the plane graph antiprism
A, constitute a family of regular graphs with constant metric dimen-
sion as dim(A,) = 3 for every n > 5. The prism and the antiprism are
Archimedean convex polytopes defined e.g. in [12]. The metric dimension
of some classes of convex polytopes has been determined in [8] and it is
shown that these classes of convex polytopes have constant metric dimen-
sion 3 and an open problem was raised:
Open problem [8]: Is it the case that the graph of every convex polytope
has constant metric dimension?
Note that the problem of determining whether dim(G) < k is an NP-
complete problem [7].
Let the graph of antiprism A, [1] be given. We insert a vertex a,y, inside
the n-gone P and by inside the n-gone P'.
We join any vertex a; of P with the vertex a,.; and any vertex b; of P’ with
the vertex bp41 for i = 1,2,...,n. Thus we obtain the graph A’. The dual
graph to A}, with vertices a,az,...,@n;b1,b2,...,bn; €1, 02, ..., Cn3d1, da, ..., dp
is the graph of the convex polytope defined in [1] and is denoted by D,,. It
has 5-sided faces and n-sided faces.
The graph of convex polytope @, [2] (Fig. 1) can be obtained from the
graph of convex polytope D, [1] by adding new edges b;b;,,. i.e., V(Qn) =
V(Dy) and E(Qn) = E(Dn) U {bibi+1 : 1 < i < n}. It was shown in [8] that
both graph of convex polytopes D,, and Q,, have same metric dimension 3.
In this paper, we extend this study by considering two classes of convex
polytopes which can be obtained from the graph of convex polytope Q,
defined in [2] by adding new edges in it in specific ways . In the second
section, we study the metric dimension of graph of convex polytope L,
consisting of 3-sided faces, 4-sided faces and n-sided faces. In the third sec-
tion, we investigate the metric dimension of the graph of convex polytope
B,, consisting of 3-sided faces and n-sided faces.
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Fig. 1. The graph of convex polytope Qn

2 The graph of convex polytope L,

The graph of convex polytope Ly, is obtained from the graph of convex
polytope Qn, [2] by adding new edges cici+1 and @it1b; (i is taken mod-
olu n). i.e, V(L) = V(Qn) and E(L,) = E(Qn) U {ciciy1 : 1 € i £
n}U {ai41bi : 1 < i < n} (Fig 1). The graph of convex polytope L,, can

Fig. 2. The graph of convex polytope L,

also be obtained by taking cartesian product of path Py with a cycle C,
and then adding the new edges a;41bi; biy1¢i. i.e. V(L) = V(Py x Cy,) and
E(Ln) = E(P4 X Cn) U {a.'.;.lb,'; bi+1Ci 01 < % < n}.

For our purpose, we call the cycle induced by {a; : 1 £ i < n}, the inner
cycle, cycle induced by {b; : 1 <4 < n}, the interior cycle, cycle induced
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by {c: : 1 £ i < n}, the exterior cycle, cycle induced by {d; : 1 < ¢ < n},
the outer cycle .

The metric dimension of graph of convex polytope @, has been determined
in [8] and it is proved that dim(Q,) = 3 for every n > 6. In the next the-
orem, we show that the metric dimension of the graph of convex polytope
L, is 3. Note that the choice of appropriate basis vertices (also referred to
as landmarks in [13]) is core of the problem.

Theorem 2. For n > 6, let the graph of convez polytopes be L,; then
dim(L,) = 3.

Proof. We will prove the above equality by double inequalities. We consider
the two cases.

Case(i) When n is even.

In this case, we can write n = 2k, k > 3, k € Z*. Let W = {ay, a2,ak41} C
V(L,), we show that W is a resolving set for L, in this case. For this we
give representations of any vertex of V(L) \ W with respect to W.
Representations of the vertices on inner cycle are

(@|W) = (i-Li-2,k—i+1), 3<i<k
MW= @k —i+1,2k—i+2,i—k—1), k+2<i< 2k

Representations of the vertices on interior cycle are

(1, 1,k), t=1;
. — (i,?:—l,k—'i+1), 2S¢Sk;
r&lW) =9 (k,k,1), i=k+1;

(2k—i+1,2k—i+2,i—k), k+2<i<2k

Representations the vertices on exterior cycle are

[ (2,2,k), i=1;
(i+1,5,k-i+1), 2<i<k-1;
r(c|lW)=¢ (k+1,k,2), i=k;
(2k-i+1,2k-i+2,i—-k+1), k+1<i<2k-1;
[ (2,2,k+ 1), i=2k.
Representations of the vertices on outer cycle are
r(3’37k+1)a i=1
E+2,i+1,k-i+2), 2<i<k—-1;
r(di|W) =4 (k+2,k+1,3), i=k;
(2k—i+2,2k—-i4+3,i—k+2), k+1<i<2%k-1;
[ (3,3,k+2), 1= 2k.

We note that there are no two vertices having the same representations
implying that dim(L,) < 3.
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On the other hand, we show that dim(LL,) > 3. Suppose on contrary that
dim(L,) = 2, then there are following possibilities to be discussed.

(1) Both vertices are in the inner cycle. Without loss of generality, we
can suppose that one resolving vertex is a;. Suppose that the second re-
solving vertex is a; (2 < i < k+1). Then for 2 < i < k, we have
r(an|{a1,a:}) = r(bn|{a1,0;}) and for i = k+1, we have r(az|{a1, ar+1}) =
r(an|{a1,ak+1}), & contradiction.

(2) Both vertices are in the interior cycle. Without loss of generality, we can
suppose that one resolving vertex is b;. Suppose that the second resolving
vertex is b; (2 < i < k+ 1). Then for 2 < i < k, we have r(ay|{b1,b:}) =
T(Cnl{bl,bi}) and fori =k+ 1, we have ’I‘(bzl{bl, bk+1}) = r(bnl{bl, bk+1}),
a contradiction.

(3) Both vertices are in the exterior cycle. Due to the symmetry of the
graph, this case is analogous to case (2).

(4) Both vertices are in the outer cycle. Without loss of generality, we
can suppose that one resolving vertex is d;. Suppose that the second re-
solving vertex is d; (2 < © < k+41). Then for 2 < i < k, we have
r(c1}{d1,di}) = r(dn|{d1,d:}) and for i = k+1, we have r(da|{d1, dk+1}) =
7(dn|{d1,dk+1}), & contradiction.

(5) One vertex is in the inner cycle and other in interior cycle. Without
loss of generality, we can suppose that one resolving vertex is a; and the
second resolving vertex is b; (1 < ¢ < k + 1). Then for i = 1, we have
r(az|{a1,01}) = r(bal{a1,b1}) and for 2 < i < k +1, r(ag|{a1,b:}) =
r(b1}{{a1,b:}), & contradiction.

(6) One vertex is in the inner cycle and other in exterior cycle. With-
out loss of generality, we can suppose that one resolving vertex is a; and
the second resolving vertex is ¢; (1 < @ < k+1). Then for i = 1, we
have r(bal{a1,c1}) = r(cal{ar,c1}) and for 2 < i < k r(agl{ar, &) =
r(b1|{a1,¢:})- When i = k + 1, r(an|{a1,ck+1}) = 7(b1|{a1,ck+1}), a con-
tradiction.

(7) One vertex is in the inner cycle and other in the outer cycle. Again,
we can suppose that one resolving vertex is a;. Suppose that the second
resolving vertex is d; (1 < i < k+1). Then for ¢ = 1, r(bz|{a1,d1}) =
7(cn|{a1,d1}) and for 2 < i < k+1 we have r(az|{a1,d:}) = r(b1|{a1,d:}),
a contradiction.

(8) One vertex is in interior cycle and other in exterior cycle. This case is
analogous to case (5).

(9) One vertex is in interior cycle and other is in outer cycle. Without
loss of generality, we can suppose that one resolving vertex is b, and the
second resolving vertex is d; (1 < i < k+1). Then for i = 1, we have
r(b|{b1,d1}) = rlcal{b1,dr}) and for 2 < i < k+ 1, r(be|{b1,di}) =
r(c1]{b1,d:}), a contradiction.

(10) One vertex is in exterior cycle and other is in outer cycle. Without
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loss of generality, we can suppose that one resolving vertex is ¢; and the
second resolving vertex is d; (1 < ¢ < k+ 1). Then for i = 1, we have
r(czl{c1,d1}) = r(enl{e1,d1}), for i = 2 r(bs|{e1,d2}) = r(dn|{c1,d2}) and
for 3 <i< k+1, r(cgl{e1,di}) = r(di|{c1,d;}), a contradiction.

Hence, from above it follows that there is no resolving set with two vertices
for V(L) implying that dim(L,) = 3 in this case.

Case(ii) When n is odd. ‘

In this case, we can write n =2k + 1, k > 3, k € Z*. Again we show that
W = {ay,a2,ar4+1} C V(Ly) is a resolving set for L, in this case. For this
we give representations of any vertex of V(L,) \ W with respect to W.
Representations of the vertices on inner cycle are

(t-1,i=2,k—i+1), 3<i<k;
r(aiIW) = (ka k, 1)) i=k+2
(2k—i+2,2k-i+3,i—-k—-1), k+3<i<2k+1.
Representations of the vertices on interior cycle are
((13 1,’9), i=1
' _ ) @Gi-Lk-i+1), 2<iLk;
r®ilW) =1 (k+1,51), iskt1;
| (2k—i+2,2k—-i+3,i—k), k+2<i<2k+1.
Representations of the vertices on exterior cycle are
((2,2,k), i=1
(i+1,5,k—i+1), 2<i<k-1;
, — (k+1’k12)’ i=k;
(2k—i+2,2k—i+3,i—k+1), k+2<i<2k
[ (2,2,k+1), i=2k+1.
Representations of the vertices on outer cycle are
f(3,3’k+1), i=1;
(t+2,i+1,k—i+2), 2<i<k-1;
) _ ) (k+2,k+1,3), i=k;
r@GW) =9 (k+2k+23), i=k+1;
2k —i+3,2k—i+4,i—k+2), k+2<i<2k;
| 3,3,k +2), i=2k+1.

Again we see that there are no two vertices having the same representations
which implies that dim(L,) < 3.

On the other hand, suppose that dim(L,) = 2, then there are the same
possibilities as in case (i) and contradiction can be deduced analogously.
This implies that dim(L,) = 3 in this case, which completes the proof.
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3 The graph of convex polytope B,

The graph of convex polytope B, is obtained from the graph of convex
polytope Qn [2] by adding new edges cicit1, @i4+1b; and ciy1d; (i is taken
modolu n). i.e., V(B,) = V(Qn) and E(B,) = E(Qn) U {cicit1 : 1 <i <
n}U{aip1bi 11 < i < n}U{ciadi: 1< i< n} (Fig 2).

The graph of convex polytope B, can also be obtained by taking carte-

dn—?

Fig. 8. The graph of convex polytope Bn

sian product of path P; with a cycle C, and then adding the new edges
a;.,.lb,-; b,~+1c,';c,«+1d,~. ie. V(]Bn) = V(P4 X Cn) and E(Bn) = E(P4 X Cn) U
{ais1bi; big16is cigadi 1 1 < i <}

For our purpose, we call the cycle induced by {e; : 1 < 4 < n}, the inner
cycle, cycle induced by {b; : 1 < i < n}, the interior cycle, cycle induced
by {c; : 1 < i < n}, the exterior cycle, cycle induced by {d; : 1 < i < n},
the outer cycle .

In the next theorem, we show that with only three vertices, we can resolve
all the vertices of the graph of convex polytope B,. Once gain, choice of
appropriate landmarks is crucial.

Theorem 3. Let the graph of convez polytopes be By,; then dim(B,) = 3
for everyn > 6.

Proof. We will prove the above equality by double inequalities. We consider

the two cases.

Case(i) When 7 is even.

In this case, we can write n = 2k, k > 3,k € Z*. Let W = {a1,a3,ax41} C
V(B,), we show that W is a resolving set for B,, in this case. For this we
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give representations of any vertex of V(B,,) \ W with respect to W.
Representations of the vertices on inner cycle are

1,1,k - 1), =2
) (i=Li-3k—i+1), 4<i<k;
r@lW) =9 k-1 k-1,1), i=k+2;

(k—i+1,2%k—i+3,i—k—1), k+3<i<2k.

Representations of the vertices on interior cycle are

(1,2,k), i=1

2,1,k - 1), i=2;
) _ ) (Gi=2,k-i+1), 3<iLk
r®:IW) =9 (k,k-1,1), i=k+1;
(k_lik’z)’ 2=k+2;

(%k—i+1,2%k—i+3,i—k), k+3<i< 2k

Representations of the vertices on exterior cycle are

((2,2,k), i=1;
3,2,k - 1), i=2;
G+1,i—-1,k—-i+1), 3<ick-1;

r(aW) =4 (k+1,k-1,2), i=k;

(k, k,2), i=k+1;
(2k—i+1,2k-i+3,i—k+1), k+2<i<2k-1;

[ (2,3,k+1), i=2k.

Representations of vertices on outer cycle are

((3,3,k), i=1
(4,3,k-1), i=2;
(E+2,4,k—-i4+1), 3<i<k-2
(k+1,k-1,3), i=k-1;
(k,k+1,3), i=k+1;
(2k—i+1,2k-i+3,i-k+2), k+2<i< 2k -2
(3,4,k+1), t=2k—1;

| (3,3,k+1), i = %%.

We see that there are no two vertices having the same representations im-
plying that dim(B,) < 3.

On the other hand, we show that dim(B,) > 3. Suppose on contrary that
dim(B,) = 2, then there are following possibilities to be discussed.

(1) Both vertices are in the inner cycle. Without loss of generality, we
can suppose that one resolving vertex is a;. Suppose that the second re-
solving vertex is a; (2 < ¢ < k+1). Then for 2 < i < k, we have
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r(as|{a1,a:}) = 7(bn|{a1,0:}) and for i = k+1, we have r(az|{a1, ar41}) =
r(an|{a1,ar+1}), a contradiction.

(2) Both vertices are in the interior cycle. Without loss of generality, we can
suppose that one resolving vertex is b;. Suppose that the second resolving
vertex is b; (2 < i < k+1). Then for 2 < i < k, we have r(b,|{b1,b}) =
7(cn|{b1,:}) and for i = k + 1, we have 7(bz|{b1, bk+1}) = 7(bn|{1, br41}),
a contradiction.

(3) Both vertices are in the exterior cycle. Due to the symmetry of the
graph, this case is analogous to case (2).

(4) Both vertices are in the outer cycle. This case is analogous to case (1).
(5) One vertex is in the inner cycle and other in interior cycle. Without
loss of generality, we can suppose that one resolving vertex is a; and the
second resolving vertex is & (1 < i < k+ 1). Then for ¢ = 1, we have
r(az|{a1,01}) = r(b1l{a1,b1}) and for 2 < i < k + 1, r(azl{a1, b;}) =
r(b1}{a1,b;}), a contradiction.

(6) One vertex is in the inner cycle and other in exterior cycle. With-
out loss of generality, we can suppose that one resolving vertex is e; and
the second resolving vertex is ¢; (1 < ¢ < k+1). Then for i = 1, we
have r(az|{a1,c1}) = r(b2|{a1,c1}) and for 2 < ¢ < k r(azl{a,&:}) =
r(b1|{a1,¢:})- When i = k + 1, r(an|{a1,ck+1}) = 7(bn|{a1,ck+1}), & con-
tradiction.

(7) One vertex is in the inner cycle and other in the outer cycle. Again,
we can suppose that one resolving vertex is a;. Suppose that the second
resolving vertex is d; (1 < i < k+1). Then for ¢ = 1, r(b2l{a1,d1}) =
7(cn|{a1,d1}) and for 2 <i < k+1 we have r(as|{a1,d:}) = r(b1|{a1,d:}),
a contradiction.

(8) One vertex is in interior cycle and other in exterior cycle. Without
loss of generality, we can suppose that one resolving vertex is b;. Sup-
pose that the second resolving vertex is ¢; (1 < ¢ < k +1). Then for
i = 1, r(bg|{b1,c1}) = r(cal{br,c1}) and for 2 < i < k+ 1 we have
r(az|{b1,c:}) = r(b1|{b1,ci}), a contradiction.

(9) One vertex is in interior cycle and other is in outer cycle. This case is
analogous to case (5) due to the symmetry of the graph.

(10) One vertex is in exterior cycle and other is in outer cycle. This case
is symmetric to case (6).

So from above, we conclude that there is no resolving set with two vertices
for V(B,) implying that dim(B,) = 3 in this case.

Case(ii) When n is odd.

In this case, we can writen = 2k+1,k > 3,k € Z*.Let W = {a;,a3,ax41} C
V(B,), we show that W is a resolving set for By, in this case. For this we
give representations of any vertex of V(B,) \ W with respect to W.



Representations of the vertices on inner cycle are

(lmlak— 1): . i= 2;

(i—1,i—3,k—i+1), 4<i<k;
r(a;|W) = ¢ (k,k-1,1), i=k+2

(k"lsk)2)7 i=k+3

(2k-i4+2,2k-i+4,i-k—-1), k+4<i<2k+1.

Representations of the vertices on interior cycle are

( (1,2,k), i=1;
(2,1,k—1), i=2;
uny ) Gi—2,k—i+1), 3<i<k
r®dW) =9 (k+1,k-1,1), iZk+1;
(k,k,2), i=k+2

| 2k -i+2,2k—i+4,i—k), k+3<i<2k+1.

Representations of the vertices on exterior cycle are

((2,2,k), i=1;
(3,2,’0—1), 1=2;
J (G+1,i—1,k—i+1), 3<i<k-1;
—_ (k+1:k—lv2)y i=k;
r&W) =1 (k+1k,2), i=k+1;
(k,k +1,3), i=k+2;
(2k—i+2,2k—i+4,i-k+1), k+3<i<2%k;
[ (2,3,k+1), i=2k+1.
Representations of vertices on outer cycle are
( (3, 3, k)$ ) 1= 1;
4,3,k - 1), i=2;
(t+2,4,k—i+1), 3<ig<k-2
(k+1,k-1,3), i=k-1,
(W) = | (k+2,k,3), i=k;
(k+1,k+1,3), i=k+1;
(2k—i+2,2k—i+4,i-k+2), k+2<i<2k-1;
3,4,k +2), 1= 2k:
L (3,3,k+1), i=2k+1.

Again we see that there are no two vertices having the same representations
implying that dim(B,) < 3.

On the other hand, we show that dim(B,) > 3. Suppose on contrary that
dim(B,) = 2, then there are the same possibilities as in case (i) and con-
tradiction can be obtained analogously. It follows that dim(B,) = 3, which
completes the proof.
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4 Conclusion

In this paper, we have studied the metric dimension of two classes of con-
vex polytopes by giving answer to an open problem proposed in [8]. We
show that the metric dimension of these two classes of convex polytopes is
finite and does not depend upon the number of vertices in these graphs and
only three vertices appropriately chosen suffice to resolve all the vertices of
these classes of plane graphs. It is natural to ask for the characterizations
of classes of convex polytopes with constant metric dimension.

Note that in [14] Melter and Tomescu gave an example of infinite regular
graphs (namely the digital plane endowed with city-block and chessboard
distances, respectively) having no finite metric basis. We close this section
by raising a question that naturally arises form the text.

Open Problem: Let G be the graph of some convex polytope which is
obtained from cartesian product of path Pp(m > 3) with a cycle C, and
then adding (or deleting) some families of edges. Is it the case that G always
will have constant metric dimension?
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