Algorithms for the Lyndon unique maximal factorization.

David E. Daykin.
Deptartment of Mathematics, University of Reading, U.K.

Address for all correspondence:
david.daykin@googlemail.com
Sunnydene, Tuppenny Lane, Emsworth, Hants, England, PO10 8HG.

Abstract. Let Z be a totally ordered set. We work on finite strings b = 0;0,... by,
of yfrom Z. Such a bis a [y (Lyndon word) if m> 1, and b is the unique first
in /ex (lexicographic order) among the mrows of the m x m circulant matrix
with b as first row.

A classic result is that every string b has a unique max factorization umf(b) into
lyns, each /yn of maximum possible size in b.

In 1983 J. P. Duval [6] published Algorithm 1, which finds um/(b). It
was studied in 1991 by A. Apostolico and M. Crochemore [1]. Then their work
was studied in 1994 by J.W. Daykin, C.S. Iliopoulos and W.F. Smyth [5].

Since Duval used a programming language, we start by giving a new
simple account of his Algorithm 1. Then our Algorithm 2 given here modifies
Duval’s Algorithm 1 to find umf(@), when ais a string & = A;A; ... Ay of lyns A,

Our Algorithm 3 is also for a string @ = A/A; ... Apoflyns A, It is
completely different to Algorithms 1,2. It snakes right, left, right, and so on. It
revealed the fact that /yns have a special structure. We give an example where
Algorithm 3 needs almost 27 tests, we think that is the most needed, but cannot

give a rigorous proof.
We find interesting properties of /y71s, some of which may be new.

Keywords: algorithm, complexity, factorization, Lyndon word, string.

Footnote. The author thanks the referees for reading this paper
carefully, and for making a correction and suggestions that improved it. {The
author’s supervisor G. Kreisel told him in 1958, “I have the utmost respect for
my fellow mathematicians.” On the other hand his co-author Rudy Ahlswede
said in 1983, “We are not as good as all that you know David!”} End of

Footnote.
1. Introduction to lyns and umfs.

Mostly integers are fed into digital computers, so without loss of
generality, we let 2 be the integers with their usual order ... -2<-7<0<+7<+2
... . We work on strings (words) @ = ad;... d,0f integers a;, and use /ex
(lexicographic order) between them. We put dim(@) = | 2| = n. The string ais a
lyn (Lyndon word) if 7> 1, and & is the unique first in lexicographic order

JCMCC 77 (2011), pp. 65-74



between the rows of the /7 x /7 circulant matrix with 4 as first row. For example
the string 277 is not a /yn, but 772is a [ynas the Jrows are 712 < 121 < 211 in
lex. Clearly a /yn is not the empty string 4, and |A | =0, Every (single) integer is
alyn. Also a /ynis non-periodic, otherwise the circulant would have two rows
the same, and we would not get uniqueness. (Other writers say “primitive”
instead of non-periodic. Also, instead of talking about the circulant, they say
“minimal in its conjugacy class”. In [4] Daykin and Daykin find all factorization
families consisting of one row from each non-periodic circulant. So we like
circulants.)

If a,b,c are strings and @ = b¢ we have a > ;s b in /ex, where IS = /nitial
Section. If a = def, b = dghand | 8]= | g| = 1, so 6.gare integers, then 2> sp b
when & > g, where FD = First Difference.

If 2 = be = dbwith b,c,d # A, then D is said to be a border of the string
4. If a has no border it is border-fres. Lemmas 1,2,3,4 here below are found on
page 365 of Duval’s 1983 paper [6].

Lemma 1. Every lyn is border-free.

Lemma 2. A string a is a lyn iff for all a = bc with b,c # A we have a < c.
Lemma 3. /fA B arelynsthen AB isa lyniff A < B.

Lemma 4. IfA,B are lyns and A < B then AB and all AA...ABB...B are lyns.

Observe that, when we use a capital letter for a string, it denotes that it
was given as a /yn. Having chosen a letter for a string, we do not change it.

We do not use it here, but we mention a generalization of Lemma 2.
Lemma 5. (Easy). Léta = AjA ... Apwhere the A, are lyns. Then a is a lyn iff
: a<gp Abier... 4p fori<iz<p.
The following more revealing form of Lemma 2 appeared in [3].
Lemma6. The string a = aa; ... a, isalyn iff
) 3182... 8 <Fp dn +18n i+2...8p, fOr1 <i<n,
(Note that in (1) we have | left side |= |right side | = / and there is no border.)

From Lemma 6 one easily gets Lemmas 7,8.

Lemma 7. /f string b#2 is an initial section of a lyn, then b is a lyn iff it is
border-free.

Lemma8. Lo8tA = a3 ... 3, bea lyn. If 2 <r <nand 8 is an integer with 6>
a, then the string a,a; ... a,-,8 is a lyn. Note 1213is a lyn, but 1313,1413,...
are not.)

Lemma 9. (Easy) (Daykin-Daykin [3]) /fXy,yz are lyns withy # A then xyz is a
n.

Definition 1. Léet & = a;a... a, be a string. Let b be a section b = aa; , 14, 5 ...
a;of a. When b is a lyn we say b Is max in a if we cannot find a lyn different from
b by decreasing i, or increasing j, or by doing both.

Now suppose d = AjA; ... Apwhere the A;are [yns. If A; < Asthen
Lemma 3 makes As43a /yn, and Ay is not max in 4. If any A, is not max in a, by
Xyz Lemma 9, we can join together some of the /yns in the factorization of a.
This proves
Theorem 1. (Classic). Every string a + 2 has a unique max factorization



umt(a) = [A:][Ad ... [A,] where a = AiA; ... Ap and each A; is a lyn max in a.
Further we have A;> Az ...
24,
Lemma10. /fa = AjAz ... Apwhere the A, are lyns, and A= s Az2 is... 2 isAp,
then umf(a) = [A;] [Az] ... [Ap].

Proof. Suppose p > 2. Then A, is an /S of A;, So A, is a border of 2and ais not a
lyn. Next suppose some A, is not max in 4. Then by Xyz Lemma 9 we would get
a section of the A ’s forming a /yn. This is impossible by the first
argument. 0

This Lemma 10 strengthens Theorem 1 as follows.
Theorem 2. /fa = AiA; ... Apwhere the A, are lyns then
umi@a) = [A1J[Az]... [Ap] iffA12 452> ... 2 A,

Lemma 11. (Cut) /fa = A/Az... Asb where the A are lyns, and string b# A, and
Ar>is Az gs... 215 Ap > b, then umi(a) = [A;J[Az]... [Ap Jumi(b).

Proof. Suppose the lemma is false, so we do not get the Cut between A, and 4.
This means there is a /yn D, which is a section of 4 and meets both A,and b.
Then by the Xyz Lemma 9, there is a [y/7 C'= ¢, where ¢; = A; Aj,; ... Apfor
some /in I <i<p,and ¢;#1is an /Sof b.

Case 1. Ay > s 0. Here A2 As, 12 s ... 215 Ap >is Comaking €2 a border of C,
which is impossible.

Case 2. Ay > rp b. We are given that A, = déf and b = dgh for strings d,e,/,g,h
with | 8|= [ g | = 7and @ > g. Observe that A, = def is an /S of ¢;. We cannot
have ¢, an /S of d for that would make &2a border of /yn7 C. So dgis an /S of ..
Then & > g contradicts (1) for the /yn C when the right side of (1) is

Ca 0
Lemma 12. IfA,Ab are lyns, and string b# A then A < b. (Note A =12 <51 =
b.)

P’roof. Trivially 4 # b. We assume A is not an /S of b, for otherwise A < Hby
definition. Then we cannot have £ an /S of A, for that would make b a border of
lyn Ab. From circulant Ab we have Ab < bA. So in this case 4 < zp b.

m]
2. Algorithm 1. Duval’s Lyndon factorization of a string of integers.

In 1983 [6] Duval gave his algorithm in a programming language, and in
contrast to his sophistication we present here a simplified version. We are given
astring b = byb;... bp We assume that we have found that b = (B¢, which
means that Bis a /yn, and that b starts with 4 21 copies of 8 followed by string ¢
= 610z... 6. (Thus B is an /Sof b)) Initially Bis b;and u = 7and ¢ = bsb;...b,,
Case 1. ¢ = 1. We are finished because umf(b) =[B)[8] ... [8], with u copies of
B.

Case 2. A#c=cyCs... ;. Wetest B 7 ¢, testing b;7¢; fori=123,..in turn.
Case 2.1. (Cut) 8 > ¢. By Lemma 11 we have umf() =[B)(8] ... [B] umf(c),
with u copies of B. We restart to find umf(c).

67



Case 2.2. B <5 ¢. There is a copy C of 8 at the start of ¢. We call this Ca
newlyn. We increase u by 1, get a new ¢, and restart.
Case 2.3. B < gp ¢. This holds because we are not in Case 2.2. Hence there is a
least integer j > / with & # ¢, so by < €. If j 2 2 we apply Lemma 8 to find € =
CiCs... cjis a lynwith B < C.1f j = 1then €= ¢yis a [yn with B < C. In either
case we call this Ca newlyn. Now Lemma 4 says (B )'Cis a [yn. We restart
with yn (B }'Cin
place of /[yn B,and u = 1.
0

It occurred to the author, that if, instead of being given a string of
integers, we were given a string of /yns, we must get an algorithm, generally
requiring fewer tests. In the extreme example, a string AB of two /yns A, B with
different first integers is factored [A/{B] or [AB] with only one integer test.

3. Algorithm 2. We modify Duval’s Algorithm 1 for a string of /y7s.

Our input now is a string & = A/Az... A, of lyns A; In a nutshell,
whenever Duval finds a newlyn €, we locate it in our input string. Let @ be the
last integer of C.

Case (i). This  is the end of an A let it be Asnp. Here we can only follow Duval.
Case(ii). The  is in an A, but is not the end of A; let it be Apy. Here Xyz Lemma
9 on C and Ay gives a [yn C* longer than C. Now C* ends Aps and it starts at
or before the start of . We will use C".
Algorithm 2. Let & = AsAz... A, where the A;are [yns. We assume that we know
that & = {A}*c, where First Ais a [yn, Second A = AjA;... Ay for some hin 1< h
< 1, Third u is an integer x> I, and Fourth ¢ = AwAy; 1A+ 2... Apfor some kin
1 < k <n (Note that {A}* = A/Az... A¢ 1, but we may not have n = uh + k.)
Initially A = Ajand u= 7and ¢ = Ax;s... 4,

Case 1. ¢ = 4. We are finished because umf(h) = [A][A] ... [A], with u copies of
A

Case 2. c#A Wetest A?¢CIfA=as3z.. 3,and € = £46s... Gy, this means
testing the integers 4, 7 ¢;for i = 1,2,3,...in tun.

Case 2.1. (Cut) A > ¢. By Lemma 11 we have umf(l) =[A}[A] ... [A] umf{c),
with u copies of A. We restart to find umf(c).

Case 2.2. 4 <5 €. There is a copy C of A at the start of ¢. This C'is a newlyn.
Case (i) above. We increase u by 1, and restart on b = {A}*” Te* where Ac* = ¢.
(Note that here and below the four start conditions hold.)
Case (ii) above. If C" starts at C, then by Lemma 4 we get L = {A}C* =44 ...
AC*isa lyn and b = {L}d for some d. We restart on {L} 'd. The same holds
true, using XyZ Lemma 9, if the start of C* is before C.

Case 2.3. A < ¢p ¢. This holds because we are not in Case 2.2. Again put
A=a,a;... 3yand € = €4C;... €. Then there is a least integer j > I with &; # ¢,
50




8 <. If j > 2 we apply Lemma 8 to find C = ¢:0;... ¢jisa [ynwith A < C.If j
= 1 then €= ¢yis a [ynwith A < C. Now Lemma 4 says (4 }'Cis a newlyn.
Case (i) above. We restart on & = {(A J'C} e with v = 7, where b = (A J* Ce.
Case (ii) above. We use Xyz Lemma 9 on (A }'Cand Asto geta [yn L. We
restart with = (LPgwithv =17, where b = Lg.

0

4, Algorithm 3. OQur Lyndon factorization of a string of /yns.

Suppose A,8,C are lynswith A 2,58 < €. Then BCisa lynbut A ? BC
can be anything, as shown by Example 1 below.
Example 1. Let A be each of the /yns 13,12,1,74,134 in turn. Let Bbe the /yn 1,
s0 A 258 Let Cbethe [yn3so B < Cand BC= 13isa [yn. Then A ?BCisin
turn
=, < rp, <15, > F, > is- (One can get the same with binary strings.)

0
In view of this Example 1, our Algorithm 3 below has to snake left and

right.
Algorithm 3. The input is any string @ = AsA; ... 4,0f [yns A;with p> 2. We
want ¢mf(a). We may have some or all | 4| = 7. We use up the 4, one at a time
when we move right. So we assume we know that A;2s A,>s... 25 A, for some
ginl<q<p.
Case 1. (Stop) g = p. We are finished by Theorem 2, (or Lemma 10.)
Case 2. g <p. Test Ay ? Ay, 1. (This means finding the /ex order between
them.)
Case 2.1. (Cut) Ar2isA22s... 2459 > rp Ag+ 1. Use lemma 11 and restart.
Case 2.2. (Go Right) Ay>5 Ay, 1. Increase ¢ and restart.
Case 2.3. (Go Left) A;=>/sA22s... 2/5Aq < Ay 1. Here we use Lemma 3. The
two /yns A, and A, , sare replaced by the single [y7 AiA; , 1. If ¢ = 7 we just
restart. If /< gthen Example 1 shows we do notknow A, ;?A,A;, 1. So this
is our first test, when we restart at Case 2.

0
Before the algorithm looked at Ay , ), it found umf{A,A; ... Ag), but this

may not be the start of umf(a).
The cost of finding #mf(a) is the number of tests @ 7 g which the

algorithm made. Here 6,9 are integers, and one testfinds 6 < g, 6 =g, or 8 > g.
The cost of (Cut) is | Ay | or less. The cost of (Go Right) equals | 4, , ,|. We
bound the cost of (Go Left) in Example 2 below.

Suppose Algorithm 3 has run on a string ,3;... a5 Let @y 7 4, and a; ?
a; be two of the integer tests it performed. It seems that test 8, 7 ; was
performed before test 4 7ay if /< kor /= kand h < /.

5. The structure of a Lyndon word.



We say a /yn D is allislynif all /S of D are lyns (this means a,< & for 1< /).

Lemma 13. (Two slopes zip-up.) Lét C be a lyn which is not allislyn.

Then C = AsAz ... ApB1Bs ... Bgwithp 2 2, and q= 1, and all A; and By lyns,
and Ai=is AsZis... 258 Ap, and B;= B,> ... = Bq, ana'A,, <8,
Proof. Let @ # A be the /S of C, with anot a /yn, and with d/m(a) maximal. So a
#Cand umf(a) = [A1J[Az]... [Ap ] with As2Az2 ... 2Ap andp > 2. We
cannot have
A; > ep Ay, 1 for that would give a cut in €, which is a [yn. So Ar2sAz2s... 25
Ap Let C = ab, so b#A. Then umf(b) = [B1][Bz]... [By] With B;>B;> ... 2 B,
and @¢>1and Byisa [yn Next A; Az ... ApBy is a lyn, by definition of a.
Hence we must have A, < 8.

Now A,,B, and £ = AA; ... ApB] are [yns. So Ap.y < ApB; making Ap-
1A,B1a lyn, and so on. Having zipped £ up, we get £ < B starting the zip up of
C. W)

A Chinese proverb says, “A single picture is worth a thousand words.”
So rather than using masses of symbols, we study typical examples.

Into our Algorithm 3 we put a string @ = A1Az ... Apof lyns A;with p> 2,
and we now discuss what happens.
Case 3. The algorithm starts Goes Left. Here A;Azis a lyn. If p> 3 we replace
Ay, Az by AjAz and restart.
Case 4. The algorithm always Goes Right. So A7> 422 ... 2 Ap, with cost <
| ArAs.. Ap | , and umf(a) = [A; J{Az]... [Ap ] by Theorem 2.
Case 5. The algorithm starts Go Right but has a first Go Left. Each Go Left
forms a new /7, as shown in Case 2.3 above. In Example 2 below we go Right
five times, then Left six times, and this produces a /. It should be compared to
Lemma 13. This Example 2 is typical of how the algorithm starts to behave,
except it does not have equalities like L,=Lg (whichise =1.)
Example 2. LetK = L,L2L3L4L5L5L7where K and the L;are [yns. Suppose
further
Ly =Abecdef > L =Abede >;5 L =Abed >i5 Ly =ADC > Ls =Ab >isls=A < L;
=H,
where b,c,0,8,fare non-empty strings of integers, not necessarily /y/s.
Since L; >s Lothe cost of this test between [y is | L2| . It then does L, 7 L,
wiih ccl>st | Lsf, and so on till L5 ? L These five Go Right tests cost | Lo|+ ...
+ | Lg].

The test Ly ? L, finds [.5 <Ll;so Lel7isa /yﬂ. Because Kis a /yn, by
Lemmas 10 and 11, we cannot have Ls>ss Lgl7or Ls > rp Lgl7 so Ls < Lgl ;.
Thus Ls5LsL7is a /yn. In this way Li<lisilisz... Ly and Lil;,¢..L7isa lyn
for i=6,5, ... ,1. Thus we have six Go Left tests.

Now Ab,A are [yns, so Lemma 12 gives A < b. In the same way it gives
Ab < cand Abc < dand Abed < e and Abede < 1.

70



Next we consider the costs of the Go Left tests. First wehad A < #
with cost < | A|. Second we had Ab < AH which is b < H, and hence A < b < H
with cost
< | b|. It tells us AbAH is a lyn. Third we had Abe < ADAH so Ab < ¢ < AH.
Put
¢ =(AJc*then b < ¢ * < Hwithcost< | ¢*|. Fourth we had Abed <
AbcAbAH so Abc = AbAc™ < d < AbAH.Put d = (Ab)(A)d*then A<b<c *<
d" < Hwith cost
< | @*|. Continuing & = (Abc)(Ab)(A)e* and f = (Abed)(Abe)(Ab)(A)r with
A<b< ¢*<d"<e" <" <H. The total cost of going left is cheap at
< | dbc*d*e*r*| < | Abedef| = | L;].
|

Example 3. Suppose our input /ynsare Hy, Hz ... ,Hgg Before the algorithm
looks at Hys, it finds umf(H;... Hsz). If this Umfhas an > fp it has a cut, the /yns
on the left of this cut are done, and will not affect those on its right. So for our
purposes, we can assume we have HyHj... Hsp = L1l sl sl 4 5Ll 7, as in Example
2, with

Lizislozis LyZisLy2ysls>isle=A <Ly = H = H,

0
Theorem 3. Consider the typical lyn K in Example 2 above. This K is not
allislyn. In the notation there we have A< b < ¢ * <d* < e* < f* < H. We put
w = AbA, then

Ly = we*wd*we *we*we*wd*we wf* = Ly Ll wf* and

Lo = we*wd*we*we* Lslwe* and

Ls = we*wd™” Lywd* and

Ly=we”
with initial conditions Ls = Aband Lg=Aand L; =H.

Further K = L *LH, where L = LaolslLsls and L has border A.

]

Notice that in Theorem 3 the number of W in the successive lyns is
8421, for c*itis 42,11, for d*itis 2,1,7, for e*itis 7,7, and for f* it is just 7.
We are dealing with powers of 2, So if T is the number of tests, then

t< | Abe*d*e*r*| +16| A|+ 8| b]+4] c*|+2|d*|+ | &*
= 32| A|+16|b|+8| c*|+4| a*|+2] 6*
If A,b,c*d* 8" f*H are integers then T <38 tests, and | | =64
The fact that /yns are so strongly structured surprised the author. Let
K K be two lyns, each like the K above, with corresponding first /yns L,V
,L1®. Imagine one is testing K’ 2K . One begins by testing L,/ ? 1, In
view of L;= we *wd™we *we *wc *wd *we *Wr* seen in Theorem 3, it will not cost
much to make this test. These facts explain in part why the algorithm is
efficient.
Interestingly the /y7 1213121415 factors [1213] >;5 [12] < [1415] and

[12131214] 25 [1] < [5].

a* ,

H
H

+
+| ]+

71



6. Complexity of Algorithm 3.

For each 7> 7, let f(n) be the maximum number of integer tests & ? gused by
the algorithm, to find umf{a), over all strings 4 of integers with dim(a) = n. So
B(n)/n is our complexity, and we think has constant 2.

Suppose we have a string & of y /y71s, each of dimension 8, over the 26
letters of the alphabet, so | 2| = 5. The expected cost of testing two of these
lynsis about 1. If Algorithm 3 has complexity 2, the complexity for dimension §
lynsis 2/8.

To get a string 4 needing as many tests as possible, we want a /yn
which snakes Right, Left, Right,... as many times as possible. So for a given 7,
we want the A,0,6%,d*8* ", H in Example 2 and Theorem 3 above, to be as
small as possible, so they might as well be 1,2,3, ... This idea is used in
Example 4, which is the best example the author could find.

Example 4. Let a be the initial section of z(I) below, with | a| = 7 = 2 and p>

4,

() =
1|2|1,3]1,2,1,4|1,2,1,3,1,2,1,5 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,6] ...

Let A= p,q,r,s= 1,2,1,3 On Athe algorithm goes p?77so 12is a /yn,
then p?rso 1221, then r?sso 13is a lyn, finally g7s shows 7273 is a lyn, at cost
4.

The next 6 tests are crucial. Let 8 = Lu,v,w=1,2,1,4. It goes p?fso
A>1, then t2uso 12is lyn, then g2u so A>12, then f7vso A>1221, then v?wso
14is lyn, then u?wso Bis [yn, but we do not yet know A?B. These 6 tests are
used for 7213, 1214, 1215 and so on, in fact for all tests X7y with at least one of
Xyequal to 7or 2.

We delete every 7 and 2from 7 (I) to obtain z(3) = 3,4,3,5,34,36,....
In other words we delete all runs 727. By the above working, each deleted run
costs 6 towards the cost of finding umf 3). The effect of the algorithm on tests
X% which do not involve a 7 or a 2is the same as finding umf{x (3)). To obtain
#(5) we delete every 3and 4 from 7(3). In other words we delete all runs 343,
each of which cost 6. The effect of the algorithm on tests X7y which do not
involve a 7,23 or 4is the same as finding umf{u(5)). Since we delete runs of
three with cost of 6, the total number of tests is nearly 27, but
<2n. O
Example 5. Consider the case = {0,7} with 0 < 7. Let A= 00 ... 011 and 8=
00 ... 001 with | A| = | B| = n. Then umf(AB) = [A]{B]. Our Algorithm 1
finds, First A is a lyn, Second there is a cut between A and B, and Third that 8 is
a lyn, each with
n— 1 tests. So the binary complexity is > X/+1)/2n. The author could not do

better.

72



Binary /yns may warrant further investigation. They could be studied as
vectors of even dimension, so (3,2) is /yn 00011, and (3,2,1,4) is lyn
0001101111.

7. Short Cuts.

These would improve Algorithm 1.

Shortcut 1. Assume A, > IS Ag = Ag =.=4,< A, with 3<r. So AA,, iis
a [yn, and we are in the Go Left case. Our next test would normally be A, ; ?
A/A; , . However Lemma 4 says that B = AsA; ... A, A, , sis a lyn. So we can
short cut to the test A; 7 B. (The algorithm would prove that Bis a /yn7in any
case.) O

Shortcut 2. Assume @ = A/A; ... Ahwhere Asisa lyn,and A;= A= ... = 4,
and string b# 4. Let Ay = 2,37 ... dpand b = by, ... by We start testing 4,7 b;
for

i=1,2,... Suppose there is a least / with & # b, If this /has a,< b,
then AiAz ... ADibs... by is a [ynby Lemmas 4,8. If this /has a,>
Oythen there is a cut

umf(a) = [Ai][AJ...[AJumi(b). (The algorithm would find these.)

O

8. Further research.

We want more UMFF’s (Unique Max Factorization Families, see [3], [4] for
definitions and theory). We always take exactly one row from each non-
periodic circulant matrix, and nothing else. An UMFF behaves like the family
of /yns. It was lexicographic order that yielded the /ys. In [3] are more than 30
other orders that yield UMFF’s. For these, it seems we can adjust our
algorithms to get the unique max factorizations. In [4] are all UMFF’s, but there
are so many, that it may be possible to get an algorithm for only certain ones.

References.
[1] A. Apostolico and M. Crochemore, Optimal canonization of all substrings of
a string, /nform. and Comput. 95 (1991) 76-95.
[2] K. T. Chen, R. H. Fox and R. C. Lyndon, Free differential calculus, IV - The
quotient groups of the lower central series, Ann. Math. 68 (1958) 81-95.
[3] D.E. Daykin and J.W. Daykin, Lyndon-like and V-order factorizations of
strings, J. Discrete Algorithms 1 (2003) 357-365.
[4] D.E.Daykin and J.W. Daykin, Properties and construction of unique
maximal factorization families for strings, /ntérnat. J. Found. Comput. Sei. Vol.
19, No. 4 (2008) 1073-1084.
[5] J.W. Daykin, C.S. Iliopoulos and W.F. Smyth, Parallel RAM algorithms for
factorizing words, Theorst. Comput. Sci. 127 (1) (1994) 53-67.

73



[6] J. P. Duval, Factorizing words over an ordered alphabet, J. Algorithms 4
(1983) 363-381.

[7] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA,
1983; 2nd Edition, Cambridge University Press, Cambridge, 1997.

[8] R. C. Lyndon, On Burnside’s problem 1, 7rans. Amer. Math. Soc. 77 (1954)

202-215.

Thanks and best wishes to the referees, and to A. Apostolico, M. Crochemore,
J.W. Daykin, C.S. Iliopoulos, W.F. Smyth, J. Spurr, and above all to J. P. Duval
(some of whose foundational results have been mentioned here.)

74



