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Abstract

Let G be a simple graph with vertex set V(G) and edge set E(G),
and let Z; = {0,1}. Any edge labeling f induces a partial vertex
labeling f* : V(G) — Z assigning 0 or 1 to f*(v), v being an
element of V(G), depending on whether there are more 0-edges or
1-edges incident with v, and no label is given to f*(v) otherwise.
For each i € Z3, let vs(3) = |{v € V(G) : f*(v) = i}| and let es (i) =
|[{e € E(G) : f(e) =i}|. An edge-labeling f of G is said to be edge
friendly if |[es(0)—ef(1)} < 1. The edge-balance index set of the graph
G is defined as EBI(G) = {|vs(0) — vs(1)] : f is edge-friendly.}. In
this paper, we investigate and present results concerning the edge-
balance index sets of flux capacitors and L-products of stars with
cycles.
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1 Introduction

In [5], Kong and Lee considered a new labeling problem of graph theory.
Let G be a simple graph with vertex set V(G) and edge set E(G), and let
Zy; = {0,1}. An edge labeling f : E(G) — Z; induces a vertex partial
labeling f+ : V(G) — Z; defined by f*(v) = 0 if the number of edges
labeled 0 incident on v is more than the number of edges labeled 1 incident
on v, and f¥(v) = 1 if the number of edges labeled 1 incident on v is
more than the number of edges labeled 0 incident on v. Note that f*(v) is
not defined if the number of edges labeled by 0 is equal to the number of
edges labeled 1. For i € Zg, let vs(3) = |[{v € V(G) : f*(v) =4}/, and let
es(i) = [{e € E(G) : f(e) =i}|.

With these notations, we now introduce the notion of an edge-balanced
graph.
Definition 1. An edge labeling f of a graph G is said to be edge-friendly

if |es(0) — ef(1)] < 1. A graph G is said to be an edge-balanced graph if
there is an edge-friendly labeling f of G satisfying |vs(0) — vf(1)] < 1.

Chen, Lee, et al in [1] proved that all connected simple graphs, except
the star K gx+1 where k > 0, are edge-balanced.

Definition 2. The edge-balance index set of the graph G, EBI(G), is
defined as {|vy(0) — v(1)] : the edge labeling f is edge-friendly.}.

We will use v(0), v(1), e(0), e(1) instead of vf(0), vs(1), er(0), ef(1),
provided there is no ambiguity.

Example 1. EBI (nK3) is {0} if n is even and {2} if n is odd.

.
OO
o0
[v(0) —v(1)| =0 [v(0) = v(1)| = 2

Figure 1: The edge-balance index set of 2K and 3K,

For any n > 1, we denote the tree with n + 1 vertices of diameter two
by St(n). The star has a center ¢ and n appended edges from c.
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Example 2. The edge-balance index set of the star St(n) is

{0} if n is even,

EBI (St(n)) = {{2} if n is odd.

Example 3. In [12], Lee, Lo and Tao showed that
{2} ifnis?2,
{0} if n is 3,
EBI(P,)=4{1,2} ifnisd.
{0,1} ifn is odd and greater than 3,
{0,1,2} if n is even and greater than 4.

Figure 2 shows the EBI of P; and P;.

L ©
->0-1-@ 1o 101

[v(0) —v(1)| =0 0)-v(1)[=1 [v(0)-v(1)[=2
Figure 2: The edge-balance index set of P; and P,
Example 4. After an exhaustive search, we see that the edge-balance index

set of a tree with six vertices is {0,1,2}. Figure 3 shows three edge-balance
indexes.

ui1,1 u2,1 u3,1

[v(0) —v(1)| =0 [v(0) —¥(1)| =1 fu(0) —v(1)| =2

Figure 3: The edge-balance index set of a tree with six vertices

The edge-balance index sets can be viewed as the dual of balance index
sets. The balance index sets of graphs were considered in [4, 6, 8, 9, 10, 11,
13, 15]. Let G be a simple graph with vertex set V(G) and edge set E(G),
and let Z; = {0,1}. A labeling f : V(G) — Z; induces an edge partial la-
beling f* : E(G) — A defined by f*(vw) = f(v), if and only if f(v) = f(w)
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for each edge vw € E(G). For i € Z3, let vs(i) = |{v € V(G) : f(v) =i}
and ey. (i) = |{e € E(G) : f*(e) =14}|. A labeling f of a graph G is said to
be friendly if |vs(0) — vp(1)| < 1. If |ef(0) — ef(1)| < 1 then G is said to
be balanced. The balance index set of the graph G, BI(G), is defined
as {|es(0) — ef(1)] : the vertex labeling f is friendly}.

Edge-balance index sets of trees, flower graphs, wheels, fans, and (p, p+
1)-graphs were considered in [2, 3, 7, 12, 14].

Let H be a connected graph with a distinguished vertex s. Construct a
new graph G x, (H, s) as follows: take |V(G)| copies of (H, s) and identify
each vertex of G with s of a single copy of H. We call the resulting graph
the L-product of G and (H, s).

A flux capacitor graph is composed of two different types of graphs (a
star graph and a cycle). A flux capacitor graph, FC(n, m), is a star graph
St(n) where on each outer vertex there is a Cy, graph.

In this paper, exact values of the edge-balance index sets of flux capaci-
tor graphs, FC(n, m), and L-product of stars with cycles, St(n) x Cp,, are
presented.

2 On Edge-Balance Index Set of Flux Capac-
itor Graphs FC(n,m)

Since a cycle must have at least three edges, we have m > 3. Since a star
graph must have at least one edge, we have n > 1. In general, the Flux
Capacitor graph has e(FC(n,m)) = n(m + 1) edges.

2.1 The Highest Edge-balance Index of FC(n,m)

To find the edge-balance index set of FC(n,m), we determine the high-
est edge-balance index first. The following notations and propositions are
borrowed from [2]. You can also find them in [3].

Notation 1. Let C, be a cycle with a vertex set {c1,¢2,...,cn}. Let f
be an edge labeling on C, (not necessarily edge-friendly). We denote the
numbers of edges labeled 0 or 1 by f by ec(0) or ec(1), respectively. We
also denote the number of vertices labeled 0, 1, or not labeled by f* by

v¢(0), ve(l), or vo(x), respectively.

If we add an edge to a vertex in a cycle to turn it into degree three,
then there are two possible cases:

A If the vertex was already labeled, then the label of the vertex is not
changed after adding an edge because at least two edges are labeled
by the same number.
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B If the vertex was not labeled then the label of the vertex is the same
as the label assigned to the new edge.

For later reference, we call these rules as Rule A and Rule B.

Proposition 2.1. In a cycle C, with an edge labeling f (not necessarily
edge-friendly), assume that vo(x) =2k > 0. Then

ve(l) =ec(l) — k.

Proposition 2.2. In a cycle C, with an edge labeling f (not necessarily
edge-friendly), assume that vc(x) =2k > 0. Then

vo(0) =n —ec(1) — k.

We note here that when vg(x) = 0, i.e., either ec(0) = n or ec(1) = n,
the above propositions are still true.

For a finite disjoint union of cycles, we can calculate vc(0) and vc(1)
for each cycle C and then add all up to get

Theorem 2.3. In a finite disjoint union of cycles U;C,,, (for notational
convenience, we still call it C) with an edge labeling f (not necessarily
edge-friendly), we have

ve(0) —ve(l) = Zn,- - 2ec(1). (1)

This equation suggests that the edge-balance index of an edge friendly
labeling of FC(n, m) is determined by

1. the label of the center s,
2. the equation (1), and
3. the labels of the vertices shared by both the star and cycles.

Since the label of a vertex shared by both the star and a cycle is governed
by Rule A and B, to find the highest edge-balance index in the form of
v(0) — (1) of FC(n, m), we follow the same principle in the proof of 2.4 to
maximize v(0) and minimize v(1). The equation (1) tells us that the smaller
ec(1) gives us the larger vc(0) —vc(1). This suggests that a smaller ec(1)
is more likely to produce a larger edge-balance index. Thus, we label all
the edges of the star 1 to get as few number of 1-edges left for cycles as
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possible. It uses n 1-edges to produce only one 1-vertex in the center. To
further minimize v(1), we try not to produce any 1-vertex in the vertex
incident to the star. By Rule A and B, we have to label 0 to the two edges
of a cycle incident to the vertex of the star. Since all edges in the star
labeled 1, by Rule A, it will not affect the labeling of its adjacent vertex.
By Theorem 2.3, v¢(0) — ve(1) = nm — 2ec(1), where ec(1) is the number
of 1-edges in cycles. With the center labeled 1, we can conclude that the
edge-balance index of an edge friendly labeling of FC(n, m) is

v(0) — v(1) = nm — 2ec(1) — 1, (2)

where ec(1) is the number of 1-edges in cycles.

Generally speaking, this method works when the highest edge-balanced
index in the form of v(0) — v(1) is greater than 0 because we assume that
e(0) > e(1) which usually generates more 0-vertices then 1-vertices and we
also avoid to create 1-vertex unless it is not avoidable. But, since we start
with labeling the center 1, in FC(1, 3) case, it leads to more 1-vertices than
0-vertices due to only four edges to use.

2.2 On Edge-Balance Index Set of FC(n, 3)
Theorem 2.4. The edge-balance inder set of FC(n,3) is

{0,1,...,n—1} n>2,

EBI(FC(n,3)) = { (0.1} ifn=1.

Proof. In particular, e(FC(n,3)) = 4n. Since it is even, e(0) = e(1) = 2n.
As we discussed in the end of section 2.1, to get the highest edge-balance
index, we label all edges of St(n) 1. Then, there are n 1-edges left for cycles,
i.e., ec(1) = n. By Equation (2), the highest edge-balance index is

v(0) —v(1)=3n—2ec(l)—1=n-1.

Knowing this, we can outline a procedure to find the maximum differ-
ence in vertices for any graph FC(n, 3) where v(0) > v(1). First, we label
all edges in St(n) by n l-edges. This causes the center so labeled 1 and
leaves us with n 1-edges label. The remaining n 1-edges can be placed in the
outer edges of each Cs so that they do not produce any additional vertices
labeled 1. We then label all n degree 3 vertices in the C3’s by 0. This will
use all 2n 0-edges to produce exactly n O-vertices. The remaining vertices
will stay unlabeled because they will each incident to one 1-edge and one
0-edge. This labeling gives us one 1-vertex and n 0-vertices, implying that
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the edge-balance index is n — 1. This is the highest edge-balance index in
the form of v(0) — »(1).

If any l-edge was switched with a 0O-edge, no more O-vertices could be
produced without creating at least one l-vertex. A O-edge can easily be
switched with any 1-edge causing the edge-balance index to decrease in a
number of different ways. However, we will look at the method for causing it
to decrease by 1. If on one cycle the 1-edge is switched with either 0-edges,
another vertex labeled 0 is added and the existing 0-vertex on that cycle is
changed to a 1-vertex. Thus v(0) stays the same and v(1) is increased by
1. Assuming v(0) > v(1) this will cause the edge-balance index to decrease
by 1. The edge-balance index of this labeling is now v»(0) — v(1) =n - 2.

Figure 4: Transformation of a vertex of a star: increases v(1) by 1, decreases
the edge-balance index by 1

Using this process multiple times results in the full spectrum of EBI(FC(n, 3)).
We can go through each C3 and decrease the difference in vertices by 1 with
each Cj3 changed. Since there are n cycles on the graph, we can decrease the
edge-balance index by one 7 times, and end up with edge-balance indexes
all the way to 0. So EBI(FC(n,3)) ={0,1,2,...,n—1}.

When n = 1, this switching creates an edge-balance index —1 in the
form of v(0) — v(1). Therefore, EBI(FC(n,3)) = {0,1}. Figure 4 also
demonstrates two edge-balanced indexes of FC(n, 3). o

Example 5. Figure 5 demonstrates edge friendly labelings for EBI(FC(3, 3)) =
{0,1,2}.

Figure 5: EBI(FC(3, 3))
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2.3 On Edge-Balance Index Set of FC(n,4)
Theorem 2.5. The edge-balance indezx set of FC(n,4) is

{0,1,...,n =1} ifn is even,

EBI(FCln, 4)) = {{0, 1,...,n} if n s odd.

Proof. A similar argument in the proof of theorem 2.4 is used here de-
pending of the parity of n.
Case 1. EBI(FC(n,4)) ={0,1,...,n — 1} when n is even.

Since n is even, we can assume n = 2k, where £ € N. The number
of edges in FC(n, 4) is e(FC(n,4)) = 5n = 10k. Since it is even, for an edge
labeling to be friendly, we have e(0) = e(1) = 5k.

We first label the graph by using 2k l-edges to label all the edges of
St(2k) resulting in a label of 1 for the center sg. Then 4k 0-edges are placed
on each of the 2k degree 3 vertices resulting in 2k O-vertices. This leaves
3k l-edges and k 0O-edges left to be placed. By Equation (2), the highest
edge-balance index is (2k)4 — 2(3k) — 1 = 2k ~1 = n — 1. Therefore,
EBI(FC(n,4)) € {0,1,...,n—1}.

To finish creating an edge friendly labeling to achieve the highest edge-
balance index, we split the remaining 2k C4’s into two equal groups; Cy4(+)
and C4(—). Since this split is for labeling purposes only and all Cy's are
so far all labeled the same, it is inconsequential which cycles are placed in
which group as long as there are k cycles in each group.

In every Cy(+), the two remaining unlabeled edges are labeled by a
0O-edge and a l-edge, creating one O-vertex. This uses k 0-edges and k 1-
edges, leaving no more 0-edges and 2k 1-edges. In every Cy4(-), the two
remaining unlabeled edges are labeled by 1-edges, creating one 1-vertex.
This uses the remaining 2k 1-edges and creates k more 1-vertices. This
edge-friendly labeling results v(0) —v(1) =3k —(k+1)=2k—-1=n-1,
the highest edge-balance index.

For each Cy4(+), an l-edge can be switched with a 0-edge adjacent to
the vertex of the star. This adds another O-vertex to the cycle, but also
changes the existing degree 3 0-vertex on the cycle to a 1-vertex. Since
v(0) stays the same and v(1) is increased by 1, by switching these edges,
the edge-balance index is decreased by 1.

For each C4(—), any one of the 1-edges can be switched with a 0-edge.
This changes an 1-vertex into an unlabeled vertex and a 0-vertex into an
1-vertex. Since v(0) is decreased by 1 and v(1) stays the same, the edge-
balance index can again be decreased by 1.

Since there are 2k = n C4’s, we have enough number of C4(+) or C4(-)
to create an edge-balance index from n — 2 to 0 by switching edges of Cy’s.
Thus, EBI(FC(n,4)) = {0,1,...,n—1}.
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YO stays samo ) docréion by 1
(1) incresses by I , (L) Sy famy

Figure 6: Two types of transformation of FC(n, 4)

Case 2. EBI(FC(n,4))={0,1,...,n} when n is odd.

Since n is odd, we can assume that n = 2k+1, where k € N. The number
of edges in FC(n, 4) is e(FC(n, 4)) = 5n = 5(2k+1) = 10k+5 = 2(5k+2)+1.
Since it is odd, for an edge labeling to be friendly, we have e(0) = 5k + 3
and e(1) = 5k + 2.

By the same way of labeling as Case 1, we can create an edge friendly
labeling such that the edge-balance index is v(0)—v(1) = (3k+2)—(k+1) =
2k +1 = n with k4 1 cycles of type Cs(+) and k cycles of type C4(—). By
Equation (2), we have

2k +1)4—2((5k +2) — (2k +1)) =1 =2k + 1 =n.

This confirms the creation of the highest edge-balance index of FC(n, 4).
Since there are 2k + 1 = n cycles, we have enough number of Cy(+) or

C4(-) to create an edge-balance index from n — 1 to 0 by switching edges

of Cy’s as Case 1. Thus, EBI(FC(n,4)) = {0,1,...,n}. W]

Example 8. Figure 7 demonstrates edge friendly labelings for EBI(FC(2, 4)) =

{0,1}.

Figure 7: EBI(FC(2,4)) = {0,1}

Example 7. Figure 8 demonstrates edge friendly labelings for EBI(FC(3, 4)) =

{0,1,2,3}.
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Figure 8: EBI(FC(3,4)) = {0,1,2,3}

2.4 On Edge-Balance Index Set of FC(n,m)
Theorem 2.8. For m > 5, the edge-balance indez set of FC(n,m) is

{0,1,...,n—1} ifm is odd,
EBI(FC(n,m)) =< {0,1,...,n—1} ifn is even and m is even,
{0,1,...,n} if n is odd and m i3 even.

Proof of Case 1. EBI(FC(n,m)) = {0,1,...,n —1} when m > 5 is odd
Since m is odd, we assume that m = 2k + 1, where k € N. The number
of edges is n(m + 1) = n(2k + 1 + 1) = n(2k + 2) = 2n(k + 1). Since it is
even, we have e(0) = e(1) = n(k +1).
We start with labeling all the edges of the St(n) 1. This uses n 1-edges
and leaves n(k + 1) — n 1-edges for cycles. By Equation (2), we have

n(2k+1)-2(nk+1)~n)-1l=n—-1

Each cycle then gets labeled 0,1,0,1,... starting at an edge adjacent to the
vertex of the star and ending with the other edges adjacent to the vertex.
Since m is odd, each cycle will have two 0O-edges adjacent to the vertex of
the star. Thus, all n vertices incident to the star are labeled 0 and all other
vertices of cycles are not labeled. Therefore, this edge-friendly labeling
creates the highest edge-balance index n — 1.

Since there are n cycles on the graph, we have enough cycles to create an
edge-balance index from n—1 to 0 by switching edges of cycles as the proof
of the Theorem 2.4. Thus, the edge-balance index set is {0,1,...,n — 1}.
O

Example 8. Figure 9 demonstrates edge friendly labelings for EBI(FC(4, 7)) =
{0,1,2,3}.

Proof of Case 2. EBI(FC(n,m)) = {0,1,...,n — 1} when m > 5 and
n > 2 are both even.
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Figure 9: EBI(FC(4,7)) = {0,1,2,3}

Since m is even, assume that m = 2k where k¥ € N. Since n is even,
assume that n = 25 where j € N. The total number of edge in the graph
is e(FC(n,m)) = n(m + 1) = 2j(2k + 1). Since it is even, we have e(0) =
e(1) = j(2k + 1).

A similar labeling of Theorem 2.5 is used here. We start with labeling
all the edges of the St(n) 1. This uses n 1-edges and leaves j(2k + 1) — (25)
1-edges for cycles. By Equation (2), we have

(2)(2k) - 2(j(2k +1) - (2/)) - 1=n—-1.

Therefore, the edge-balance index set is a subset of {0,1,...,n—1}.

To label the rest of the graph to achieve the highest edge-balance index,
the Cy,’s are split into two types; Cm(+) and Cp,(—). There are j Cp,’s
in each group and, at this moment, it doesn’t matter which group they are
put into as the groups are just two different ways of labeling. In each of
the j Cr(+), k — 1 O-edges are strung together starting with one of the
edges adjacent to a degree 2 vertex adjacent to an edge already labeled 0
and continuing until all k£ — 1 0-edges are used. This will result in j(k — 1)
O-vertices using j(k — 1) O-edges with j(k — 2) O-edges remaining. The
remaining k — 1 edges in each Cp,(+) will be labeled by 1-edges resulting
in j(k —2) 1-vertices. This leaves jk 1-edges remaining. In the j Crr(+)s,
v(0) —v(1) =j(k - 1) - j(k — 2) = J.

In each of the j Crn(—), k — 2 0-edges are strung together starting
with one of the edges adjacent to a degree 2 vertex adjacent to an edge
already labeled 0 and continuing until all ¥ — 2 0-edges are used. This
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will result in j(k — 2) O-vertices using the remaining j(k — 2) 0-edges. The
remaining k edges in each C,,(—) are labeled by 1-edges resulting in j(k—1)
1-vertices. This process uses the remaining jk 1-edges and completes our
friendly labeling. In the j Cpr(=)’s, v(0) = v(1) = j(k - 2) - j(k - 1) = —j.

All the vertices in Crn(+) and Cp(—) cancel out, leaving only the ver-
tices in St(n). Since only the center sp was labeled 1 while every other
vertex is labeled 0, we have created the highest edge-balance index n — 1.

Since there are n cycles on the graph, we have enough cycles to create an
edge-balance index from n—1 to 0 by switching edges of cycles as the proof
of the Theorem 2.5. Thus, the edge-balance index set is {0,1,...,n — 1}.
]

Example 9. Figure 10 demonstrates edge friendly labelings for EBI(FC(4, 8)) =
{0,1,2,3}.

Figure 10: EBI(FC(4,8)) = {0,1,2,3}

Proof of Case 3. EBI(FC(n,m)) = {0,1,...,n} when m > § is even and
n > 1 is odd.

Since m is even, assume that m = 2k where k£ € N. Since n is odd,
assume that n = 25 + 1 where j € N. The total number of edges in the
graph is e(FC(n,m)) = n(m + 1) = (25 + 1)(2k + 1) = 2(2jk + k + j) + 1.
Since it is odd, we have e(0) = 2jk + k + j + 1 and e(1) = 25k + k + .
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A similar labeling of Theorem 2.5 is used here. We start with labeling
all the edges of the St(n) with 1. This uses n 1-edges and leaves (2jk + k +
J) — (25 + 1) 1-edges for cycles. By Equation (2), we have

(27 +1)(2k) - 225k +k+3) — (25 +1)) =1 = n.

Therefore, the edge-balance index set is a subset of {0,1,...,n}.

For n = 1, the total number of edges is e(FC(1,m)) = 1(m+1) = 2k+1.
Since it is odd, we have e(0) = k + 1 and e(1) = k. Since there is only one
edge in St(1), we have ec(1) = k — 1. By Equation (2), we have the highest
edge-balance index is (1)(2k) —2(k—1) —1 = 1. Therefore, the edge-balance
index set is a subset of {0,1}.

By a similar labeling, with n cycles on the graph, we have enough cycles
to create an edge-balance index from n — 1 to 0 by switching edges of
cycles as the proof of the Theorem 2.5. Thus, the edge-balance index set is

{0,1,...,n}. O

Example 10. Figure 11 demonstrates edge friendly labelings for EBI(FC(3, 8)) =
{0,1,2,3}.

MO-v(D)=3

Figure 11: EBI(FC(3,8)) = {0, 1, 2,3}
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3 On Edge-Balance Index Set of L-product of
Stars By Cycles

The St(n) x 1z, Cr, can be constructed from FC(n + 1, m) by contracting any
edge incident to the center sp of the star. In FC(n + 1,m), let us call the
center Sg, the vertex merged into the center v and the contracting edge e.
By the same principle from the precious section, to determine the edge-
balance index sets of St(n) Xz Cm, we would like to find the highest edge-
balance index first. The Equation (1) is still true here and a similar ar-
gument from the derivation of the Equation (2) works too. The only dif-
ference is, since the center so is also a vertex of a cycle, it is included in
Equation (1). Thus, the edge-balance index of an edge friendly labeling of
St(n) Xz Cm is
v(0) —v(1) = (n + 1)m — 2ec(1), 3)
where ec(1) is the number of 1-edges in cycles.

Theorem 3.1. The edge-balance index set of St(n) Xg Cp s

{0,1,...,n+1} ifn is odd or m is odd;
{0,1,...,n} if both n and m are even.

EBI(St(n) x 1, Cm) = {

Proof. The number of edges of St(n) X1, Cr, is (n +1)m + n. Since we fill
all edges of the star 1, ec(1) is the number of 1-edges minus n. With these
information, the highest edge-balance index of an edge friendly labeling can
be determined by the Equation (3). Therefore, depending on the parity of
n and m, for all integers s,t > 1, we have the following table:

n m ec(1) Highest edge-balance index
2t+1 2s+1 2st + 28 A+2=n+1

2t 2s+1 2st+ s 2t+1=n+1
2t+1 2s 2st+2s—t—1 2t4+2=n+1

2t 2s 2st+s—1 2t=n

1 m m-—1 2

Figure 12: The highest edge-balance index of St(n) Xz Crm

Therefore, we can conclude that the edge-balance index set of St(n) xr
C» is a subset of
{0,1,...,m+1} ifnisodd and m is odd,
{0,1,...,m+1} if niseven and m is odd,
{0,1,...,n+1} if nis odd and m is even,
{0,1,...,n} if n is even and m is even.

EBI(St(n) Xz, Cm) €
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We note here that, in order to get the highest edge-balance index, the
above discussion requires that all edges adjacent to the center of the star
in St(n) xz, C, labeled 1. We call this special edge friendly labeling h.

Because of the contraction, an edge friendly labeling of FC(n + 1,m)
can be used to construct an edge friendly labeling of St(n) X Cr,. From
Theorem 2.6, we know the edge-balance index set of FC(n + 1,m) is

{0,1,...,n} if m is odd,
EBI(FC(n+1,m)) = ¢ {0,1,...,n+1} if niseven and m is even,
{0,1,...,n} if n is odd and m is even.

We note here that only when both n and m are even, the number of
edges of St(n) xr, Cy, is even. Otherwise, St(n) xz, C,, has odd number of
edges.

When the number of edges of St(n) x 1, Cy, is odd, the number of edges of
FC(n+1,m) iseven. Therefore, for an edge friendly labeling of FC(n+1, m),
after contracting, it becomes an edge friendly labeling of St(n) xr Cp,. Let
f be the edge friendly lebeling of FC(n+1, m) with the highest edge-balance
index n we constructed in the proof of Theorem 2.6.

When n > 2, the contraction eliminates the vertex merged into the
center, which is labeled 0. Thus, it creates an edge friendly labeling of
St(n) xz Cm with the edge-balance index n — 1. Since there are still n
cycles not being merged into the center, by the switching we used in the
proof of Theorem 2.6, we can create edge-balance indexes from n — 2 all
the way to 0. Also, since h has the edge-balance index n + 1, the same
switching idea creates edge-balance indexes n. Therefore, we can conclude

that
EBI(St(n) xz C) = {0,1,...,n+ 1} if n is odd or m is odd.

When n = 2 and m is odd, the contraction eliminates the vertex merged
into the center, which is labeled 0. But, at the same time, the center
becomes unlabeled, Thus, it creates an edge friendly labeling of St(n) x L Cr,
with the edge-balance index 2. Similarly, by switching edges on two cycles,
we create edge-balance indexes 1 and 0. With k provides the highest edge-

balance index 3, we get
EBI(St(2) xz Cm) = {0,1,2,3},

where m is odd.
When n = 1, h provides the highest edge-balance index 2. With two

cycles, by switching, we get
EBI(St(1) xz Cm) = {0, 1, 2}.
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If both n and m are even, the number of edges of FC(n + 1,m) is odd.
Since we always assume that v(0) > v(1), we need to remove a 0-edge to
create an edge friendly labeling of St(n) xz Cp,. Similarly, let f be the
edge friendly labeling of FC(n + 1,m) with the highest edge-balance index
n + 1 we constructed in the proof of Theorem 2.6. By switching a 1-edge
adjacent to the center with a 0-edge which shared a vertex v of the previous
1-edge, we get another edge friendly labeling, g, of FC(n + 1, m) with the
edge-balance index n. Then, the contraction eliminates v, which is labeled
0 to create an edge friendly labeling of St(n) x C, with the edge-balance
index n — 1. Again, since there are still n cycles not being merged into the
center, by the switching we used in the proof of Theorem 2.6, we can create
edge-balance indexes from n — 2 all the way to 0. Again, h provides the
highest edge-balance index n. Thus,

EBI(St(n) Xz C) = {0,1,...,n} if both n and m are even.

This completes the proof. m]
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