GEODETIC DOMINATION IN
GRAPHS

H. Escuadro!, R. Gera?, A. Hansberg?®, N. Jafari Rad4,
and L. Volkmann?®

1Depa.rtment of Mathematics, Juniata College
Huntingdon, PA 16652; escuadro@juniata.edu

2D(-:p&rt;ment; of Applied Mathematics, Naval Postgraduate School,

Monterey, CA 93943; rgera@nps.edu
3 ehrstuhl II fiir Mathematik, RWTH Aachen University,

52056 Aachen, Germany; hansberg, volkm@math2.rwth-aachen.de

4Department' of Mathematics, Shahrood University of Technology
Shahrood, Iran; n.jafarirad@shahroodut.ac.ir

Abstract

A subset S of vertices in a graph G is a called a geodetic dom-
inating set if S is both a geodetic set and a (standard) dominating
set. In this paper, we study geodetic domination on graphs.
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1 Introduction

We consider finite graphs without loops and multiple edges. For any graph
G the set of vertices is denoted by V(G) and the edge set by E(G). We
define the order of G by n = n(G) = |V(G)| and the size by m = m(G) =
|E(G)|. For a vertex v € V(G), the open neighborhood N(v) is the set of
all vertices adjacent to v, and N{v] = N(v)U{v} is the closed neighborhood
of v. The degree d(v) of a vertex v is defined by d(v) = |N(v)|. The
minimum and mazimum degree of a graph G are denoted by § = (G)
and A = A(G), respectively. For X C V(G) let G[X] the subgraph of
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G induced by X, N(X) = U,ex N(z) and N[X] = U,cx N[z]. If G is
a connected graph, then the distance d(z,y) is the length of a shortest
z —y path in G. The diameter diam(G) of a connected graph is defined by
diam(G) = max,; yev(g) d(z,y). An z — y path of length d(z,y) is called
an ¢ — y geodesic. A vertex v is said to lie on an = — y geodesic P if v is
an internal vertex of P. The closed interval I[z,y] consists of z, y and all
vertices lying on some z — y geodesic of G, while for § C V(G),

181= " I,y

z,yES

If G is a connected graph, then a set S of vertices is a geodetic set if I[S] =
V(G). The minimum cardinality of a geodetic set is the geodetic number of
G, and is denoted by g(G). The geodetic number of a disconnected graph
is the sum of the geodetic numbers of its components. A geodetic set of

cardinality g(G) is called a g(G)-set.

A vertex of G is simplicial if the subgraph induced by its neighborhood
is complete. It is easily seen that every simplicial vertex belongs to every
geodetic set. For references on geodetic sets see [1, 3, 4, 5, 10].

A vertex in a graph G dominates itself and its neighbors. A set of vertices
S in a graph G is a dominating set if each vertex of G is dominated by some
vertex of S. The domination number ¥(G) of G is the minimum cardinality
of a dominating set of G. For references on domination parameters in graphs

see [9].

If e = {u,v} is an edge of a graph G with d(u) = 1 and d(v) > 1, then
we call e a pendant edge, u a leaf and v a support vertez. Let L(G) be the
set of all leaves of a graph G. We denote by Py, Cyn, and K, , the path
on n vertices, the cycle on n vertices, and the complete bipartite graph in
which one partite set has r vertices and the other partite set has s vertices,
respectively. The corona cor(G) of a graph G is constructed from G, where
for each vertex v € V(G), a new vertex v’ and a pendant edge vv' are

added.

It is easily seen that a dominating set is not in general a geodetic set in
a graph G. Also the converse is not valid in general. This has motivated
us to study the new domination conception of geodetic domination. We
investigate those subsets of vertices of a graph that are both a geodetic set
and a dominating set. We call these sets geodetic dominating sets. We call



the minimum cardinality of a geodetic dominating set of G, the geodetic
domination number of G.

In section 2 we give some general results and sharp bounds for the geodetic
domination number. In section 3 we focus on trees, by relating the new
parameter to standard parameters in graph theory. In section 4 we present
realization results on the geodetic domination number. In section 5 we
study the effect on the geodetic domination number of a given graph by
the removal of a vertex or an edge.

2 Geodetic Domination

In this section, we look closely at the concept of geodetic domination in
a graph G, and obtain the geodetic domination number of some families
of graphs. Further, we look at some relationships between the geodetic
domination number and other parameters.

We call a set of vertices S in a graph G a geodetic dominating set if S is
both a geodetic set and a dominating set. The minimum cardinality of
a geodetic dominating set of G is its geodetic domination number, and is
denoted by 7,4(G). Since V(G) is a geodetic dominating set for any graph G,
the geodetic domination number of a graph is always defined. A geodetic
dominating set of size v,(G) is said to be & 7,(G)-set.

For example, if G = K -1 where n > 3 and v is the support vertex in
G, then the set {v} is a dominating set. However, {v} is not a geodetic
set of G. On the other hand, § = V(G) \ {v} is a geodetic set of G. In
fact, any geodetic set of G must contain every vertex in S, and hence $
is a minimum geodetic set. Since S is also a dominating set, we deduce
that S is a minimum geodetic dominating set of G and so v4(G) = g(G) =
Y¢(K1,n-1) = n—1. Chartand, Harary and Zhang [5] showed that g(K,) =
min{r, 3,4} for r,s > 2, and thus we obtain

Yg(Kr,s) = g(Kr,s) = min{r, s,4}

for 7, s > 2. The following bounds are immediate by the definitions.

Observation 2.1. If G is a connected graph of order n > 2, then
2< ma.x{g(G'), 7(G)} < 'Yg(G) <n.
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First we characterize all connected graphs of order n > 2 whose geodetic
domination number is 2, n and n — 1.

Theorem 2.2. Let G be a connected graph of order n > 2. Then:

(a) 74(G) = 2 if and only if there ezists a geodetic set S = {u,v} of G
such that d(u,v) < 3,

(b) 74(G) = n if and only if G is the complete graph on n vertices.

(c) 74(G) = n — 1 if and only if there is a vertez v in G such that v is
adjacent to every other vertez of G and G — v is the union of at least
two complete graphs.

Proof. Let G be a connected graph of order n > 2.
(a) This part can be easily verified.

(b) Note that the result holds for n = 2. We now consider the case where
n > 3. Assume first that 44(G) = n and suppose to the contrary that there
are two non-adjacent vertices z,y in G. Let P be an z —y geodesic, and let
v be a vertex on P which is adjacent to z. Then V(G) \ {v} is a geodetic
dominating set of G, contradicting the fact that 4¢(G) = n. Hence G is a
complete graph. On the other hand, if G = Ky, then 74(G) = n.

(c) Let G be a graph with 7,(G) = n -1, and let S be a 7,(G)-set such
that V(G) \ S = {v}. Let H be a component of G — v, and suppose that
H contains two non-adjacent neighbors v and w of v. Let z;z2...z, be a
shortest © — w path in H with ; = v and z; = w. Then ¢ > 3, and we
obtain the contradiction that V(G) \ {v,z2} is a geodetic dominating set.
Thus N(v) N V(H) induces a complete graph. If G — v consists of only one
component, then v is a simplicial vertex, again a contradiction.

Hence G — v is the disjoint union of p > 2 graphs Hy, Hs, ..., Hp. We now
show that v is adjacent to every other vertex in G. Suppose to the contrary
that v is not adjacent to some vertex in Hj, say in H;. This implies that
there is & v — u path vwu with w,u € V(H1) such that uv € E(G). Since
G is connected, Hy contains a neighbor y of v. Now d(u,y) = 3, and we
arrive at the contradiction that V(G) \ {v, w} is a geodetic dominating set.

Obviously, if G has a vertex v such that d(v) = n—1 and G —v is the union
of (at least two) complete graphs, then 4(G) =n - 1. (]

Theorem 2.2 (b), (c) and the inequality g(G) < 74(G) imply the next well-
known result.



Corollary 2.3. (Buckley, Harary, Quintas [1] 1988) Let G be a con-
nected graph of order n > 2. Then g(G) = n — 1 if and only if there is a
vertez v in G such that v is adjacent to every other vertez of G and G — v
is the union of at least two complete graphs.

Lemma 2.4. If G is a connected graph with v(G) = 1, then 7,(G) = g(G).

Proof. If G = K,, then (G) = 1 and 71,(G) = n = g(G). So we
only have to consider the case G # K,. Since 4(G) = 1, it follows that
A(G) = n — 1 and diam(G) < 2. The assumption G # K,, shows that
G has at least two non-adjacent vertices and so diam(G) = 2. Let S be a
minimum geodetic set of G, and let z ¢ S (such a vertex exists as G # K,).
Since S is a geodetic set, there exist vertices z;,z5 € S such that z belongs
to an z; — za geodesic. But diam(G) = 2 implies that the z; — z, geodesic
containing z must be the path z;zz,. Thus z; dominates «, and so S is a
dominating set of G. It follows that S is a geodetic dominating set of G.
Hence 7,(C) < |S| = ¢(G) and g(C) < 7,(G) leads to 7,(G) = ¢(G) as
desired. O

Next we present two sharp upper bounds of the geodetic domination number
in terms of diameter and girth.

Proposition 2.5. If G is a connected graph of order n > 2, then

@) sn- |22, )

Proof. Define diam(G) = d = 3t + r with integers r,¢ such that 0 <
r < 2, and select two vertices up and u4 in G such that d(ug,uq) = d.
Let P = upu1...uq be a shortest path from ug to u4, and let A =
{uo,us, ..., ust, use+r}. It is a simple matter to verify that D = V(G) \
(V(P)\ A) is a geodetic dominating set of G. If we note that |A| = ¢+ 1
when r =0 and |A| =t + 2 when 1 < r < 2, then we find that

V(P)\ A| = l6t-§2rJ - [2diagu(G)J ,
and this leads to the desired bound (1). O

If P, is the path of order n, then

(P = [12] = |22 | < | et
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This shows that we have equality in inequality (1) if G is the path of order
n and consequently, the bound (1) is sharp.

Proposition 2.6. If G is a connected graph of girth ¢(G) > 6, then

W@ <n- |23, @)

Proof. Let ¢ = ¢(G) = 3t + r with integers r,t such that 0 < r < 2,
and let C = ujuz...ucu; be an induced cycle of length ¢. In addition,
let A = {uj,u4,...,u3e—2} when r = 0 and A = {u1,uq,...,use-2, U341}
when 1 < r < 2. Then D = V(G)\ (V(C)\ A) is a geodetic dominating set
of G. If we note that |[A| =t whenr=0and |[A| =t+1when1 <r <2,
then we find that

IV(C)\ 4] = [6t-;2rJ _ |-2c:(30)J’

and this yields the desired bound (2). ]
If C,, is the cycle of order n > 6, then

o= 5] n-[3] o- [262]

This shows that we have equality in (2) if G is the cycle of order n > 6,
and thus (2) is also sharp.

Notice that Proposition 2.6 remains true if ¢(G) = 4. However, since
~4(Cs) = 3, we only arrive to the bound 74(G) < n —2if ¢(G) =5.

Finally, we give upper bounds of the geodetic domination number for triangle-
free graphs.

Proposition 2.7. Let G be a triangle-free graph with minimum degree
§ > 2. If M is a mazimal matching of G, then v4(G) < 2|M|.

Proof. Let S be the set of all vertices incident with an edge of M. The
maximality of M shows that V(G) \ S is independent. Because of § > 2,
each vertex v € V(G) \ S has at least two neighbors z and y in S. Since
G is triangle-free, the path zvy is an  — y geodesic. Hence S is a geodetic
dominating set of cardinality 2|M|, and the proof is complete. O
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Let H; = Kp, be the complete bipartite graph with the partite sets
{u1,u2,...,uq} and {z1,22,...,7p} such that g > p > 2, and let H, = K, ,
be the complete bipartite graph with the partite sets {v;,v2,...,v,} and
{v1,¥2,...,yp} such that r > p > 2. Define the graph H as the disjoint
union of H; and Hp together with the edge set M’ = {11, 22, ..., Zpyp}-
Then S = {z3,22,...,2p} U {¥1,¥2,-..,¥p} is a minimum geodetic dom-
inating set of the triangle-free graph H with the maximal matching M’
Thus v(H) = 2|M’|, and therefore Proposition 2.7 is sharp.

The same arguments as in the proof of Proposition 2.7 lead to the next
two upper bounds. A subset D C V(G) is a 2-dominating set of G if every
vertex of V(G) \ D has at least two neighbors in D. The cardinality of a
minimum 2-dominating set is called the 2-domination number v2(G) of G.

Proposition 2.8.  If G is a triangle-free graph, then v4(G) < 72(G).

Using Proposition 2.8 and known upper bounds on 92(G) (see for example
[2, 7, 8]), we obtain upper bounds of 7,4(G) for triangle-free graphs.

Proposition 2.9.  If G is a triangle-free graph of order n with minimum
degree 6 > 2, then v,(G) < n — a(G), where a(G) is the independence
number of G.

3 Geodetic Domination in Trees

If G is a graph and X a subset of V'(G), then, following Cockayne, Goodman
and Hedetniemi [6], we call a set D C V(G) an X-dominating set of G
if X € N[D]. The X-domination number vx(G) is the cardinality of a
minimum X-dominating set of G.

Proposition 3.1.  IfT is a tree of ordern > 2 and X = V(T)\ N[L(T)),

then
Y9(T) = |L(T)| + vx(T).

Proof. Let S be a 74(T)-set. As every geodetic set of T' contains L(T),
we observe that L(T) C S. Since S is a dominating set of T, and L(T)
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only dominates the vertices of N[L(T)], the set S\ L(T) is a minimum
(V(T) \ N[L(T)])-dominating set of T. This implies that

76(T) = |L(T)| = |S| = |L(D)| = 1S\ L(T)| = 1x(T),

and the proof is complete. O

Cockayne, Goodman and Hedetniemi [6] presented an O(n) algorithm for
determining vx (T"), and finding a corresponding minimum X-dominating
set, for any tree T of order n. Applying this algorithm and Theorem 3.1,
we see that we can find 7,4(7T’) in linear time.

We now present conditions that force v, (G) = g(G) and also 7,(G) = v(G),
parameters that have already been studied on trees.

Theorem 3.2. IfT is a tree of ordern > 3, then the following conditions
are equivalent.

(a) 7o(T) = g(T) = +(T),

(b) L(T) is a minimum dominating set of T,

(c) T = cor(T"), where T’ is an arbitrary tree of order at least 2.

Proof. Since the set of leaves L(T') is a minimum geodetic set of a tree
T, (a) and (b) are equivalent. Furthermore, if T" is a tree of order at least
2 and T = cor(T"), then v(T') = n/2 = |L(T)|.

Finally, assume that L(T) is a minimum dominating set of T. It follows
that each non-leaf of T is adjacent to at least one leaf of T' (note that
n > 3 implies the existence of non-leaves). Now we show that each non-
leaf of T is adjacent to at most one leaf of T. Suppose, to the contrary,
that a support vertex u is adjacent to k > 2 leaves vy, v2,...,vx. Then
D = (I(T) - {v1,v2,...,v}) U {u} is also a dominating set of T with
|D| < |L(T)|. This is a contradiction to the minimality of L(T'). Altogether
we see that each non-leaf of T is adjacent to exactly one leaf of T, and so
T = cor(T’) with an arbitrary tree T of order at least 2. ]

Finally, we notice the following proposition. The proof is similar to this
one of Theorem 3.2 and is therefore omitted.

Proposition 3.38. If T is a tree of order n > 2, then the following
conditions are eguivalent.

(a) 75(T) = o(T),

(b) L(T) is ¢ dominating set of T,

(c) Every vertez is either a leaf or a support vertes.



4 Realization Results

In this section we give realization results concerning the geodetic domina-
tion number. We first establish the existence of a connected graph G with
v¢(G) = a and |V(G)| = n for any two positive integers a,n with 2 < a < n.

Proposition 4.1.  For any two positive integers a andn with2<a<n
there exists a connected graph G with v,(G) = a and |V(G)| = n.

Proof. It can be verified that the result is true for 2 < n < 3 since if
n = 2, then G = P, while if n = 3, then G € {P;, K3}. Let us now consider
the case thatn > 4. Ifa=n,let G =K, andifa=n—1,let G = K} ,_;.
For a < n—2, let G be the graph obtained from the star K; ., with leaves
Z1,%3,...,Tn-2, by adding a new vertex y and joining y to the vertices z;
(@ £ i < n—2). Then the set S = {z;,23,...,%4-1,y} is a minimum
geodetic dominating set of G. a

Since the union of a dominating set and a geodetic set gives us a geodetic
dominating set, it follows that max{v(G), 9(G)} < 7,(G) < ¥(G) + ¢(G).
We now consider triples a,b,¢c € Z*+, where a,b > 2 and max{a,b} < ¢ <
a + b for which there is a graph G such that y(G) = a, g(G) = b and
v¢(G) = c. Note that we only consider the cases where a,b > 2 since if
a = 1, then Lemma 2.4 tells us that g(G) = b = ¢ = 7,(G) for which we
can take G = K1 p = K . while if b = 1, then G has to be K;.

Lemma 4.2. For any two integers a,b > 2, there is a connected graph G
such that ¥(G) = a, 9(G) = b and v,(G) =a+b.

Proof. Let a,b > 2 be two integers. Consider the graph H obtained as
follows.

1. Take a copy of Cs and let = and y be antipodal vertices.
2. Add new vertices z,,2,...,Zp—1 and join each to the vertex z.
Let G be the graph obtained from H by taking a copy of the path on

3(a—2)+1 vertices yoy1 . . . Y3(a—2) and joining yo to the vertex y. Observe

that the sets {z,y,¥2,¥s5,. .- ’y3(a—2)—l} and {z;,z,... ,l‘b-l,ys(a—z)} are
a minimum dominating set and a minimum geodetic set of G, respectively.
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Thus 7(G) = e and g(G) = b. Moreover, the union of the two sets given
above is a minimum geodetic dominating set of G. It follows that v,(G) =
a+b.

Theorem 4.3. Let a,b,c € Z* with a,b > 2. Then there is a connected
graph G such that v(G) = a, g(G) = b and 74(G) = ¢, where max{a,b} <
c<a+b

Proof. We consider four cases depending on whether some of a,b and ¢
are equal or not.

Casel:a=b=c:

Take G = cor(K,), the corona of the complete graph on a vertices. Then
7(G) = 9(G) = 1,(G) = a.

Case2:a<b=c:

Take a copy of Kj » with the leaves x;, 72, ...,z and the support vertex z.
For a < b, subdivide each of the edges zz;,zz2,...,TTq—1 to obtain a new
graph G. Then the set {z,z),%2,...,%5-1} is & minimum dominating set
for G while {z1,2,..., s} is both a minimum geodetic set and a minimum
geodetic dominating set for G. Thus ¥(G) = @ and g(G) = b = ¢ = 7,(G).

Case3:b<a=c:

Take a copy of Kj -1 with the leaves z1,2,...,25—1 and the support
vetex z. Subdivide the edges zz;,i = 1,2,...,b—1 calling the new vertices
Y1,Y2,. -+, Yo—1 Where z; is adjacent to y; for i =1,2,...,b—1. Obtain the
graph G by taking a copy of the path of length 3(a—b), say wow; . .. w3(4_s),

and joining wp to z. Then the set {z1,%2,...,Ts—1,Wo, W3, ..., W3(a—p)} is
both a minimum dominating set and a minimum geodetic dominating set of
G. Moreover, observe that the set {z,%2,...,Tp—1,W3(a—p)} is & minimum

geodetic set of G. Thus ¥(G) = a = ¢ = 74(G) and g(G) = b.
Case 4 : max{a,b} <c<a+b:
Let H be the graph obtained from ¢ — b copies of Ps by identifying the

corresponding leaves, and denoting them by z and y. Obtain a new graph
G as follows.



1. Add new vertices 1, z9,...,Z.—, and joining each one to z.
2. Take a+b—c—1 copies of Ky, say v;, w; wherei = 1,2,...,a+b—c—1
and joining each v; to z.

Observe that the set {x,w;,ws,...,Watb—c—1} U N(y) is a minimum dom-
inating set of G while the set {y,z1,%2,...,Zcq, w1, Wy ..., Watpe—1} is
a minimum geodetic set of G. On the other hand, the set

{y’ Z1,Z2,...y,Tc—a,W1,W2,..., wa+b—c—l} U (N(N(y)) \ N(y))

is a minimum geodetic dominating set of G. Thus ¥(G) = a, g(G) = b and
14(G) =c. O

5 How the Geodetic Domination Number Changes
When a Small Change is Made to the Graph

For many graph parameters, it is fundamental to ask how much the given
parameter changes when a small change is done to a given graph. In this
section, we study the effect on the geodetic domination number of a given
graph by the removal of a vertex or an edge.

Proposition 5.1. If G is a connected graph of order n > 2, then for every

vertez v € V(G),
79(G —v) S d(v) +7,(G) — 1.

This bound is sharp.

Proof. Let S be a v,(G)-set, and let v € V(G) be an arbitrary vertex.
Then it is easy to see that (SU N(v)) \ {v} is a geodetic dominating set of
G — v. To obtain the desired bound, we distinguish two cases.

Case 1: v € S. Then |(SUN(v)) \ {v} < d(v) + v(G) - 1.

Case 2: v ¢ S. Then, since S is a dominating set of G, it follows that
SNN(v) # 0. Thus [(SUN@)\ {s}] = ISUN)| < dv) +7%(C) - 1,
and the inequality is proved.

To see that equality is attained, let H; be the graph obtained from & > 3
copies of a Py, by identifying the corresponding leaves. Let Hy, H,, ..., H,
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be s > 1 copies of the graph H;, where z; and y;, for 1 < ¢ < s are
the two vertices of H; that are of maximum degree. Let G be the graph
obtained from H;,H,...,H, by identifying all vertices z; (1 < 7 < s).
For convenience, we call this new vertex z. Then a minimum geodetic
dominating set of G is {z,¥1,¥2,.-.,¥s}, and for any vertex v € V(G),
79(G = v) = d(v) + 74(G) - 1. o

The following is an immediate consequence of Proposition 5.1, and it is
sharp for the same graph given in the proof of Proposition 5.1.

Corollary 5.2. For every non-trivial connected graph G and for every
vertez v € V(G),
79(G — v) < A(G) +7,(G) - 1.

We now show how the geodetic domination number of a connected graph
G changes when an edge of G is removed.

Proposition 5.3. If G is a connected graph of order n > 2, then for every
edge e € E(G) we have that
2 <74(G —e) £ 7(G) +2

The bounds are sharp.

Proof. Let G be a connected graph of order n > 2 and let e = zy € E(G).
We first prove the left inequality.

Since K; is the only graph whose geodetic domination number is 1, it follows
that 74(G) > 2 and 7,(G — €) > 2 for every edge e in G.

If we take G = K,, where n > 2, then v,(G) = n while for every e € E(G),
74(G — €) = 2 and the equality is attained in the left inequality.

For the right inequality, let S be a v4(G)-set and e = uv € E(G). Then
SU {u,v} is a geodetic dominating set of G — e, which proves the result.

To see that equality is attained, consider the graph obtained from k£ > 3
copies of a P4, by identifying the corresponding leaves. If e is an edge
incident to two vertices of degree 2, then 7,(G) = 2, while 7,(G—e) =4 =
74(G) + 2. 0
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