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Abstract

The degree set D(G) of a graph G is the set of degrees of its
vertices. It has been shown that when the cardinality of D(G) is
1 (i.e. G regular) or 2 (i.e. G bi-regular), the balance index set
of G has simple structures. In this work we determine the balance
index sets of unicyclic graphs and subclasses of (p,p + 1) graphs to
demonstrate the application of this recent result. In addition, we
give an explicit formula for the balance index sets of subclasses of
complete tri-bipartite graphs G (|D(G)| = 3). Structural properties
regarding the balance index sets of a general graph G and application
examples are also presented.

1 Introduction

Throughout this paper, G=(V(G),E(G)) represents an undirected finite
simple graph ([1, 2]). The vertex set of G is V(G) and the edge set of G is
E(G). Unless otherwise stated, G has no isolated vertices.

Liu, Tan and the second author ([3]) studied balanced graphs and intro-
duced the concept of balance indices. The collection of all balance indices
of a graph G is called its balance indez set. It is a helpful tool in studying
the relationship between a vertex labeling of G and its induced (partial)
edge labeling. Since its inception, there has been considerable interest in
the determination of balance index sets of many classes of graphs. One
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intriguing direction that grows out from these studies is the characteriza-
tion of the structure of balance index sets. It has been shown ([4]) that
the balance index sets of a graph G is completely determined by its degree
sequence. One can further deduce that the balance index set of a regular
graph is a singleton and the balance index set of a bi-regular graph can
be computed by taking the absolute values of the terms of an arithmetic
progression. Furthermore, the formula of the arithemetic progression can
be determined explicitly.

In general, what can we say about the structure of the balance index set
of a general graph G ? If G is tri-regular, can one give an explicit formula
for the balance index set of G ? These are the major motivations of this
work.

The arrangement of this paper is as follows. Basic notations, definitions
and examples regarding balance index sets are presented in Section 1.1.
Additional examples and a summary of prior results are presented in Sec-
tion 1.2 and 1.3 respectively. The determination of the balance index set
of the complete tri-partite graph K, s, is shown in Section 2. Structural
properties are represented in Section 3. Concluding remarks are stated in
the final section. Graphical illustrations of the balance index sets of several
classes of graphs are included in the Appendix.

1.1 Basic Definitions and Examples

Definition 1 A vertez labeling of G = (V(G), E(G)) is a function f from
V(G) to {0,1}. For each f, it induces a partial function f* : E(G) — {0,1}
as follows:

0 if f(u) = £(v) = O,
Y(u,v) € E(G), f*((v,v)) =4 1 if f(u) = f(v) =1,
undefined otherwise.

We refer f* as the induced partial edge labeling of G via f.

Notation 1  Let f be a vertez labeling of G and f* be its induced partial
edge labeling. We use v4(0), vs(1), ef(0) and es(1) to denote the following
quantities:
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v1(i) = {v € V(G) : f(v) =1}| (i=0o0r1)
= Number of vertices in G that are labeled i by f (=0 or 1)
es(i) = {e € B(G) : f*(e) = i}| (i=0or1)
= Number of edges in G that are labeled i by f* (i=0 or1)

We will denote the set {v : f(v) = 0} by V[f,0] and {v: f(v) = 1}
by V[f,1]. When the labeling f is clear under context, we will drop the
reference to f and simply write v(0), v(1), e(0), e(1), V0] and V1] for
these quantities and objects .

We use the quantities and objects stated in Notation 1 to study the
relationships between the vertex labelings and their induced partial edge

labelings quantitatively.

Definition 2 A vertex labeling f of G is said to be friendly when
[vp(0) —vs(1)] <1 (i.e. G is evenly labeled by 0's and 1's via f).

G is said to be balanced if there exists a verter labeling f of G such that
[0p(0) vy (DI S 1 (ie. f is friendly) and |es(0) — er(1)] < 1.

Example 1. ([6]) G is a complete graph (G = K, for some n > 3):
G is balanced iff n = 3 or n is even. A more informative way to describe
balancedness of a graph G (w.r.t. friendly labelings f) is to study the
quantity |es(0) — ef(1)|. For complete graphs, we have:

0 n is even
les(0) — es(1)] = { 1‘—;—1 nis odd.,

This example motivates us to describe the balancedness of a graph G by
characterizing all the possible values of |es(0) — ef(1)|, where f ranges over
all friendly labelings of G.

Definition 3  The balance indez set BI(G) and the signed balanced index
set SBI(G) are:

BI(G) = {lef(0) — ef(1)| : f is a friendly labeling} (1)
SBI(G) = {ef(0) — es(1) : f is a friendly labeling} (2)

The balance index sets of many different classes of graphs have been
determined. A partial list of these results are shown in Table 1.
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Graph Classes Balance Index Set BI(G)
_J {o} n even
Complete Graphs ([6]) | Vn > 3, BI(K,) = { {%:1} nodd

Near Cycles : ([5]) Cn(t) B3<t<n-1):

Cr(t) is the graph which is obtained by
appending an edge (c;,c;) (3<t<n—1)to
the cycle Cp, = (V(Cn), E(Cy))

V8 <t <n, BICa() = fﬁ.’j i,}z} nodd
Stars: ([6]) BI(St(n)) :&:}_ 1,k} : —=.: §’I:+ -
V(G| s odd,

Regular Graphs: ([4]) | BI(G) = { %0%} otherwise.

Table 1: Examples of Balance Index Sets

1.2 Additional Examples

In this section, we present two additional examples for illustrations. In-
terested readers may find graphical illustrations of the balance indices of
specific classes of graphs (discussed in this work) in the Appendix.

Example 2. The unicyclic graphs Cp, - No: A unicyclic graph is a
connected graph in which the number of its edges equals to the number of
its vertices. A unicyclic graph that is formed by adding a pendant edges
on each vertex of the cycle Cy, is denoted as Cy, - N,. It is also referred as
the corona of cycles with null graphs in the literature.

One may determine the balance index sets for the graphs C,,- N, directly.
The following Lemma demonstrates the determination of Cy, - N, when n
is even or a is odd.

Lemma 1.1 Let n,a > 0. n is even or a is odd. Then
BI(C, - N) = {l(a + 1)(m — §)| :0<m < n}

Proof. First note that es(1) —ef(0) = vs(1)—vs(0) for any vertex
labeling f over a cycle C. This equality is obviously true when all the
vertices have the same label. For vertex labeling that uses both 0 and 1
as labels, the labeling partitions C into an equal number of alternate 1-
vertex blocks and 0-vertex blocks. In each of these blocks, the number of
1-edges (resp. 0-edges) is one less than the number of 1-vertices (resp. 0-
vertices). The edges between blocks are unlabeled. Hence, ef(1) —es(0) =

u(1) — vs(0) .
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To determine BI(G) where G = C, - N,, since |V(G)| = n(a + 1),
v(1) = v»(0) = -@'"—21)2 for any friendly vertex labeling. Next, suppose that
on the cycle, there are m vertices labeled 1 and (n — m) vertices labeled 0
(m=0,1,...,n). On the cycle alone, e(1) — e(0) = v(1) — v(0) = 2m — n.
Among the a(n —m) pendant vertices adjacent to the O-vertices on C, let &
of them are labeled 0 (The actual value or range of k is irrelevant, as k will
be canceled out before the end of the proof). Then the other (a(n—m)—k)
of these pendant vertices are labeled 1. Now consider the other am pendant
vertices adjacent to the 1-vertices on the cycle. By vertex-friendliness,

(a+1)n _

- -m-lan-m) =k =[a-1)(m-3)+k  (3)

of them are labeled 1 and [m + ‘“—",‘,—IL'E — k] of them are labeled 0. Thus for
pendant edges, [(a — 1)(m — %) + k] of them are labeled 1, k of them are
labeled 0, and the others are unlabeled. For the entire graph,

e(1) —e(0) = 2m —n + [(a — 1)(m — §)+k] —k=(a+1)(m~- g). (4)
Let m run from 0 to n, the result follows.

By using similar techniques, the remaining cases can be determined
directly. We will revisit this example in the next subsection and show how
some recent results can help to determine an explicit formula for BI(C,,-N,)

Example 3. Connected (p,p+ 1) graphs with minimum degree equals 2:
Their degree sequences are either of the form (4,2,...,2) or (3,3,2,...,2).
Consider the following subcases:

1. The one-point union of two cycles of length /; and I3, joined at the
center c. We denote it UC(ly,{2). It has p = I; + I3 — 1 vertices.

2. The theta graph 6(l;,2,!3), which consists of three paths of length
l1, la, I3 joined at their endpoints v and v. It hasp=1{; +lp +13 —1
vertices.

3. The dumbbell graph DB(l},l2,13). It consists of two cycles of length
Iy and I3 connected by a path of length I3 at its endpoints « and v,
and has p = I; + I3 + I3 — 1 vertices.

In the coming section, we will use recent results to determine their
balance index sets.
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1.3 Previous Work

It has been shown in ([4]) that the balance index set of a graph G is com-
pleted determined by its degree sequence. We use the following definition
and notations to introduce these results.

Definition 4  The degree set D(G) of a graph G is the set:
D(G) = {d: (3v € V(G))[deg(v) = d]}.

Notation 2 G; = {G : |[D(G)| =i} (i 2 1). Using this notation, G, is
the class of reqular graphs and Go is the class of bi-regular graphs.

Note that for any graph G with 2 or more vertices, |D(G)| < [V(G)| (since
G contains two vertices with the same degree). The main result from ([4])
are summarized in the following Theorem:

Theorem 1.2 ([4]) Let f be a vertex labeling of G.- Then
2es(0) —es(1))= > degv)— D deg(v). (5)
veV([f,0} veV(f,1]
In addition, we have:

1. G€ G and D(G) = {m} = BICG) = { %} {Kégil i ZZ:’;.

2. G € Gy and D(G) = {a,b}. If
ne=|{veG: deg(v) =a}| 2np=|{veG: deg(v)=>b},

then BI(G) = {|sk|:0<k <np} where

sk=k(b-—a)+arm2—a-)-'1—|E(G)|, 0<k<n,  (6)

Although Theorem 1.2 states that BI(G) = {|sx| : 0 < k < np}, It only
implies that {sx : 0 < k < np} C SBI(G), and in general, the two sets are
not equal.

Theorem 1.2 enables us to obtain explicit formulas for sub-classes of
bi-regular graphs. We use the examples stated in Section 1.2 as illustra-
tions. The following lemma shows how the balance index sets of the above
subclasses of (p,p + 1) graphs can be determined directly.
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Lemma 1.3 Let G be a connected (p,p+ 1) graph with minimum degree
equals 2. If G =UC(l4,13), then

BI(G) = B(UC(l1,ls)) = { E(l)}z} » i (7)

IfG 8 9(11,12,l3) or DB(ll,lz,l:;), then

o -{ Gy pa ™ 0

Proof. The graph UC(l;,!,) is bi-regular with one vertex, say ¢, of degree
4. All the other vertices of G are of degree 2. For any friendly labeling of
UC(l, k), {vs(0),vs(1)} = {(%], [§1}. Without loss of generality, assume
v¢(0) = |§]. By applying Equation (5), the balance indices for the two
cases (f(c) = 0,1) can be computed. We summarize the computation via
the following table:

case | f(c) balance index of UC(ly, l2)
1] o | z{a+2(|5] -1)—2(f§-1)}=1+(l21— [£1)
1 piseven
0 pisodd.
2 |1 !%{2([§J)—2(f§1—1)-4}| =1-(15/-T§D
1 piseven
2 pisodd

This proves (7). For (8), the underlying graph G is bi-regular but there are
two degree 3 vertices (denoted by ¢; and c¢;). The remaining vertices of G
are of degree 2. For any friendly labeling of G, {v(0),v¢(1)} = {|§], 5]}
and again, we assume vs(0) = |§]. Then (8) follows from the followmg

case analysis:

case | f(c1) | f(ca) The balance index of G
I R LG SR R R s TN |
1 piseven
0 pisodd.
2 0 1 Iz{2(l5] -D-2(51-D} = l(lEJ - [EDI
0 piseven
1 pisodd
3T | 1T [BROED-205-2)-6H=1— (%] - gN
1 piseven
2 pisodd
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Next, we will revisit the example of the unicyclic graphs C, - N,. We
demonstrate how Theorem 1.2 helps to determine an explicit formula for
the balance index set of unicyclic graphs.

Lemma 1.4 Let n,a > 0. Then BI{(Cp, - Nu) = {|sm| : 0 £ m < n}
where

La;--—l—)-J. 0<m<n.

sm=m(a+1)—|

Proof. Let G = C,-N,. G is bi-regular and |V(G)| = |E(G)| = n(a+1).
In addition, G has na vertices of degree 1 and n vertices of degree a + 2.
Now,

e D(G)={1,a+2}.
= |{v € G: deg(v) = 1}| = na.
o g2 =|{veG: deg(v) =a+2}=n<n;.
By Theorem 1.2, BI(Cn:N,)={|sm|:0<m <n} where

sm=m(a+1)+ [lV(G)I] |E(G)|, 0<m<n
=m<a+1)—L"(L;1—)J 0<msn

since |B(G)] = V(@) = (1L 4 | KA,

Observe that when n is even or a is odd, [V (G)| = n(a + 1) is even and

n(a+1)
2

sg=mla+1)— =(a+1)[m—g] where m =0,...,n.

This coincides with the result stated in Lemma 1.1.

2 Tri-regular Graphs

Theorem 1.2 provides an explicit formula for BI(G) when G € Gp. It is
natural to see if analogous results hold when we move “one step” forward.
That is, when the graph G is tri-regular G € G3 (See Notation 2).

176



2.1 Complete Tri-partite Graphs

We begin with complete tri-partite graphs K, 3. (a,b,¢ > 1). They are
members of G3 where the vertex set V/(K, 5 ) can be partitioned into three
disjoint subsets V, V;, and V; :

Ve={z1,...,2}, Vy={yn,...,w} and V,={z,...,2.}. (9)

An edge e is in E(K,p,c) if and only if the end vertices of e are not from
the same subset V;, V, or V; of the partition. Note that K, € Gs. In
particular,

deg(z;) = b+ c, deg(y;) = a+c and deg(zx) =a+0b, (10)

where 1<i<a,1<j<b1<k<c Whena+b<c (i.e. the number of
vertices in V; dominates), we can obtain an explicit formula for BI(Kj 5.c).

Theorem 2.1 Ifa+b<c, then

{13{(2s - a)(b+ ) + (2t — b)(a +c) — 2(a + b)(s + t)
+(a+b)?}:0<s<a,0<t<b}
BI(K,5.) = when a + b + ¢ is even.
a:bic {13{(@2s —a)(b+c) + (2t —b)(a +c) — 2(a + b)(s +1¢)
+a+b)(a+b-1)}|:0<s<a,0<t<b}
when a + b + ¢ is odd.

Proof.  First note that |V(K, )| = a + b+ c. For any friendly labeling
f, the cardinality of the set V[f,0] or the set V[f,1] is either [2£}+€] or
[et2te|. Without loss of generality, we assume that vs(0) = |V[f,0}| =
|242%€] and vf(1) = |V[f,1]| = [2t2+2]. Let f labels s (resp. t) vertices
in V (resp. V,) by 0. Then:

a+b+c

J—(s+1) (11)

1=(a+bd)+(s+1)
(12)

Number of vertices in V; labeled 0 by f = |
a+b+c

Number of vertices in V; labeled 1 by f = [

By Theorem 1.2, the quantity e;(0) —es(1) = 1(Q1 — Q2), where Q; equals

(b+c)s+(a+c)t+(a+b)(l_a+b+c_l—( +1) (13)
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and @2 equals

a+b+c
2

(b+c)a—s)+(a+c)b—t)+(a+d)[ 1=(a+b)+(s+1¢t)] (14)

By (13) and (14) and observe that

a+b+c a+b+ec _J a+bd a+ b+ cis even,
| 2 J=T D) ]+(a+b)_{a+b—-1 a+b+cis odd.

{(2s—a)(b+c)+ (2t —b)(a+c) — 2(a+b)(s + 1)

0) — er(1) = +(a + b)?} when a + b + c is even.
e7(0) = es(1) =\ 125~ a)(b+0) + (2t — b)(a+0) — 2(a+b)(s +1)
+(a+b)a+b—1)} whena+b+cisodd.

Finally, since a + b < c, the parameter s (resp. t) can range over 0 to a
(resp. O to b). This completes the proof.

Example 4. Note that Theorem 2.1 can determine the K, 3 . even when
a+b £ ¢ (In such cases, we need to enumerate the parameters s, ¢ carefully).
We have:

1. BI(K2,3‘4) = {0, 1,2,3,4,5, 6}.
2. BI(K3,4,4) = {2,3,4,5}.
3. BI(K24,6) = {0,2,4,6,8}. (See Figure 4)

3 Structural Properties of SBI(G)

We begin our discussions on the structure of SBI(G), the signed balance
index set for G.

3.1 Basic Lemmas

In this section, we list some basic properties of SBI(G) as lemmas. These
lemmas provide necessary conditions for checking if a number s belongs to

SBI(G).
Lemma 3.1 For any graphs G and for any integer s,

s € SBI(G) = —s € SBI(G). (15)
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Proof. Given a graph G = (V(G), E(G)) and a friendly labeling f of
G, the function f' : V(G) — {0,1} defined by f/(v) = 1 — f(v) is also a
friendly labeling and es(0) = es(1) and ef(1) = ez (0). Hence

s € SBI(G) = (3f)[f is friendly and s = e;(0) — ef(1)]
= (3f')[f' is friendly and — s = e4(0) — e4(1)]
= —s € SBI(G).

Lemma 3.2 Let G = (V(G),E(G)), |V(G)| = n. We write V(G) =
{v1,...,v,} where deg(vy) > deg(vs) > .-+ 2> deg(vy), then the maxi-
mum value of the set SBI(G) is

SBImax(G) = % (Z deg(vi) - Y deg(vi)) (r= [Kf_ﬂn, (16)

i=1 i=rtl

and the minimum value of the set SBI(G) is SBInin(G) = —SBlnax(G).

Proof. The equality SBlyjn(G) = —SBlnax(G) follows immediately from
Lemma 3.1. Let h be the vertex labeling defined by

0 1<igy _ vl
mod={ ] 15150, (= 9.
The labeling 4 is friendly because (again, n=|V(G)| and r =] Jl(zﬂl])

vn(0) —va(l) =2r —n = 2[1Y(2i)|'| - V(@)= { (1) mgg} i: odd.

Now, for any friendly labeling f, as the given degree sequence {deg(v;)} is
monotonic non-increasing, we get

es(0) < ideg('ui) =ep(0) and ef(l) > i deg(v;) = en(1),

i=1 i=r+1

and (16) follows immediately.

To simplify our notation, we will omit reference to the underlying graph
G and denote the quantities SBInax(G) by Smax and SBlyin(G) by Snin.
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Lemma 3.3 Let G be a graph such that D(G) = {d;,...,dn}. Leta =
ged (dy,...,dn). Then

SBI(G) C {Smin, Smin + @ Smin +22, --- , Smax}- 17)

Proof. Let h be a labeling such that ex(0) — en(1) = Spin. Now, for
any labeling f,

en(0) —en(l)= 3 deg(v)— > deg(v)

veVI{R,0) veV(h,1)
er(0) —es(1)= Y deg(v)— ) deg(v)
veV[f,0] veVif.1)
er(0) —er(1) — Smin= Y, deg(v)— > deg(v)
veV(f,0] veV(f,1]
- Z deg(v) + Z deg(v).
veV[h,0) veV[h,1]

Since « | deg(v;) for all i = 1,...,7n, we have o | [¢(0) — e7(1) — Smin]-
This implies that ef(0) — ef(1) = Smin + k& < Smin + Ma = Spax. Hence
k < m. Thus

SBI(G) c {Smin’ Smin + & Smin +2¢, ..., Smax}-
Lemma 3.4 Let G € G3, D(G) ={d1,d2,d3} and d; > d3 > d3.

s € SBI(G) = (35’ € SBI(G)) [|s — §'| < max{d; —d3,d2 —d3}]. (18)

Proof. Let s € SBI(G). Let h, be the vertex labeling that witnesses
s € SBI(G). That is,

s =-;— ( Z deg(v) — Z deg(v)) .

v€V[h,,0]) veVlh,,1]

Now, D(G) ={d1,d2,ds}. Hence, at least two vertices vo, v; such that
vy € V[hs,0], v1 € V[hs, 1] and {deg(vo), deg(v1)} ={d1,dz} or {dz,d3}. It
is because, in our case, it is always possible to select two vertices vo and
vy from V[h,,0} and V[hs, 1] respectively such that deg(vo) # deg(v1). If
it turns out that {deg(vo),deg(v1)} = {d1,d3}, we can find a vertex v with
deg(v) = da. We then replace the vertex v; by v, where v; (i = 0 or 1)
is the one that comes from the same partition as v. Now, let s’ € SBI(G)
that is witnessed by the vertex labeling h,:
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h,'(v)={ hs(v) v % vg, V1.

1—hs(v) v=1uporv.

Then,

|s — 5| < |deg(vo) — deg(v1)]

< d1 - d2 if {deg(vo),deg(vl)} = {d1,d2}
= | d2 —ds if {deg(vo),deg(v1)} = {d2,d3}

This completes our proof.

3.2 Examples

In this section, we give examples to demonstrate the potential use of the
basic lemmas.

Example 5. Let G € G3, D(G) ={d1,da,d3} and d; > dz > d3. If &
= ged (dy,d2,d3) > 1, then by Lemma 3.3, 1 ¢ BI(G). It is interesting to
note that, when a = ged (d;,d2,ds) = 1, 1 may not be a balance index
of the graph G. Consider the tri-regular graph G which is formed by the
disjoint union of K3, Kg and Ky4. D(G) = {7,5,3} and ged (7,5,3) = 1.
However, 1 ¢ BI(G).

Proof. Assume the contrary and let f be a friendly vertex labeling such
that

veV|{f,0] veV(f,1]

%( Y deg(v)— ) deg(v)) =1 (19)

Let n;, n2 and n3 be the number of vertices in V[f,0] that is of degree
7,5 and 3 respectively. Note that n; + nz + ng = 9 (|V(G)| = 18), G has
8 vertices of degree 7, 6 vertices of degree 5 and 4 vertices of degree 3.
By (19), we have

7(2n; — 8) + 5(2nz — 6) + 3(2n3 — 4) = £2
Tn1 +5n3+3n3=49+1
4n; + 2n2 + 3(n1 + ne +n3)=49+1
dny; +2n, =22+1

181



Because the LHS of the last expression is even but the RHS must be odd.
This leads to a contradiction. Hence, 1 € BI(G).

Example 6. (Second largest signed balanced indices) Let G € Gs,
D(G) ={d1,d2,d3} and d; > dy > d3. Let o = ged (d1,d2,d3). Then by
Lemma. 3.3 and Lemma 3.4, the second largest signed balance indices of G,
denoted by Secc, satisfies the following inequalities:

Smax — max{d1 —dy,dy ~ ds} < Sgec £ Smax — @ (20)

4 Concluding Remarks

Equation (5) indicates that the balance index set of a graph G is completely
characterized by the degree sequence of G. It also provides a uniform way to
compute the balance indices of G. When G is bi-regular, the computation
of balance indices is captured by a simple formula. In this work, we consider
tri-regular graphs and demonstrate that for complete tripartite graphs, such
approach is still possible. We also derive necessary conditions which may
help to simplify the computation of balance indices.

In general, it is of interest of interest to study how the complexity of
computing balance indices changes with repsect to the parameter |D(G)|.
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5 Appendix

Figure 1: BI(UC(3,4) = BI(UC(4,7) = {1} (ab); BI({UC(4,6)) =
BI(UC(5,5)) = {0,2} (c.d,ef).
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Ficure 3: Ilustrations for BI(Cy - N3) = {2,6,10,14}
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Figure 4: Illustrations for BI(K346) = {0,2,4,6,8}
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Figure 5: Illustrations for BI(K3,4,5) = {0,1,2,3,4}
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