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Abstract. Let Z be a totally ordered set. We work on finite strings b = 0;0,... by,
of yfrom Z. Such a bis a [y (Lyndon word) if m> 1, and b is the unique first
in /ex (lexicographic order) among the mrows of the m x m circulant matrix
with b as first row.

A classic result is that every string b has a unique max factorization umf(b) into
lyns, each /yn of maximum possible size in b.

In 1983 J. P. Duval [6] published Algorithm 1, which finds um/(b). It
was studied in 1991 by A. Apostolico and M. Crochemore [1]. Then their work
was studied in 1994 by J.W. Daykin, C.S. Iliopoulos and W.F. Smyth [5].

Since Duval used a programming language, we start by giving a new
simple account of his Algorithm 1. Then our Algorithm 2 given here modifies
Duval’s Algorithm 1 to find umf(@), when ais a string & = A;A; ... Ay of lyns A,

Our Algorithm 3 is also for a string @ = A/A; ... Apoflyns A, It is
completely different to Algorithms 1,2. It snakes right, left, right, and so on. It
revealed the fact that /yns have a special structure. We give an example where
Algorithm 3 needs almost 27 tests, we think that is the most needed, but cannot

give a rigorous proof.
We find interesting properties of /y71s, some of which may be new.
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Footnote. The author thanks the referees for reading this paper
carefully, and for making a correction and suggestions that improved it. {The
author’s supervisor G. Kreisel told him in 1958, “I have the utmost respect for
my fellow mathematicians.” On the other hand his co-author Rudy Ahlswede
said in 1983, “We are not as good as all that you know David!”} End of

Footnote.
1. Introduction to lyns and umfs.

Mostly integers are fed into digital computers, so without loss of
generality, we let 2 be the integers with their usual order ... -2<-7<0<+7<+2
... . We work on strings (words) @ = ad;... d,0f integers a;, and use /ex
(lexicographic order) between them. We put dim(@) = | 2| = n. The string ais a
lyn (Lyndon word) if 7> 1, and & is the unique first in lexicographic order
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between the rows of the /7 x /7 circulant matrix with 4 as first row. For example
the string 277 is not a /yn, but 772is a [ynas the Jrows are 712 < 121 < 211 in
lex. Clearly a /yn is not the empty string 4, and |A | =0, Every (single) integer is
alyn. Also a /ynis non-periodic, otherwise the circulant would have two rows
the same, and we would not get uniqueness. (Other writers say “primitive”
instead of non-periodic. Also, instead of talking about the circulant, they say
“minimal in its conjugacy class”. In [4] Daykin and Daykin find all factorization
families consisting of one row from each non-periodic circulant. So we like
circulants.)

If a,b,c are strings and @ = b¢ we have a > ;s b in /ex, where IS = /nitial
Section. If a = def, b = dghand | 8]= | g| = 1, so 6.gare integers, then 2> sp b
when & > g, where FD = First Difference.

If 2 = be = dbwith b,c,d # A, then D is said to be a border of the string
4. If a has no border it is border-fres. Lemmas 1,2,3,4 here below are found on
page 365 of Duval’s 1983 paper [6].

Lemma 1. Every lyn is border-free.

Lemma 2. A string a is a lyn iff for all a = bc with b,c # A we have a < c.
Lemma 3. /fA B arelynsthen AB isa lyniff A < B.

Lemma 4. IfA,B are lyns and A < B then AB and all AA...ABB...B are lyns.

Observe that, when we use a capital letter for a string, it denotes that it
was given as a /yn. Having chosen a letter for a string, we do not change it.

We do not use it here, but we mention a generalization of Lemma 2.
Lemma 5. (Easy). Léta = AjA ... Apwhere the A, are lyns. Then a is a lyn iff
: a<gp Abier... 4p fori<iz<p.
The following more revealing form of Lemma 2 appeared in [3].
Lemma6. The string a = aa; ... a, isalyn iff
) 3182... 8 <Fp dn +18n i+2...8p, fOr1 <i<n,
(Note that in (1) we have | left side |= |right side | = / and there is no border.)

From Lemma 6 one easily gets Lemmas 7,8.

Lemma 7. /f string b#2 is an initial section of a lyn, then b is a lyn iff it is
border-free.

Lemma8. Lo8tA = a3 ... 3, bea lyn. If 2 <r <nand 8 is an integer with 6>
a, then the string a,a; ... a,-,8 is a lyn. Note 1213is a lyn, but 1313,1413,...
are not.)

Lemma 9. (Easy) (Daykin-Daykin [3]) /fXy,yz are lyns withy # A then xyz is a
n.

Definition 1. Léet & = a;a... a, be a string. Let b be a section b = aa; , 14, 5 ...
a;of a. When b is a lyn we say b Is max in a if we cannot find a lyn different from
b by decreasing i, or increasing j, or by doing both.

Now suppose d = AjA; ... Apwhere the A;are [yns. If A; < Asthen
Lemma 3 makes As43a /yn, and Ay is not max in 4. If any A, is not max in a, by
Xyz Lemma 9, we can join together some of the /yns in the factorization of a.
This proves
Theorem 1. (Classic). Every string a + 2 has a unique max factorization



umt(a) = [A:][Ad ... [A,] where a = AiA; ... Ap and each A; is a lyn max in a.
Further we have A;> Az ...
24,
Lemma10. /fa = AjAz ... Apwhere the A, are lyns, and A= s Az2 is... 2 isAp,
then umf(a) = [A;] [Az] ... [Ap].

Proof. Suppose p > 2. Then A, is an /S of A;, So A, is a border of 2and ais not a
lyn. Next suppose some A, is not max in 4. Then by Xyz Lemma 9 we would get
a section of the A ’s forming a /yn. This is impossible by the first
argument. 0

This Lemma 10 strengthens Theorem 1 as follows.
Theorem 2. /fa = AiA; ... Apwhere the A, are lyns then
umi@a) = [A1J[Az]... [Ap] iffA12 452> ... 2 A,

Lemma 11. (Cut) /fa = A/Az... Asb where the A are lyns, and string b# A, and
Ar>is Az gs... 215 Ap > b, then umi(a) = [A;J[Az]... [Ap Jumi(b).

Proof. Suppose the lemma is false, so we do not get the Cut between A, and 4.
This means there is a /yn D, which is a section of 4 and meets both A,and b.
Then by the Xyz Lemma 9, there is a [y/7 C'= ¢, where ¢; = A; Aj,; ... Apfor
some /in I <i<p,and ¢;#1is an /Sof b.

Case 1. Ay > s 0. Here A2 As, 12 s ... 215 Ap >is Comaking €2 a border of C,
which is impossible.

Case 2. Ay > rp b. We are given that A, = déf and b = dgh for strings d,e,/,g,h
with | 8|= [ g | = 7and @ > g. Observe that A, = def is an /S of ¢;. We cannot
have ¢, an /S of d for that would make &2a border of /yn7 C. So dgis an /S of ..
Then & > g contradicts (1) for the /yn C when the right side of (1) is

Ca 0
Lemma 12. IfA,Ab are lyns, and string b# A then A < b. (Note A =12 <51 =
b.)

P’roof. Trivially 4 # b. We assume A is not an /S of b, for otherwise A < Hby
definition. Then we cannot have £ an /S of A, for that would make b a border of
lyn Ab. From circulant Ab we have Ab < bA. So in this case 4 < zp b.

m]
2. Algorithm 1. Duval’s Lyndon factorization of a string of integers.

In 1983 [6] Duval gave his algorithm in a programming language, and in
contrast to his sophistication we present here a simplified version. We are given
astring b = byb;... bp We assume that we have found that b = (B¢, which
means that Bis a /yn, and that b starts with 4 21 copies of 8 followed by string ¢
= 610z... 6. (Thus B is an /Sof b)) Initially Bis b;and u = 7and ¢ = bsb;...b,,
Case 1. ¢ = 1. We are finished because umf(b) =[B)[8] ... [8], with u copies of
B.

Case 2. A#c=cyCs... ;. Wetest B 7 ¢, testing b;7¢; fori=123,..in turn.
Case 2.1. (Cut) 8 > ¢. By Lemma 11 we have umf() =[B)(8] ... [B] umf(c),
with u copies of B. We restart to find umf(c).
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Case 2.2. B <5 ¢. There is a copy C of 8 at the start of ¢. We call this Ca
newlyn. We increase u by 1, get a new ¢, and restart.
Case 2.3. B < gp ¢. This holds because we are not in Case 2.2. Hence there is a
least integer j > / with & # ¢, so by < €. If j 2 2 we apply Lemma 8 to find € =
CiCs... cjis a lynwith B < C.1f j = 1then €= ¢yis a [yn with B < C. In either
case we call this Ca newlyn. Now Lemma 4 says (B )'Cis a [yn. We restart
with yn (B }'Cin
place of /[yn B,and u = 1.
0

It occurred to the author, that if, instead of being given a string of
integers, we were given a string of /yns, we must get an algorithm, generally
requiring fewer tests. In the extreme example, a string AB of two /yns A, B with
different first integers is factored [A/{B] or [AB] with only one integer test.

3. Algorithm 2. We modify Duval’s Algorithm 1 for a string of /y7s.

Our input now is a string & = A/Az... A, of lyns A; In a nutshell,
whenever Duval finds a newlyn €, we locate it in our input string. Let @ be the
last integer of C.

Case (i). This  is the end of an A let it be Asnp. Here we can only follow Duval.
Case(ii). The  is in an A, but is not the end of A; let it be Apy. Here Xyz Lemma
9 on C and Ay gives a [yn C* longer than C. Now C* ends Aps and it starts at
or before the start of . We will use C".
Algorithm 2. Let & = AsAz... A, where the A;are [yns. We assume that we know
that & = {A}*c, where First Ais a [yn, Second A = AjA;... Ay for some hin 1< h
< 1, Third u is an integer x> I, and Fourth ¢ = AwAy; 1A+ 2... Apfor some kin
1 < k <n (Note that {A}* = A/Az... A¢ 1, but we may not have n = uh + k.)
Initially A = Ajand u= 7and ¢ = Ax;s... 4,

Case 1. ¢ = 4. We are finished because umf(h) = [A][A] ... [A], with u copies of
A

Case 2. c#A Wetest A?¢CIfA=as3z.. 3,and € = £46s... Gy, this means
testing the integers 4, 7 ¢;for i = 1,2,3,...in tun.

Case 2.1. (Cut) A > ¢. By Lemma 11 we have umf(l) =[A}[A] ... [A] umf{c),
with u copies of A. We restart to find umf(c).

Case 2.2. 4 <5 €. There is a copy C of A at the start of ¢. This C'is a newlyn.
Case (i) above. We increase u by 1, and restart on b = {A}*” Te* where Ac* = ¢.
(Note that here and below the four start conditions hold.)
Case (ii) above. If C" starts at C, then by Lemma 4 we get L = {A}C* =44 ...
AC*isa lyn and b = {L}d for some d. We restart on {L} 'd. The same holds
true, using XyZ Lemma 9, if the start of C* is before C.

Case 2.3. A < ¢p ¢. This holds because we are not in Case 2.2. Again put
A=a,a;... 3yand € = €4C;... €. Then there is a least integer j > I with &; # ¢,
50




8 <. If j > 2 we apply Lemma 8 to find C = ¢:0;... ¢jisa [ynwith A < C.If j
= 1 then €= ¢yis a [ynwith A < C. Now Lemma 4 says (4 }'Cis a newlyn.
Case (i) above. We restart on & = {(A J'C} e with v = 7, where b = (A J* Ce.
Case (ii) above. We use Xyz Lemma 9 on (A }'Cand Asto geta [yn L. We
restart with = (LPgwithv =17, where b = Lg.

0

4, Algorithm 3. OQur Lyndon factorization of a string of /yns.

Suppose A,8,C are lynswith A 2,58 < €. Then BCisa lynbut A ? BC
can be anything, as shown by Example 1 below.
Example 1. Let A be each of the /yns 13,12,1,74,134 in turn. Let Bbe the /yn 1,
s0 A 258 Let Cbethe [yn3so B < Cand BC= 13isa [yn. Then A ?BCisin
turn
=, < rp, <15, > F, > is- (One can get the same with binary strings.)

0
In view of this Example 1, our Algorithm 3 below has to snake left and

right.
Algorithm 3. The input is any string @ = AsA; ... 4,0f [yns A;with p> 2. We
want ¢mf(a). We may have some or all | 4| = 7. We use up the 4, one at a time
when we move right. So we assume we know that A;2s A,>s... 25 A, for some
ginl<q<p.
Case 1. (Stop) g = p. We are finished by Theorem 2, (or Lemma 10.)
Case 2. g <p. Test Ay ? Ay, 1. (This means finding the /ex order between
them.)
Case 2.1. (Cut) Ar2isA22s... 2459 > rp Ag+ 1. Use lemma 11 and restart.
Case 2.2. (Go Right) Ay>5 Ay, 1. Increase ¢ and restart.
Case 2.3. (Go Left) A;=>/sA22s... 2/5Aq < Ay 1. Here we use Lemma 3. The
two /yns A, and A, , sare replaced by the single [y7 AiA; , 1. If ¢ = 7 we just
restart. If /< gthen Example 1 shows we do notknow A, ;?A,A;, 1. So this
is our first test, when we restart at Case 2.

0
Before the algorithm looked at Ay , ), it found umf{A,A; ... Ag), but this

may not be the start of umf(a).
The cost of finding #mf(a) is the number of tests @ 7 g which the

algorithm made. Here 6,9 are integers, and one testfinds 6 < g, 6 =g, or 8 > g.
The cost of (Cut) is | Ay | or less. The cost of (Go Right) equals | 4, , ,|. We
bound the cost of (Go Left) in Example 2 below.

Suppose Algorithm 3 has run on a string ,3;... a5 Let @y 7 4, and a; ?
a; be two of the integer tests it performed. It seems that test 8, 7 ; was
performed before test 4 7ay if /< kor /= kand h < /.

5. The structure of a Lyndon word.



We say a /yn D is allislynif all /S of D are lyns (this means a,< & for 1< /).

Lemma 13. (Two slopes zip-up.) Lét C be a lyn which is not allislyn.

Then C = AsAz ... ApB1Bs ... Bgwithp 2 2, and q= 1, and all A; and By lyns,
and Ai=is AsZis... 258 Ap, and B;= B,> ... = Bq, ana'A,, <8,
Proof. Let @ # A be the /S of C, with anot a /yn, and with d/m(a) maximal. So a
#Cand umf(a) = [A1J[Az]... [Ap ] with As2Az2 ... 2Ap andp > 2. We
cannot have
A; > ep Ay, 1 for that would give a cut in €, which is a [yn. So Ar2sAz2s... 25
Ap Let C = ab, so b#A. Then umf(b) = [B1][Bz]... [By] With B;>B;> ... 2 B,
and @¢>1and Byisa [yn Next A; Az ... ApBy is a lyn, by definition of a.
Hence we must have A, < 8.

Now A,,B, and £ = AA; ... ApB] are [yns. So Ap.y < ApB; making Ap-
1A,B1a lyn, and so on. Having zipped £ up, we get £ < B starting the zip up of
C. W)

A Chinese proverb says, “A single picture is worth a thousand words.”
So rather than using masses of symbols, we study typical examples.

Into our Algorithm 3 we put a string @ = A1Az ... Apof lyns A;with p> 2,
and we now discuss what happens.
Case 3. The algorithm starts Goes Left. Here A;Azis a lyn. If p> 3 we replace
Ay, Az by AjAz and restart.
Case 4. The algorithm always Goes Right. So A7> 422 ... 2 Ap, with cost <
| ArAs.. Ap | , and umf(a) = [A; J{Az]... [Ap ] by Theorem 2.
Case 5. The algorithm starts Go Right but has a first Go Left. Each Go Left
forms a new /7, as shown in Case 2.3 above. In Example 2 below we go Right
five times, then Left six times, and this produces a /. It should be compared to
Lemma 13. This Example 2 is typical of how the algorithm starts to behave,
except it does not have equalities like L,=Lg (whichise =1.)
Example 2. LetK = L,L2L3L4L5L5L7where K and the L;are [yns. Suppose
further
Ly =Abecdef > L =Abede >;5 L =Abed >i5 Ly =ADC > Ls =Ab >isls=A < L;
=H,
where b,c,0,8,fare non-empty strings of integers, not necessarily /y/s.
Since L; >s Lothe cost of this test between [y is | L2| . It then does L, 7 L,
wiih ccl>st | Lsf, and so on till L5 ? L These five Go Right tests cost | Lo|+ ...
+ | Lg].

The test Ly ? L, finds [.5 <Ll;so Lel7isa /yﬂ. Because Kis a /yn, by
Lemmas 10 and 11, we cannot have Ls>ss Lgl7or Ls > rp Lgl7 so Ls < Lgl ;.
Thus Ls5LsL7is a /yn. In this way Li<lisilisz... Ly and Lil;,¢..L7isa lyn
for i=6,5, ... ,1. Thus we have six Go Left tests.

Now Ab,A are [yns, so Lemma 12 gives A < b. In the same way it gives
Ab < cand Abc < dand Abed < e and Abede < 1.
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Next we consider the costs of the Go Left tests. First wehad A < #
with cost < | A|. Second we had Ab < AH which is b < H, and hence A < b < H
with cost
< | b|. It tells us AbAH is a lyn. Third we had Abe < ADAH so Ab < ¢ < AH.
Put
¢ =(AJc*then b < ¢ * < Hwithcost< | ¢*|. Fourth we had Abed <
AbcAbAH so Abc = AbAc™ < d < AbAH.Put d = (Ab)(A)d*then A<b<c *<
d" < Hwith cost
< | @*|. Continuing & = (Abc)(Ab)(A)e* and f = (Abed)(Abe)(Ab)(A)r with
A<b< ¢*<d"<e" <" <H. The total cost of going left is cheap at
< | dbc*d*e*r*| < | Abedef| = | L;].
|

Example 3. Suppose our input /ynsare Hy, Hz ... ,Hgg Before the algorithm
looks at Hys, it finds umf(H;... Hsz). If this Umfhas an > fp it has a cut, the /yns
on the left of this cut are done, and will not affect those on its right. So for our
purposes, we can assume we have HyHj... Hsp = L1l sl sl 4 5Ll 7, as in Example
2, with

Lizislozis LyZisLy2ysls>isle=A <Ly = H = H,

0
Theorem 3. Consider the typical lyn K in Example 2 above. This K is not
allislyn. In the notation there we have A< b < ¢ * <d* < e* < f* < H. We put
w = AbA, then

Ly = we*wd*we *we*we*wd*we wf* = Ly Ll wf* and

Lo = we*wd*we*we* Lslwe* and

Ls = we*wd™” Lywd* and

Ly=we”
with initial conditions Ls = Aband Lg=Aand L; =H.

Further K = L *LH, where L = LaolslLsls and L has border A.

]

Notice that in Theorem 3 the number of W in the successive lyns is
8421, for c*itis 42,11, for d*itis 2,1,7, for e*itis 7,7, and for f* it is just 7.
We are dealing with powers of 2, So if T is the number of tests, then

t< | Abe*d*e*r*| +16| A|+ 8| b]+4] c*|+2|d*|+ | &*
= 32| A|+16|b|+8| c*|+4| a*|+2] 6*
If A,b,c*d* 8" f*H are integers then T <38 tests, and | | =64
The fact that /yns are so strongly structured surprised the author. Let
K K be two lyns, each like the K above, with corresponding first /yns L,V
,L1®. Imagine one is testing K’ 2K . One begins by testing L,/ ? 1, In
view of L;= we *wd™we *we *wc *wd *we *Wr* seen in Theorem 3, it will not cost
much to make this test. These facts explain in part why the algorithm is
efficient.
Interestingly the /y7 1213121415 factors [1213] >;5 [12] < [1415] and

[12131214] 25 [1] < [5].

a* ,

H
H

+
+| ]+
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6. Complexity of Algorithm 3.

For each 7> 7, let f(n) be the maximum number of integer tests & ? gused by
the algorithm, to find umf{a), over all strings 4 of integers with dim(a) = n. So
B(n)/n is our complexity, and we think has constant 2.

Suppose we have a string & of y /y71s, each of dimension 8, over the 26
letters of the alphabet, so | 2| = 5. The expected cost of testing two of these
lynsis about 1. If Algorithm 3 has complexity 2, the complexity for dimension §
lynsis 2/8.

To get a string 4 needing as many tests as possible, we want a /yn
which snakes Right, Left, Right,... as many times as possible. So for a given 7,
we want the A,0,6%,d*8* ", H in Example 2 and Theorem 3 above, to be as
small as possible, so they might as well be 1,2,3, ... This idea is used in
Example 4, which is the best example the author could find.

Example 4. Let a be the initial section of z(I) below, with | a| = 7 = 2 and p>

4,

() =
1|2|1,3]1,2,1,4|1,2,1,3,1,2,1,5 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,6] ...

Let A= p,q,r,s= 1,2,1,3 On Athe algorithm goes p?77so 12is a /yn,
then p?rso 1221, then r?sso 13is a lyn, finally g7s shows 7273 is a lyn, at cost
4.

The next 6 tests are crucial. Let 8 = Lu,v,w=1,2,1,4. It goes p?fso
A>1, then t2uso 12is lyn, then g2u so A>12, then f7vso A>1221, then v?wso
14is lyn, then u?wso Bis [yn, but we do not yet know A?B. These 6 tests are
used for 7213, 1214, 1215 and so on, in fact for all tests X7y with at least one of
Xyequal to 7or 2.

We delete every 7 and 2from 7 (I) to obtain z(3) = 3,4,3,5,34,36,....
In other words we delete all runs 727. By the above working, each deleted run
costs 6 towards the cost of finding umf 3). The effect of the algorithm on tests
X% which do not involve a 7 or a 2is the same as finding umf{x (3)). To obtain
#(5) we delete every 3and 4 from 7(3). In other words we delete all runs 343,
each of which cost 6. The effect of the algorithm on tests X7y which do not
involve a 7,23 or 4is the same as finding umf{u(5)). Since we delete runs of
three with cost of 6, the total number of tests is nearly 27, but
<2n. O
Example 5. Consider the case = {0,7} with 0 < 7. Let A= 00 ... 011 and 8=
00 ... 001 with | A| = | B| = n. Then umf(AB) = [A]{B]. Our Algorithm 1
finds, First A is a lyn, Second there is a cut between A and B, and Third that 8 is
a lyn, each with
n— 1 tests. So the binary complexity is > X/+1)/2n. The author could not do

better.
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Binary /yns may warrant further investigation. They could be studied as
vectors of even dimension, so (3,2) is /yn 00011, and (3,2,1,4) is lyn
0001101111.

7. Short Cuts.

These would improve Algorithm 1.

Shortcut 1. Assume A, > IS Ag = Ag =.=4,< A, with 3<r. So AA,, iis
a [yn, and we are in the Go Left case. Our next test would normally be A, ; ?
A/A; , . However Lemma 4 says that B = AsA; ... A, A, , sis a lyn. So we can
short cut to the test A; 7 B. (The algorithm would prove that Bis a /yn7in any
case.) O

Shortcut 2. Assume @ = A/A; ... Ahwhere Asisa lyn,and A;= A= ... = 4,
and string b# 4. Let Ay = 2,37 ... dpand b = by, ... by We start testing 4,7 b;
for

i=1,2,... Suppose there is a least / with & # b, If this /has a,< b,
then AiAz ... ADibs... by is a [ynby Lemmas 4,8. If this /has a,>
Oythen there is a cut

umf(a) = [Ai][AJ...[AJumi(b). (The algorithm would find these.)

O

8. Further research.

We want more UMFF’s (Unique Max Factorization Families, see [3], [4] for
definitions and theory). We always take exactly one row from each non-
periodic circulant matrix, and nothing else. An UMFF behaves like the family
of /yns. It was lexicographic order that yielded the /ys. In [3] are more than 30
other orders that yield UMFF’s. For these, it seems we can adjust our
algorithms to get the unique max factorizations. In [4] are all UMFF’s, but there
are so many, that it may be possible to get an algorithm for only certain ones.
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