Movable Dominating Sensor Sets in
Networks

Jean Blair
Department of Electrical Engineering and Computer Science,
United States Military Academy,
West Point, NY, 10996, jean.blair@usma.edu

Ralucca Gera
Department of Applied Mathematics,
Naval Postgraduate School,
Monterey, CA, 93943, rgera@nps.edu

Steve Horton
Department of Mathematical Sciences,
United States Military Academy,
West Point, NY, 10996, steve.hortonQusma.edu

Abstract

In this paper we consider 1-movable dominating sets, motivated
by the use of sensors employed to detect certain events in networks,
where the sensors have a limited ability to react under changing con-
ditions in the network. A 1-movable dominating set is a dominating
set S C V(G) such that for every v € S, either S — {v} is a dom-
inating set, or there exists a vertex v € (V(G) — S) N N(v) such
that (S — {v}) U {u} is a dominating set. We present computational
complexity results and bounds on the size of 1-movable dominating
sets in arbitrary graphs. We also give a polynomial time algorithm
to find minimum 1-movable dominating sets for trees. We conclude
by extending this idea to k-movable dominating sets.

Keywords: Domination, Networks, Movable Sensors;
2000 Mathematical subject classification: 05C69.

JCMCC 77 (2011), pp. 103-123

1 Introduction

All graphs in this paper are simple. Let G = (V(G), E(G)) be a graph
with n = |V(G)| and m = |E(G)|. For any vertex v € V(G), the open
neighborhood of v is the set N(v) = {u | wv € E(G)} and the closed
neighborhood is the set N[v] = N(v)U{v}. Similarly, for any set S C V(G),
N(S) = UyesN(v) and N [S] N(S)US. A set S is a dominating set
if N[S] = V(G). The minimum cardinality of a dominating set of G is
denoted by 7(G). When S is a dominating set and v € S, we say that there
is a sensor at v, and that v is a dominator. Given a dominating set S, a
vertex u is a private neighbor of v € S with respect to S if N(u) NS = {v}.
If u € S, we say it is an internal private neighbor of v, otherwise u is an
external private neighbor of v. We use the notation (from [6]) pn[v, S] to
denote the set of private neighbors of v € S with respect to S. Similarly, we
use ipn[v, S] (and epn[v, S]) for the internal (and external) private neighbor
set of v with respect to S.

The degree of a vertex v is the number of edges incident with v and is de-
noted by deg(v). The minimum degree of a graph §(G) = min, ¢y (g) deg(v).
The distance, d(u,v), between two vertices u and v in G is the number of
edges on a shortest path between u and v in G. The eccentricity, e(v), of
a vertex v is the largest distance from v to any vertex of G. The radius of
G, rad(G), is the smallest eccentricity in G. The diameter of G, diam(G),
is the largest eccentricity in G. Given disjoint graphs G and H, the union
of G and H is the graph G U H where V(G U H) = V(G) U V(H) and
E(GUH) = E(G)UE(H). The join of G and H is the graph G + H where
V(G+H)=V(G)UV(H) and E(G+ H) = E(G)UEH)U{w :u €
V(G) and v € V(H)}.

This paper is organized in the following way. In the next section, we
define a variation on dominating sets in which vertices in S are subject
to being displaced. We call this new model a I-movable dominating set.
Following, we establish the computational complexity of the problem on
arbitrary graphs. In Section 4 we identify bounds on the 1-movable dom-
ination number for certain classes of graphs. We give a polynomial time
algorithm to compute the 1-movable domination number of an arbitrary
tree in Section 5. We conclude with some generalizations and directions for

further research.
2 1-Movable Dominating Sets
Consider a network with sensors deployed at some vertices so that they can

collectively detect certain events throughout the network. These sensors,
for example, might be designed to detect electronic activity, human activity,

104

or some natural phenomenon. If changing conditions at a vertex prevent the
proper functioning of a sensor, it is natural to consider an alternate location
for that sensor that is nearby and yet preserves the property that the sensors
collectively cover the network. The conditions that prevent proper sensor
operation might include adverse weather, electronic interference, or denial
of service, etc. Motivated by this, we consider the following.

Definition 2.1 A 1-movable dominating set is a dominating set S C V(G)
such that for every v € S there exists a vertez u € V(G) N N(v) such that
(S — {v}) U {u} is a dominating set.

Note that Definition 2.1 does not distinguish between the case of u € §
and u ¢ S. In the former case, the set S — {v} is itself a dominating set.
The following definition is equivalent to Definition 2.1, and it explicitly
distinguishes between these two cases. To simplify the explanations in this
paper, the definition below will be used throughout.

Definition 2.2 A 1-movable dominating set is a dominating set S C V(G)
such that for every v € S, at least one of the following two conditions holds.

1. S — {v} is a dominating set, or

2. there ezists a vertez u € (V(G) — S)NN(v) such that (S — {v})U {u}
is a dominating set.

Informally, the idea is that every dominator is either not needed at all
(condition 1), or can be replaced by a neighbor if an attack destroys its
ability to provide domination so that the resulting set is also dominating
for G (condition 2). Given a graph G, we will denote the cardinality of
a smallest 1-movable dominating set by 71 (G). Since every 1-movable
dominating set is a dominating set, 7(G) < ¥L(G). Note that v} (G) is
undefined for any graph with an isolated vertex, and defined for all other
graphs.

We start with a simple example. Consider P;, the path on 3 vertices,
with vertices v1,v2, and v3 labeled consecutively. The set S = {vp} is
a dominating set since N{S] = V(G). However, S is not a 1-movable
dominating set, nor is any other subset of V(P;) with cardinality 1. It
is easy to verify that any choice of § satisfying |S| > 2 is a 1-movable
dominating set for P;. Thus, v(Ps) = 1 but 4},(P;) = 2.

The following observations show that ¥(G) and +2,(G) can be equal,
and that they can be arbitrarily far apart. Recall K, is the complete graph
on n vertices, and K, » is the complete bipartite graph.

Observation 2.3 v(K,) = v} (K,)=1.

105

Observation 2.4 7(Kjn-1) =1, but 7}, (K1,n-1) =n—1.

An immediate consequence of Observation 2.4 is that the value of 1:719;)
. 0] ‘y G
can be arbitrarily large.

There are other classes of graphs for which v(G) = +},(G). Recall
that the corona of an n-vertex graph G is the graph formed by adding n
isolated vertices to G, and then connecting each new vertex to one from the
original graph, so that each original vertex has one new private neighbor.
The resulting graph Cor(G) has 2n vertices and |E(G)| + n edges. Since
every dominating set of Cor(G) is a 1-movable dominating set, we have the
following lemma.

Lemma 2.5 For any graph G, vL,(Cor(G)) = v(Cor(G)).

It is also useful to observe that 1-movable dominating sets satisfy the
property described below.

Observation 2.6 If S is a 1-movable dominating set, then any St satis-
fying S C St is also a 1-movable dominating set.

Note that without condition 1 in the Definition 2.2, Observation 2.6 fails to
be true since for any graph with 6(G) > 1, no vertex in the set S = V(G)
satisfies condition 2 (since V(G) — S =0).

2.1 Relationship to Secure Domination

In [3], the authors define a set S to be a secure dominating set if for every
vertex v € V(G) — S, there exists a vertex u € N(v) N S such that (§ —
{u}) U {v} is & dominating set. They define the secure domination number
7s(G) to be the minimum size of a secure dominating set in G. There are
some graphs for which all secure dominating sets are 1-movable dominating
sets and vice-versa (for example, K1). There are, however, other graphs
that have 1-movable dominating sets that are not secure dominating sets.
The following example demonstrates.

For the graph of Figure 1, {vs, v} is a 1-movable dominating set, since
the sensor at vg can be moved to vs, or the sensor at v7 can be moved to vy,
and the resulting set ({vr,vs} or {vs,ve}, respectively) dominates G. On
the other hand, {ve,v7} is not a secure dominating set since, for example,
vs has no neighbor in § = {ve,v7} that can transfer its sensor to vs and
still form a dominating set for G.

Secure domination concepts were further studied in [2], and were ex-
tended in [5]. We revisit secure dominating sets and their relationship to
1-movable dominating sets in Section 4.

106

Figure 1: Example Graph

2.2 1-Movable Domination and Secure Domination as
Games

Both 1-movable domination and secure domination can be thought of as
two player games on graphs.

For 1-movable domination, player 1 selects a subset S C V(G). Player 2
then chooses v € S. If §—v is a dominating set, player 1 wins (by condition
1 of Definition 2.2). Otherwise, player 1 then selects u € (V(G)—S)NN(v).
If (S — {v}) U {u} is a dominating set, player 1 wins. Otherwise player 2
wins.

For secure domination, player 1 selects S C V(G). Player 2 then chooses
z € V(G)— S. Player 1 then selects y € z) N S. If (S - {z})U {y} is a
dominating set, player 1 wins. Otherwise player 2 wins.

3 Complexity

We can easily establish the complexity status of computing v} (G). We
start with two formal problem statements:

DOMINATING SET: Given a graph G = (V(G), E(G)) and a positive integer
k, is there a subset § C V(G) with [S| < k such that S is a dominating set
for G; that is, for all u € V(G)—S thereis a v € S for which {u,v} € E(G)?

(4]

107

1-MOVABLE DOMINATING SET: Given a graph G = (V(G), E(G)) and a
positive integer k, is there a subset S C V(G) with |S| < k such that S is
a dominating set and for all v € S, either S — {v} is a dominating set or
there is a u € V(G) — S for which (S - {v}) U {u} is a dominating set?

Theorem 3.1 1-MOVABLE DOMINATING SET is NP-complete.

Proof. 1-MOVABLE DOMINATING SET is clearly in NP; given a subset S
and an integer k it is easy to verify in polynomial time that S dominates
G, |S| < k, and every v € S satisfies the specified property.

Our reduction is from DOMINATING SET. From an instance of DOM-
INATING SET we create an instance of 1-MOVABLE DOMINATING SET as
follows. Given G and k, we use the join operation (see Section 1) to create
G* = G+ K. We use the label z to denote the vertex in G* corresponding
to K;. We claim that G has a dominating set S with |S| < k if and only if
G* has a 1-movable dominating set §* with |S*| < k.

(=) Suppose G has a dominating set S with [S] < k. Let S* be the set
S applied to the vertices of G* that correspond to the vertices of S in G.
Observe that |S*| = [S| < k. Also observe that S* dominates G*: z is
dominated by every member of S*, and every other vertex in G* is domi-
nated because its corresponding vertex in G is dominated by S. Finally, to
see that S* is a 1-movable dominating set, observe that every dominator in
S* can move to = with the result being a dominating set for G*.

(<) Now suppose G* has a 1-movable dominating set $* with [§*| < k. Ei-
ther (1) ¢ S* or (2) € S*. In case (1), we simply map 5* to S directly.
Since S* dominates G*, S dominates G. In case (2), observe that since S*
is a 1-movable dominating set, can be swapped out of S* in exchange for
some other vertex, say w, in V(G*) — §* so that the set (S* — {z}) U {w}
again dominates G*. The vertices in G corresponding to (S* — {z}) U {w}
form a dominating set for G of the required size. .

Despite the result of this section, there are cases where the value of
L (G) can be bounded, or where it can be computed efficiently. The former
is discussed in the next section, and the latter is considered in Section 5.

4 Bounds on the 1-Movable Domination
Number

We first make an observation about disconnected graphs.

108

Observation 4.1 Let G be a disconnected graph with no isolates, and let
G1,Gs,...,Gy be its components. Then

k
T (G) =Y 45 (Gy).
i=1
‘We next consider lower and upper bounds for the 1-movable domination
number in connected graphs.

Theorem 4.2 Let G be a connected graph of order n > 2. Then
1< 1m(@)Sn-1,
and the bounds are sharp.

Proof. The lower bound is immediate. For the upper bound, let S =
V(G) — {z} for an arbitrary vertex z € V(G). We show that S is a 1-
movable dominating set. Since G is connected, z has a neighbor in S,
so S dominates G. Now consider any v € S. If v ¢ N(z), condition
"1 of Definition 2.2 holds for v. On the other hand, if v € N(z), the set
(S—{v})U{z} dominates G. Thus any set S with |S| = n—1is a 1-movable
dominating set. Sharpness follows from Observations 2.3 and 2.4. n

We next show that all the values between 1 and n — 1 can be attained
as a 1-movable domination number.

Theorem 4.3 Let k and n be integers such that 1 < k < n. Then there is
a connected graph of order n and 1-movable domination number k.

Proof. Consider the graph G obtained from K,_x4; by adding k - 1
isolated vertices v1,v3,...,vk—1. Then let v € V(K _k4+1) and add the
edge v;u for each 1 < i < k — 1. Then u,v1,vy,...,v5—; is 2 minimum
1-movable dominating set of order k. .
Figure 2 demonstrates for the case of n =8 and k = 4.

We next present characterizations for the upper and lower bounds in
Theorem 4.2.

Theorem 4.4 Let G be a connected graph of order n > 2. Then
YL(G) =1 <= G has two vertices of degree n — 1.

Proof. First, let G have two vertices of degree n — 1, say = and y. Note
zy € E(G). The set S = {z} is a 1-movable dominating set of order 1 since
both $ and (S — {z}) U {y} are dominating sets of G.

On the other hand, if ¥},(G) = 1, there is a vertex of degree n—1, say z,
so that S = {z} is a dominating set. Furthermore, there must be a vertex
y # = with y € N(z), such that (§ — {z})U{y} = {y} is also a dominating
set of G. Therefore y has degree n — 1 and the result follows. "

109

V3

Figure 2: Demonstration of Theorem 4.3 for n =8 and k =4

Theorem 4.5 Let G be a connected graph of order n > 2. Then
1@ =n-1 < G=Kja1.

Proof. The “only if’ direction follows immediately from Observation 2.4.
For the “if’ direction, we will show that if G # K n_1, then v},(G) < n—1.
For n = 2, no graph satisfies the premise, so the statement is true. For
n = 3, only K3 needs consideration, and v}, (K3) =n—2 = 1. So we

consider n > 4. Let z1,72,...,2: be a longest vertex disjoint path in G.
Since G # Ki,n—1, we know t > 4. Now the set § = V(G) — {x1,7,} isa
1-movable dominating set of order n — 2. .

For bipartite graphs, we have the following results.
Corollary 4.6 Let G be a connected bipartite graph of order n > 3. Then
2< (G Sn—-1,
and the bounds are sharp.

Proof. The first inequality follows from Theorem 4.4, along with the ob-
servation that any graph with n > 3 having two vertices of degree n — 1
must contain a triangle, and therefore cannot be bipartite. Sharpness of
the first inequality follows from the fact that 4}, (K2n-2) = 2. The second
inequality along with the fact that it is sharp follows immediately from
Theorem 4.2. .

We also show that the full range of values established in Corollary 4.6
can be attained as the 1-movable domination number of a bipartite graph.

110

Theorem 4.7 Let k and n be integers such that 2 < k < n. There is a
connected bipartite graph of order n and I-movable domination number k.

Proof. If k = n — 1, then by Observation 2.4 the graph G = K ,,_; fulfills
the requirement. So assume k£ < n — 2 and for any specific pair k¥ and n
build a graph G from the K3, with vertices {z,y,v1,vs,...,v0_2} by
removing the edge zv; for each i, 1 <¢ < k — 1. Since y remains adjacent
to every v; and z is adjacent to at least v,_3, G is connected. We must
now show that 4}, (G) = k.

First, we show that the set S = {z,y,v1,...,vx—2} is a 1-movable dom-
inating set of cardinality k. Each v; € S satisfies condition 1 of Defini-
tion 2.2, since ¥ is adjacent to every v;. The sensor at z can be moved to
any v; with j > k. Finally, the sensor at y can be moved to vx_;. Thus,
condition 2 of Definition 2.2 holds for both z and y. Thus, S is a 1-movable
dominating set of cardinality k.

Finally, we must show that v},(G) > k. Following Observation 2.4, any
1-movable dominating set of G must include k—1 verticesin {y, vy,...,vk_1}.
Moreover, since x is not adjacent to any vertex in {y,v1,...,vx_1}, the 1-
movable dominating set must include at least one more than the required
k — 1 vertices. It follows that 41,(G) > k. .

We can also bound +2,(G) in terms of other domination parameters.

Theorem 4.8 Let G be a connected graph of order n > 2. Then v(G) <
Mm(G) £ 75(G)-

Proof. Since all 1-movable dominating sets are by definition dominating
sets, the lower bound is immediate. For the upper bound, we will show
that all secure dominating sets are 1-movable dominating sets. Suppose S
is a secure dominating set. Consider v € S. If N(v)N(V(G)—S) = 0, then,
since G is connected, v has a neighbor in S — {v}. Therefore, S — {v} is
a dominating set and so condition 1 of Definition 2.2 holds. On the other
hand, let @ = N(v) N (V(G) — S) # 0. Since S is a secure dominating set,
every ¢; € @ has a neighbor in S, say s;, such that (S — {s;}) U {g:} is a
dominating set. If v = s; for some ¢, then (S — {v}) U {¢;} is a dominating
set and condition 2 of Definition 2.2 holds for v. Otherwise, every g; is
adjacent to some other vertex in S — {v} and the set (§ — {v}) U {g;} for
any ¢; € Q is a dominating set and condition 2 of Definition 2.2 holds for
v. Therefore S is a 1-movable dominating set. .

In Section 2 we saw that there are graphs for which these inequalities can be
strict, and graphs for which the bounds are tight. We can extend the upper
bound in Theorem 4.8 by finding an upper bound for +,(G) in terms of yet
another domination parameter. Recall that S is a 2-dominating set of G if
Yv € V(G)—S, [N(v)NS| > 2. Informally, this means that every vertex that -

111

is not a dominator must be adjacent to two vertices that are dominators.
Given a graph G, we denote the order of a smallest 2-dominating set by

72(G).
Theorem 4.9 Let G be a connected graph of order n > 2. Then ~,(G) <
72(G)-

Proof. We establish the result by showing that every 2-dominating set is
a secure dominating set. Consider a graph G and a 2-dominating set S.
Consider v € V(G)—S. Since S is 2-dominating, there must be two vertices
z,y € N(v)NS. The set (S — {z}) U {v} then dominates G because z is
dominated by v, and every vertex in N(v) is either a dominator, or it is
dominated by a vertex in S — {v}. Therefore S is a secure dominating set
and the result follows. -

The next bound is based on the clique partition number %(G). Recall
a clique partition of a graph G is a partition of V(G) into sets 4, V5, ..., Vi
so that the subgraph induced by each V; is isomorphic to the clique on |V}
vertices. The clique partition number of a graph G is the minimum number
of cliques that G can be partitioned into.

Theorem 4.10 Let G be a connected graph of order n > 2. Then 71, (G) <
X(G).

Proof. Consider a clique partition ¥, V2, ..., Vi of G. Select an arbitrary
vertex z; from each V;. We show that the resulting set S = {z;,z, ..., 2%}
is a 1-movable dominating set. For each V;, either |[V;| = 1 or |V}| > 1.
In the latter case, we note that the sensor at z; can be moved to another
vertex in V;. In the former case, the sensor at z; can be moved to any
adjacent vertex in G or, if N(z;) N (V(G) — S) = @, the sensor at z; is
redundant and can be removed. -

The last result of this section determines the 1-movable domination
number for paths.

Theorem 4.11 Let P, be a path on n vertices. Then vL(P,) = [22].

Proof. Label the vertices of P, in the usual way. First we note that
AL(Pn) < [%] since the set S = {v;|i = 2(mod 5) or 4(mod 5)} is a 1-
movable dominating set. Now suppose ¥:,(Pa) < [%]. By the pigeon-
hole principle, there exists an induced subgraph isomorphic to Ps that
has at most one dominator. Label the vertices of this subgraph with
{v1,v2,v3,v4,95}. Note that v3 € § since other choices fail to dominate
either v, or v4. Now Definition 2.2 does not hold at vs. -

112

5 1-Movable Domination on Trees

In this section, we establish a 1-movable programming algorithm to effi-
ciently compute 1, (T) for an arbitrary tree T. Recall a tree is a connected
graph with no cycles. We start by observing that Definition 2.2 has an
alternative characterization in the case of trees. This turns out to be useful

in computing 72, (T).

Theorem 5.1 Given a tree T withn > 2 and a dominating set S for T,
S is a 1-movable dominating set if and only if lepn[v,S]| < 1 forallv e S.

Proof. (<) Consider v € S. The only vertices in T that are not dominated
by S—{v} are those in epn[v, S], and possibly v itself. Since |epn[v, S]| < 1,
either |epnfv, S]| = 1 or |epn{v, S]| = 0. In the former case, we can move the
sensor at v to the vertex in epn[v, S]; it dominates both v and epn(v, S).
Therefore (S — {v}) U epn[v, S] dominates T and condition 2 of Defini-
tion 2.2 holds for v. In the latter case, we can move the sensor at v to any
vertex in N(v) and again the resulting set dominates T. Therefore, S is a

1-movable dominating set for T'.

(=) Now suppose |epn[v, S]| > 1 for some v € S; let = and y be vertices in
epn[v, S]. The sensor at v cannot be deleted since N[S — {v}] N epn[v, §] =
§. Then without loss of generality we must move the sensor at v to z. Since
zv and yv are edges in T', zy cannot be an edge or T contains a cycle. Thus,
the sensor at z fails to dominate y, so S cannot be a 1-movable dominating
set. .

Note that Theorem 5.1 cannot be extended to arbitrary graphs since, for
example, the graph K3 has a 1-movable dominating set consisting of a
single vertex, but that vertex has two external private neighbors. That is,
lepnjv, S]| < 1 is a sufficient condition for S to be a 1-movable dominating
set in any graph (since the (<=) portion of the proof does not rely on any
special structure in T'), but the converse fails.

Theorem 5.1 provides the insight needed to create a 1-movable program-
ming algorithm for computing v}, (T") when T is a tree.

5.1 Algorithm for Trees

The algorithm given in Figure 3 shows the generic bottom-up algorithm for
processing a tree. Our algorithm will be an instantiation of BoTTOoOM-UP
with appropriate procedures for PROCESS and BEST-AT-ROOT.

The general approach is to compute f(v) for each vertex v in a rooted
tree T by considering the subtree T, of T induced by v and its descendents.

113

Algorithm BoTtToM-UP
Input: A tree T = (V(T), E(T)) withn > 2.
Output: Generic optimal value for T'.
begin
Root T at an arbitrary vertex r;
Leaves + {v € V | (deg(v) =1) and (v # 1)};
Child-Count(r) + deg(r);
for each v € V(T) — {r} do
Child-Count(v) « deg(v) — 1;
Ready + Leaves;

while Ready # ¢ do
Remove a vertex v from Ready;
PROCESS(v, Children(v), f(z) for each = € Children(v));
Child-Count{ Parent(v)) + Child-Count(Parent(v)) — 1;
if Child-Count(Parent(v)) =0 then

Ready + Ready + Parent(v);
end while
return BEsT-AT-RooT(T,r, f(r));
end

Figure 3: Generic bottom-up algorithm for a tree.

Each f(v) value is a five-tuple (see Table 1). Each component of the five-
tuple, f(v)[2], is the number of vertices in & smallest 1-movable dominating
set S, of T, with the property z, or in the cases of OUTUD and ouTUU, a
smallest set that satisfies Definition 2.2 in T, everywhere except at v.

Table 1: 1-movable domination properties for tree T,
Component Properties
f()INO] : v € S, and |epn[v,Sy]| =0
f@)IN1]: v € S, and |epnfv, Sy]| =1
f(v)jourc): v¢ S, and Jw e N(v)N S,y :
epn|w, Sy} = {v} or IN(v)NSy| = 2
f(v)[ouTup): v¢ S, and Fw € N(v)N S, :
epn[w, Sy] = {v} and [IN(v) N S,| =1
f(v)joutuu]: v ¢ S, and N(v)NS, =0

Note that properties INO, IN1, and OUTC partition the possible 1-movable
dominating sets of a tree T, rooted at v. If Sy is a 1-movable dominating
set for Ty, either v € S, or v ¢ S,. In the former case, by Theorem 5.1,
either v has no external private neighbors with respect to S, (INO) or it has
one (IN1). In the case that v ¢ S,, either v must have a neighbor w € S,

114

so that epn[w, S,] = {v}, or v must have two neighbors in S, (these are
both included in ouTc). The properties OUTUD and OUTUU characterize
the cases of sets S, C V(T,) that are not 1-movable dominating sets for T},
but are such that if v is dominated by its parent p(v), then S, U {p(v)} is
a 1-movable dominating set for Tp¢,). The characteristic OUTUU represents
cases where, in T, |S, N N(v)| = 0 so that epn[p(v), Spr)] = {v} must
hold for Sp(y) O Sy. Similarly, the characteristic OUTUD represents cases
where, in T, |Sy,NN(v)| = 1 so that v ¢ epn[p(v), Sp(y)] for any Spw) D Su-

Now we show how to compute f(v), given a tree T, rooted at ». Since
the properties INO, IN1 and OUTC represent 1-movable dominating sets for
T and oUTUD and OUTUU do not, when we compute f(r) at the root r of
our final tree T, the only portions of f(r) that are candidates for v} (T)
are f(r)[INO], f(r)[IN1], and f(r)[oUTC]. The Algorithm BEST-AT-RoOOT

follows from this idea.

5.2 Details of the Algorithm

In this section, we describe technical details of the algorithms described in
the previous section. These algorithms generally follow approaches de-
scribed in Wimer, Hedetniemi, and Laskar (7] and Borie, Parker, and
Tovey [1]. Informally, the Algorithm BoTToM-UP with PROCESS and
BEST-AT-ROOT operates in the following way. Again we let T, denote the
subgraph of the (rooted) instance tree T' induced by v and its descendants,
and let C(v) denote the set of children of v. At each leaf node, f(leaf) is de-
fined according to f(leaf) << 1,00, 00,00,0 >. For example, f(leaf)[INO] =
1 because the cost (the number of dominators used) of putting a leaf node in
S is 1. It is clear that f(leaf)[IN1] = f(leaf)[oUTG] = f(leaf)[oUTUD] = oo
because leaf nodes have no descendants. Finally, f(leaf) [ouTUy] = 0 be-
cause no dominators are used in this case. Then at each node v that is not
a leaf, f(v) is computed once f(z) is known for each child x of v. When
the entire tree T is processed in this way, we apply BEST-AT-ROOT to
determine 72, (T7) = yL(T).

The first component of f(v), f(v)[INO], represents the number of domi-
nators used in a 1-movable dominating set S, of T, where v € S, and v has
no external private neighbors in T, with respect to S,. The notation we use
INO is short for “in S, with 0 external private neighbors”. In the computa-
tion, the 1 accounts for the dominator at v, and then we add to that the
sum over all of the children of v, allowing all cases where |epn[v, S,}| = 0
holds. This excludes f(z)[ouTuU] for £ € C(v) since a vertex z that is not
dominated from below requires domination from a private dominator for
the result to lead to a 1-movable dominating set in T". Therefore, for each
child z of v, we take the smallest f(z) value from the other components.

115

Algorithm PROCESS
Input: A vertex v, its set of children C(v), and f(z) for each z € C(v).
Output: f(v).
begin

if v € Leaves, then f(v) + (1, 00,00,00,0);

else

f()INO] 1+ ECD()min {#(z)[iN0], £(z)[1N1], f(z)[ouTC], f(z)[ouTuD]};
zeC(v

f(y)ln0]
f@IN — 1+ min ¢ f@)ovTvd]+ 3 min fEZiE?Jic] }}

v#z f(v)[ouTup)

F(v)[ourc] «

(f(y)N0] ‘
min { f(z)[INO]+ X minq f(y)[iN1]

z€C(v) v
vee(f(»)ovrd]

mmJ f(y)[INO]
min { f(z)[IN1]+ f(y)[INl] + 3 min< f(y)[iN]
secin) sec) f(w)lourd

THEY
L z#y J

f(v)[ouTuD] + min { fl@)Ni]+ X f(y)[ou'rc]};
z€C(v) YEC(v)

y#z

f@)ovtuy] + 32 f(z)[ourc);
zeC(v)

end

Figure 4: PROCESS

116

Algorithm BesT-AT-ROOT
Input: A tree T, a root vertex r, and f(r) computed by PROCESS.
Output: v (T).
begin
4 (T) = min {£(r)[N0], £(r)N1], F(r)ouTc]}

end
Figure 5: BEsT-AT-RooT

The second component f(v)[IN1] represents the number of dominators
used in a 1-movable dominating set S, of T,, where v € S, and v has one
external private neighbor in T, with respect to S,,. The notation we use IN1
is short for “in S, with 1 external private neighbor”. In the computation,
the 1 accounts for the dominator at v. In the other portion of the com-
putation, since |epn[v, Sy]| = 1, one child of v must be OUTUU to demand
private domination from v. For the other children of v, any component of
the five-tuple can be used except OUTUU.

The other three components of the five-tuple f(v) represent cases where
v & S,. We partition these cases into classes depending on the answers to
two questions. First, we compute |N(v)N S, | and note that it either equals
0, equals 1, or is at least 2. The second question can be answered with a
“yes” or a “no”: does there exist a neighboring sensor whose only external
private neighbor is v? If [N(v) N S,| 2 2, we do not need to consider the
answer to the second question. Regardless of private neighbor relationships,
if v has two children that are in S,, the domination provided to v by one of
these children will be present even if the sensor at the other child is moved.
Thus v is “out” of S,, but “covered” from its children in terms of 1-movable
domination. This gives rise to the notation 0UTC. The other case that leads
to oUTC is where [N(v) N Sy| =1 and 3w € N(v) N S, : epn[w, S,] = {v}.
Here, even though there is only one sensor in the children of v, that sensor’s
only external private neighbor is v which again means v is “covered” from
below. This again leads to ouTC. The component f(v)[oUTC] therefore
represents the number of dominators used in a 1-movable dominating set
Sy of T, where v ¢ S,. We compute f(v)[oUTC| by considering the two
situations outlined above separately and then using the minimum.

If INw)NSy| =1 and 2w € N(v) N S, : epn[w, S,] = {v}, the vertex
v has exactly one neighboring sensor. Let z be the vertex containing that
sensor. Since 2w € N(v) N S, : epn[w, Sy] = {v}, we know |epn|z, S,]| > 2.
In this case, we say that v is “out” of S, and “uncovered” in that if we
are forced to move the sensor at z, some vertex in epn|z, S,] will be un-
dominated. We also say that v is “dominated” because z provides domina-

117

tion. This gives rise to the notation ouTUD (OUT, Uncovered, Dominated).
The component f(v)[OUTUD] represents the number of dominators used in
a set S, that is a 1-movable dominating set for T;, — {v}, and in which
|[N(v) N Sy| =1. We compute f(v)[oUTUD] by forcing one of v’s children
to be IN1 (hence providing domination to v but not coverage in terms of
1-movable domination) and the other children to be ouTc.

If [N(v) N Sy| = 0, there are no neighboring sensors, and we are in class
outuvu (OUT, Uncovered, Undominated). The component f(v)[ouTuu]
therefore represents the number of dominators used in a set S, that is a
1-movable dominating set for T, — {v}, and in which [N(v) N S,| = 0. The
computation of f(v)[ouTuU] is simple; each child of v must be not in S,
and must also be “covered” from below. Therefore we sum the f(z)[ouTc]
components for z € C(v).

A complete example of this computation is given in Section 5.4.

5.3 Complexity

Let n = |V(T')| and note that since T is a tree |[E(T’)| = n—1. In this section
we describe how to implement Algorithm BoTTOM-UP with PROCESS and
BEST-AT-ROOT in O(n) time.

~ Clearly BEST-AT-ROOT is a constant time operation and the initializa-
tion before the while loop in BOTTOM-UP requires only O(n) time. We
will show that each call to PROCESS takes time proportional to the number
of children of its parameter v. Since all other operations in the while loop
are constant time operations, it will then follow that the total time for the
while loop is O(|E(T)|) = O(n), thereby proving the desired result.

We begin by noting that in PROCESS, computation of f(v)[INO] and
f(v)[ouTuy] are straight-forward O(|C(v)|) operations. The efficiency of
the remaining computations, i.e., f(v)[IN1], f(v)[ouTc], and f(v)[ouTuD],
rely on the simple mathematical fact that we can add a value and its inverse
to a total without changing the value of the total. For example, in the
computation of f(v)[OUTUD], for any one child z € C(v)

f@m+ Y f@lovrd = F@) - f@fovtd+ Y f)ovrd.
yeC(V) y€C(v)
y#T
Thus, if we pre-compute 3, ¢ () f(¥)[OUTC], we can compute the value of
f(v)[ouTuD] by finding the minimum, across all z € C(v), of f(z)[IN1] -
f(z)[ouTc] and then adding that minimum to the pre-computed sum. This
makes computation of f(z)[OUTUD] two sequential O(|C(v)|) time opera-
tions, for a total of O(|C(v)|) time. Similarly, computing f(v)[IN1] requires
only O(|C (V)| time.

118

Consider now the computation of f(v)[0UTC] where we must choose the
minimum of two minimum values. We can compute the first minimum value
as described above in O(|C(v)|) time. For the second minimum value we
must be able to pick a pair z,y € C(v) that minimizes a sum, rather than a
single z € C(v) as above. But this is easy since we need only find the small-
est and second smallest f(z)[IN1] — min{f(z)[INO], f(z)[IN1], f(z)[oUTC]}
values among the children = € C(v) and then compute the sum as above.
It follows that f(v)[OUTC] can also be computed in O(|C(v)|) time.

We have shown that by using O(|C(v)|) time to pre-compute select sums
across the children of v, Algorithm PROCESS can compute all five f(v)
vector values in O(|C(v)|) time. We therefore have the following result.

Theorem 5.2 Algorithm BoTTOM-UP with PROCESS and BEST-AT-RoOT
computes v}, (T) for any tree T in O(n) time.

5.4 An Example

Consider the rooted tree shown in Figure 6 below. For the leaf nodes that
are not the root we can begin by noting that f(v1) = f(v2) = f(vs) =
f(va) = f(vs) = f(ve) = (1,00,00,00,0). The remaining calculations are
in Table 2.

Figure 6: Example Tree

As an example, consider the calculation of f(v;;). The children of
vy in T are vs, vs, and vg. Thus C(vy;) = {vs,ve,vs}. Therefore, to

119

Table 2: Values of f(v) for the graph in Figure 6

f(w),i€{1,2,..,6} =(1,00,00,00,0)
f(‘U?) = (3,21 2,00, OO)
f(vg) = f(vi0) =(2,1,1,00,00)
f('Ug) = <31 o0, 32 2) 2)
f('vn) = (4, 3, 3, 00, OO)
flvig) = (7, 7,7,7,7)
.f(vl3) = (8: 8) 7’ 7) 7)

compute f(v11), we need f(vs) = f(vs) = (1,00,00,00,0) and f(vs) =
(2,1,1,00,00). Then we compute

fon)[INO] = 14+ 3 min {f(z)[INO], f(z)[IN1], f(z)[ouTC], f(z)[ouTUD}}

z€C(v)
=1+ f(vs)[INO] + f(ve)[INO] + f(vs)[OUTC]
=14+14+14+1=4.

After f(r) has been computed at the root (in this case the root is
v13), we call BEST-AT-ROOT to determine 45,(T). In this case, y1,(T) =
f(v13)[ouTc] = 7. It is straightforward to backtrack through the tree to
determine which vertices comprise a minimum 1-movable dominating set.
In this case, since we used f(v13)[OUTC], we know v13 ¢ S. We know
f(v13)[OUTC] = 7 because f(v12)[INO] = 7, so this means v12 € S. Next we
examine how f(v12)[INO] achieves the value 7. In this way, we can deter-
mine a 1-movable dominating set S for T satisfying |S| = 4,(T). One such
choice is § = {v1, vs, v7, Vs, V10, V11, V12}-

6 Concluding Remarks

Definitions 2.1 and 2.2 describe a variant of domination in which a single
sensor can be moved so that the result is also a dominating set. A natural
generalization of this idea follows.

Definition 6.1 Let k < n be a natural number. A dominating set S C
V(G) is a k-movable dominating set if for every subset X C S with X =
{z1,22,+ , Tk} there exists a set Y = {v1,v2,"* ,yx} so that (S— X)UY
is a dominating set for G and either

1. y; is NULL, or

120

2. y; € (V(G) — S) N N(z:).

Informally, Definition 6.1 requires that for every size k& subset X C S,
the sensors located at the vertices in X can be either removed completely
(condition 1) or moved to a neighboring vertex that is not in S so that the
result, after all of the removals and moves, is again a dominating set for
G. This definition is analogous to Definition 2.2. We define the k-movable
domination number % (G) as minimum size of a k-movable dominating set
in G. Note that if k¥ = 0, Definition 6.1 collapses to Dominating Set; hence
(G) =7(G).

It is interesting to observe that 4%,(G) (for k£ > 1) and 7,,,(G) are in-
comparable in the sense that there are graphs for which 7% (G) > v1(G)
and others for which 7% (G) < 9L(G). Consider the complete bipartite
graph K, 3 with m > 3. Let (A, B) be the corresponding bipartition with
|A] = m and |B| = 3. Any set S that contains one vertex from A and
one from B is a 2-movable dominating set. Since no single vertex dom-
inates K3, we see that 2 (Km,3) = 2. However, it is easy to see that
4L (Km,3) = 3. On the other hand, consider the graph G in Figure 7 below.
First, observe that 7(G) = 3 bounds both 4},(G) and 72,(G) from below.
Clearly 7L (G) = 3; let S = {vi0,v11,v12}. It is not difficult to see that

13(G) > 3.

Figure 7: Example where v2,(G) > 71(G)

It is also interesting to consider other possible generalizations of 1-
movable domination. One possibility is to allow a sensor in X to be moved
anywhere in its neighborhood, including to another vertex in X. The fol-
lowing alternative generalization of Definition 2.2 formalizes this idea.

121

Definition 6.2 Let k < n be a natural number. A dominating set S C
V(G) is a k-movable dominating set (alternative version) if for every subset
X C S with X = {z1,x2,- - ,2x} there exists a set Y = {y1,92, -+ ,yx} s0
that (S — X)UY is a dominating set for G and either

1. y; is NULL, or
2. y; € V(G)N N(z;).

The application of Definition 6.2 to certain graphs can also produce some
interesting outcomes. Consider a star graph K n—1. By Observation 2.4,
we know 7L (Kin-1) = n — 1. Using Definition 6.2, we would find that
72 (K1,n-1) = 2: take S to be the central vertex of K1,n—1 plus any other
vertex. Since these two vertices are adjacent, they can swap positions which
essentially leaves S unchanged. If on the other hand we use Definition 6.1,
42(K1,n-1) =n — 1 by taking S to be each leaf vertex.

The definitions given in this section represent two of many possible gen-
eralizations of Definition 2.2. It seems a worthwhile direction for further
research to consider a specific generalization and then investigate issues
related to algorithms, complexity, and approximation for k-movable domi-

nating sets.

References

(1] R. B. BoriE, R. G. PARKER, AND C. A. TOVEY, Automatic gen-
eration of linear-time algorithms from predicate calculus descriptions
of problems on recursively constructed graph families, Algorithmica, 7
(1992), pp. 555-581.

(2] E. COCKAYNE, Irredundance, secure domination and mazimum degree
in trees, Disc. Math., 307 (2007), pp. 12-17.

(3] E. COCKAYNE, O. FAVARON, AND C. MYNHARDT, Secure domina-
tion, weak roman domination and forbidden subgraphs, Bulletin of the
Institute of Combinatorics and its Applications, 39 (2003), pp. 87-100.

[4] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, W.
H. Freeman and Co., 1978.

5] W. GODDARD, S. HEDETNIEMI, S. HEDETNIEMI, Eternal security in
Y
graphs, J. Combin. Math. Combin. Compute., 52 (2005), pp. 169-180.

[6) S. HEDETNIEMI, Unsolved algorithmic problems on trees, AKCE J.
Graphs. Combin., 3 (2006), pp. 1-37.

122

[7] T. WIMER, S. HEDETNIEMI, AND R. LASKAR, A methodology for con-
structing linear graph algorithms, Congressus Numerantium, 50 (1985),
pp. 43-60.

123

