On Friendly Index Sets of

(p,p + 1)-Graphs
Harris Kwong Sin-Min Lee
Dept. of Math. Sci. Dept. of Comp. Sci.
SUNY Fredonia San Jose State University

Fredonia, NY 14063, USA San Jose, CA 95192, USA

Yung-Chin Wang
Dept. of Physical Therapy
Tzu-Hui Institute of Tech.
Taiwan, Republic of China

Abstract

Let G be a simple graph. Any vertex labeling f : V(G) — Z,
induces an edge labeling f* : E(G) — Zy according to f*(zy) =
f(z) + f(y). For each i € Z2, define v;(i) = |{v € V(G) : f(v) =i},
and ef(2) = |[{e € E(G) : f*(e) = i}|. The friendly index set of
the graph G is defined as {|ef(0) — ef(1)| : |vs(0) — vs(1)] < 1}
We determine the friendly index sets of connected (p,p + 1)-graphs
with minimum degree 2. Many of them form arithmetic progressions.
Those that are not miss only the second terms of the progressions.

1 Introduction

Let G be a simple graph with vertex set V and edge set E. A vertex
labeling f : V(G) — Z; induces an edge labeling f* : E(G) — Z; defined
by f*(xy) = f(z) + f(y). For i = 0,1, define

v(@) = HveV:fv)=1d},
ef(d) = [{e€ E: f*(e) =d}l.

When the context is clear, we will omit the subscript. We say f is friendly
if lug(1) — v£(0)] < 1. The friendly index set of G is defined as

FI(G) = {|les(1) — es(0)| : f is friendly}.
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An example: Cy(t) is the cycle on p vertices 1,23, ..., T, With a chord join-
ing x; to x;. Using an exhaustive search, it can be shown that FI(C;(3)) =
{4,2,0}.

Since its introduction by Lee and Ng in [4], the FI sets of many families
of graphs had been completely determined. See, for examples, [1]-[10]. In
this paper, we discuss how to determine the friendly index sets of (p, p+1)-
graphs with minimum degree two. The degree sequence of such graphs
is either (4,2,2,...,2) or (3,3,2,2,...,2). Hence they are of the form
C(ny,n2,...,nk) U H, where C(ny,nz,...,nk) is the disjoint union of &
cycles, and H is one of the following three connected graphs:

e The one-point union of two cycles of length £, and ¢3, joined at
the center c. We denote it UC(¢;,£3). It has p = £; + £, — 1 vertices.

o The theta graph ©(£,, £, {3), which consists of three paths of length
£y,%2, 43 joined at their endpoints v and v. It hasp=£4; + 8o+ 43 -1
vertices.

e The dumbbell graph DB(£1, £2; £3). It consists of two cycles of length
£, and €3 connected by a path of length £3 at its endpoints u and v,
and has p = £; + &5 + £3 — 1 vertices.

We will first determine the FI sets of connected (p,p+ 1)-graphs with min-
imum degree two. In other words, we will first determine the FI sets of H,
where H is one of the three graphs described above. Next, we will discuss
how to solve the general problem: the union of H with disjoint cycles.

2 UC(l, b)

If all the O-vertices in a friendly labeling are changed into 1-vertices, and
1-vertices into O-vertices, the new labeling is still friendly, but the value of
|e(0) — e(1)| remains unchanged. Therefore we may assume the center c of
the one-point union is an 0-vertex. Note that the restriction of the labeling
on each cycle may not be a friendly labeling on that cycle.

Conversely, we could start with a vertex labeling (which needs not be
friendly) on each cycle, and then pick an 0-vertex from each cycle, and



“gplice” them together to form an one-point union. We just have to choose
the vertex labelings on the two cycles carefully so that the combined vertex
labeling on the one-point union is friendly.

We need to analyze the vertex labeling (which needs not be friendly)
of a cycle of length L. Any vertex labeling partitions the vertices of the
cycles into B blocks, each block consists of consecutive O-vertices followed
by consecutive 1-vertices.

000...0111...1000...0111...1 ... ... 000...0111...1.
c d; c3 da cB dp

If all the vertices are labeled the same way, define B = 0. In particular, if
B = 0, then either (cp, dg) = (L, 0), which means all vertices are O-vertices,
or (co,do) = (0,L), which means all vertices are 1-vertices. It is easy to
verify that

B B

e0) = Y (e,-1)+) (dj-1) = L-2B,
B s T

el) = D 1+>.1 = 2B.
=1 j=1

Therefore
e(0) —e(1) =L - 4B,
where 0 < B < |L/2].
Recall that we assume the center is an O-vertex. We may regard it the
first O-vertex in the first block of both cycles. Let b = by + by, where b;
denote the number of blocks in the ith cycle. We have

8(0)—8(1) ={ +£2—4(b1 +b2) =p+1-4b,

where, theoretically, 0 < b < [£1/2] + |£2/2].

We say theoretically because some of the b-values within the range may
not lead to a friendly labeling. For example, b = 0 requires b; = by = 0,
which means the entire one-point union consists of 0-vertices. Therefore

1<b< |_£1/2_| + [82/2j.



We now show that all these b-values are attainable. Given any b within this
range, we can use a greedy approach to label the vertices:

e Label the first cycle with b — 1 blocks of 01’s if b; < b, or with as
many blocks of 01’s as it allows if b, > b.

e Continue with the second cycle, if necessary, until we have accumu-
lated b — 1 blocks of 01’s.

o If there are unlabeled vertices in the first cycle, stretch out the last
block with an equal (or almost equal) number of Os and 1s to form a
larger block.

e Label the last block in the second cycle with an equal (or almost
equal) number of Os and 1s. The exact numbers of 0s and 1s are
selected so that the overall labeling is friendly.

For b less than the maximum allowable value |£1/2] + |£2/2], we have
enough unlabeled vertices to work around with. Hence it is always possible
to find a friendly labeling with b blocks of vertices.

The only possible exception is the largest allowable value of b. This
happens when b; equals |£;/2] for each i. Let v;(0) — v;(1) represent the
restriction of v(0) — v(1) on the ith cycle, we find

0 if £; is even,
v;(0) —vi(1) = { lor —1 if¥4; is odd.

Over the entire one-point union, since c is an 0-vertex, we have

2
v(0) —v(1) = =1+ Y _ (v:(0) — vi(1)).

=1

It is easy to verify that we can select v;(0) — v;(1) and mix them together
so that |v(0) — v(1)] < 1. Therefore a friendly labeling exists with b =
£1/2) + £2/2).

We have just proved that the full range of values 1 < b < |£;/2] +|£2/2)
is attainable. Since e(0) — e(1) = p + 1 — 4b, we obtain the following data.

parities of ¢; range of values of e(0) — e(1)
?,and &, areodd [p-3,p—T7,p—11,...,—(p—T7),—(p—3)
£ + 42 is odd P-3:P—7:1’—11,---,—(1’"5):-(?_1)
f;and % areeven [p—3,p—7,p—11,...,—(p—3),—(p+1)

Taking absolute values produce the desired FI set.



Theorem 2.1 Let G = UC({1,43), where p=4£€; + £, — 1. Then

if £ and €3 are odd,
if £y + €3 is odd,
if £y and £, are even.

{p-3,p-7p-11,...,2 or 0}
FIG)=< {p-1,p-3,p-5,...,1}
{p+1,p-3,p-17,...,2 or 0}

Example 1. The vertex labelings that affirm FI(UC(3,5)) = {4,0} are
tabulated below. For each cycle, we start with f(c), move along the vertices

on the cycle, until we return to f(c).

Cs Cs e(0) —e(1)
0010 | 010110 —4
0010 | 001110 0

In a similar manner, the following vertex labelings

04 Cs e(O) - 6(1) C4 Cﬁ 6(0) - 6(1)
01010 | 010010 =7 01010 | 0101010 -10
00000 | 011110 5 00000 | 0111110 6
01010 | 000110 -3 00110 | 0001110 2
00110 | 000110 1

confirm that FI(UC(4,5)) = {7,5, 3,1} and FI(UC(4, 6)) = {10, 6, 2}.

3 The Theta Graph ©(¢;, {5, {5)

The theta graph ©(¢;,£;,¢3) can be considered as three paths of length
£y, £2 and £3 joined together at their endpoints u and v. The theta graph
©(4, 5, 6) is displayed below.

0

Due to symmetry, we may assume 1 < ¢; < €y < £3, where £, > 2, and
that the two vertices u and v are labeled 00 or 01. We first study what
happens to the labeling (which needs not be friendly) of a path of length L
with B blocks of vertices.



Case 1: f(u) = f(v) =0. We need cg >0 and dg =0:

000...0111...1000...0111...1 ...... 000...0.
¢ dy c2 da cB

Notice that this requires B > 1. In particular, B = 1 means all the vertices
on the path are labeled 0. We find

B B-1
e0) = Y (e-1)+> (di-1) = (L+1)-(2B-1),
j=1 =1
-1 B-1 g
el) = Y 1+).1 = 2B-2.
j=1 j=1

Therefore, on a single path,
e(0) —e(l)=L+4—4B,

where 1 < B < [(L +1)/2]. Consequently, over ©(¢1,¢2,£3), we find, if we
let b = by + by + bs,

6(0)—6(1)=£1 + 8 + €3 + 12 — 4(by + by + b3) = p + 13 — 4b,

where 3 < b < [(¢1 +1)/2] + [(£2 +1)/2] + [(€3 +1)/2].

However, b = 3 implies that b; = by = b3 = 1. This in turn implies that
all the vertices in each path are labeled 0, thus all the vertices in ©(¢y, €3, £3)
are O-vertices. If b = 4, we may assume b; = b; = 1 and by = 2. Then
all the vertices on the two paths of length £; and £; are O-vertices. For the
labeling to be friendly, we need £; +¢; < £x. Since we assume ¢; < £ < {3,
this is same as requiring #; + Z; < £3. Therefore

[e1+1]+[£2+1]+[23;r112b> 4 ifO+0<b,

2 2 ~ U5 otherwise.

Using a greedy algorithm, it is clear that these values of b can be attained,
with perhaps the exception of the largest possible value for b.

Denote the restriction of v(0) — v(1) on the ith path as v;(0) — v;(1).
The maximum value of b is reached when b; = [(¢;+1)/2] for each i. When
this happens, if £; is even, the path will be labeled 0101...010, but if £; is
odd, the path will be labeled 0101...0110 or 0101...0100. Hence

w1 if £; is even,
vi(0) — (1) = {0 or 2 if ¢; is odd.



Since u and v are shared by all three paths, and they are both labeled 0,
over the entire theta graph,

3
v(0) —v(1) = =4+ ) (1:(0) — vi(1)).

=1

It is easy to verify we can always find a friendly labeling with b reaching its
maximum possible value. The ranges of attainable values of e(0) — e(1) are
listed in the following table, in which £ denotes the number of odd values

among ¢, £, £3.

L e(0) —e(1) condition
3 P"3,P—7,P—11,---a“(P-9)u—CD—5) ifel’i'fszs
p—7,p—11,p-15,...,—(p—9),—(p — 5) | otherwise
2 P"3:P—7,P—11,---:"(1"‘7)1—(1’—3) 1f31+f2$33
p—7,p—11,p—15,...,—(p—7),—(p — 3) | otherwise
1 p—3,p-—7,p-11,...,—-(10-5),—(1)—1) if£1+£2S43
P'7:1’—11,?‘15,---,—(?—5),—@— 1) otherwise
0 P“31P'7v1’—11,-~-,"(P—3),—(p+1) ifly+43< 43
p—T7,p—11,p—-15,...,—(p—3),—(p+1) [ otherwise

Case 2: f(u) = 0 aend f(v) = 1. For a path of length L with B blocks
whose endpoints are labeled 0 and 1,

B B
e0) = Y (-1)+) (d-1) = (L+1)-2B,

=1 j=1
B B-1

e(l) = > 1+ 1 = 2B-1.
j=1 j=1

Therefore, on a single path,
e(0)—e(l)=L+2-4B,
where 1 < B < [L/2]. Over the entire theta graph, ©(¢, 42, £3), we find
e(0)—e(l) =&+l +4€3+6—4(by + b+ b3) =p+ 7 — 4b,

where 3 < b < [£/2] + [€2/2] + [€3/2]. Again, a greedy approach yields
friendly labeling for each value of b within this range, with the last maxi-
mum value as the only possible exception. When that happens,

(0N — (1) — J 1Oor =1 if £ is even,
vi(0) — (1) = {0 if ¢; is odd.



Along with
3

v(0) — v(1) = D (v:(0) — i(1))
i=1
over the entire graph ©(¢y, £2, £3), it is easy to see that we can find a friendly
labeling in this case. Therefore b can attain its full range of possible values,
from which we could compute the values of e(0) — e(1):

7 e(0) — e(1)
3[p—-5,p-9,p—-13,... —(p—3),—(p+1)
2 p—5,p—9,p—13,...—(p—5),—(p—1)
1 P—5,P—9,P—13,----(P—7)1—(P—'3)
0 p—5,p—-9,p—13,...—(p—9),—(p—5)

Combining the data from the two cases, we obtain a surprisingly simple
result.

Theorem 3.1 The FI set of the theta graph ©(£y1,41,43) is

{p+1}u{p-3,p-5p—1T7,...,1 000} if &y =L ={3 (mod 2),
{p-1}u{p-3,p-5p—17,...,1 or 0} otherwise,

where p=4£1 + 82+ 83— 1.

Example 2. FI(©(2,3,4)) = {7,5,3,1}, FI(©(2,4,6)) = {12,8,6,4,2,0}
and FI(8(3,5,5))) = {13,9,7,5,3,1}:

P Py P index
010 | 0100 | 01010 | —7
001 | 0101 | 01011 | -5
010 | 0100 | 01100 | —3
000 | 0100 | 01110 1

Py Py Py index Py Py Py index
010 | 01010 | 0101010 | —12 0101 | 010101 | 010101 | —13
000 | 00000 | 0111110 8 0101 | 010101 | 010011 | -9
001 | 00111 | 0001111 6 0011 | 000111 | 000111 7
000 { 01110 | 0001110 4 0101 | 010101 | 000111 | -5
001 | 00111 | 0100111 2 0101 | 600111 | 000111 3
000 { 01010 | 0011110 0 0101 | 010011 | 000111 | -1

Notice that 10 and 11, respectively, are missing in the last two arithmetic
progressions. a
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Example 3. When ¢; =1, p =¥ + {3, and (1, £, £3) reduces to a cycle
on p vertices z;, x3,...,Zp, with a chord joining z, to z;. We denote such
a graph C,(t). Obviously, Cp(t) = ©(1,t — 1,p — t + 1). Therefore the FI
set is

{p+1}u{p-3,p—5,p—7,...,10r0} iftand p—t are even,
{r-1}u{p-3,p—5p-T7,...,10r 0} otherwise,

Further, if either ¢ or p — ¢ is odd, the chord is called a parallel chord.
Lee and Ng had studied the FI sets of cycles with multiple parallel chords
in [5]. They found

FI(Cp(2s +1)) = {p— 1,p~3,p—5,...,1 or O},

which agrees with the result given above. o

4 The Dumbbell Graph DB(¢;, ¢3; 43)

The dumbbell graph DB(#;, £2;£3) consists of two cycles of length £; and
3, which are connected via a path of length 3 at its endpoints « and v.
The dumbbell graph DB(5, 5; 3) is displayed below.

Case 1: f(u) = f(v) = 0. We may assume u and v are both the first
0-vertex in the first block in their respective cycle. We find

e(0) —e(1) = (&3 — 4b1) + (€3 — 4b2) + (€3 + 4 — 4b3) = p + 5 — 4b.

It is impossible for b = 1, because it requires (by, b2,b3) = (0,0, 1), which
in turn implies all the vertices are labeled 0. For b = 2, we need (b1, b2, b3)
equals to either (0,1,1) or (1,0,1), which in turn requires ¢; > ¢; + £3 or
£y > €5 + {3 respectively. Therefore

4 1) f3+1 2 if|ey—£ >
— = >H> 1 2| Z L3,
I_2J+]_2J+[ 2 ]'b'{3 otherwise.

The same technique we employed earlier affirms that b can assume its full
range of possible values. Due to symmetry, we need to inspect 6 cases of
various values of ¢; (mod 2). They lead to 4 different sets of values of

e(0) — e(1).
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218945 e(0) —e(1) condition
111 P—3,P-7,P—11,-“,—(?"9)»—(?"5) if|£1—82|2£3
p—T,p—11,p—15,...,—(p —9),—(p— 5) | otherwise
101 P—3ap—7yp"11,---:‘(?"7)1—(?"3) 1f|51—e2|233
110 |p—-7,p—11,p—15,...,—(p—T7), —(p — 3) | otherwise
T00 [p=3,p-7p-1L...,——5),~(p-1 |E[f— &> 0
001 ||p—7,p—11,p—15,...,—(p—5),—(p—1) | otherwise
000 [p=3,p-7p—11,...,.-0-3),~(p+D |E-Gl=h
p—T,p—11,p—15,...,—(p—3),—(p+1) | otherwise

Case 2: f(u) = 0 and f(v) = 1. We may assume u is the first O-vertex
in the first block of the first cycle, and v is the last 1-vertex in the last
block of the second cycle. We have 0 < by < |£1/2}, 0 < by < |£2/2], and
1< b3 < [£3/2], and

6(0) - 6(1) = (21 - 4b1) + (82 - 4b2) + (23 +2-— 4b3) =p+3—4b

Notice that b = 1 requires (b1, b2, b3) = (0,0, 1), which implies |£; — €3] < £3.

Thus p ¢ p
1 2 3 1
= = —1{2b2
M +3)+ M 202{,
Again, using the same technique we used earlier, we find that b assumes its
full range of possible values, hence the following values for e(0) — e(1).

if |€y — £2| < 43,
otherwise.

018903 e(0) —e(1) condition
111 [{p-1,p—-5,p-9,...,—(p—7),—(p—3) |if|lh —¥€2| <43
100 |p—-5,p—9,p—13,...,—(p—T7),—(p — 3) | otherwise
101 P"I,P—5sp"9,---:"(P‘5),—(P—1) if|£1—52|533
000 [|p—5,p—-9,p—13,...,—(p—5),—(p — 1) | otherwise
001 [p-1p-5p-9,...,—(p—3),—@+D |[Flh-GLI<G
p—5p—9p-13,...,—(p—-3),—(p+1) | otherwise
110 p—1,p—5,p—9,...,—(p—9),—(p—5) 1f|¢1—f2|533
p—5p—9,p-13,...,—(p—9),—(p — 5) | otherwise

We now need to combine the sets of values of e(0) — e(1) from the two
cases. There are 6 combinations of ¢;, £ and #3. In each combination, we
have three possibilities, depending on whether |¢; — £5| equals, larger than,
or smaller than ¢3. Notice that some cases are impossible. For example,
we cannot have |[¢; — £3| = £3 when ¢,,£3,£3 are all odd. We obtain the

following table.
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FI set condition
41,45 odd, £3 odd {p—3,p—5,p-7,...,1} if 181—€2|>£3
{p—l’p—37p_5v"',11" iflel_£2|<e3
£1+4¢3 0dd, {3 0dd [ {p—-1,p—3,p-5,...,0} | always

£y,45 even, ¢3 odd {r+1,p-1,p-3,...,1} | if |f1—£zl>£3
{p+1,p—1,p—5,...,1} iflé; — &) < 3
4,83 0dd, €3 even | {p—-1,p—3,p-5,...,0} |if |, — &3] =43
@-3,?*5,?-7,...,0} if|£1—£2|>23
{p—l,p—5,p—7,...,0} if €, — €| < €3
£3+460dd, f3even | {p—1,p—3,p—5,...,1} [if |4 — 3| > €3
+[p-1’p_3’p-5)"°111+ iflel—£2|<£3
1,43 even, {3 even | {p+1,p—1,p—3,...,0} | always

Theorem 4.1 Letp = £y + {2+ £3 — 1, then the FI set of DB(¢1,45;¢3) is

{p-3,p—5,p-7,...,1 0r0} if £1,£5 0dd, and |&; — &3] > £,
{p+1,p-1,p-3,...,1 or 0} if £1,4; 0dd,
{p-1,p-3,p—5,...,1 or 0} otherwise.

Example 4. We find FI(DB(3,5;1)) = {5, 3,1}, as shown below.

C3 Pz Ca e(O) - 8(17
0010 | 01 | 101011 =5

0000 | 01 | 101111 3
0010 | 01 | 100111 -1
The following labelings demonstrate that FI(DB(3,4;3)) = {8,6,4,2,0}
and FI(DB(4, 6;2)) = {12,10, 8,6, 4, 2,0}. o
Cs Py C, 6(0) - e(l) Cy P Cs 8(0) - e(l)
0000 | 0011 [ 11111 8 01010 | 010 | 0101010 -12
0010 | 0110 | 01010 -6 00000 | 001 | 1111111 10
0000 | 0101 | 11111 4 00000 | 000 | 0111110 8
0110 | 0000 § 01110 2 00000 | 001 | 1011111 6
0010 | 0011 | 10111 0 00110 | GCO | 0011110 4
00110 { 001 | 1001111 2
01010 | 000 | 0011110 0

5 The General Case

In general, a (p,p + 1)-graph G with minimum degree two is the union of
disjoint cycles and H, where H is one of the three connected graphs we
have studied above. To find its FI set, we follow these steps:
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1. First find a formula for (0) — e(1). This is easy because we already
know the formula for individual cycle, and for each of the three types
of graphs described by H.

2. The formula poses a range of possible values of b, where b is the total
number of blocks on the entire graph.

3. Decide which b-values are attainable. A greedy approach can be used
for those b-values in the middle of the range. But caution must be
exercised for those b-values close to the two extreme ends. This is the
most difficult part of the solution.

4. Compute the corresponding values of e(0) —e(1), take absolute values,
and gather them together to form the FI set.
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