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Abstract

The existence of an equivalence subset of rational functions with
Fibonacci numbers as coefficients and the Golden Ratio as fixed point
is proven. The proof is based on two theorems establishing basic
relationships underlying the Fibonacci Sequence, Pascal’s Triangle
and the Golden Ratio.

1 Introduction

Echevarria(3, 4] showed that the Golden Ratio induces two alternative map-
pings of the set of paired Fibonacci numbers into the set of binomial coef-
ficients. More material on this topic can be found in [2,6,8,9]. In the first
mapping, the variant of the Fibonacci Sequence without the initial zero was
used. In the second mapping, the zero was retained. It is known that Pas-
cal’s Triangle and Fibonacci Sequence are related mathematically[1]. It is
also known that the Golden Ratio and the Fibonacci Sequence are mathe-
matically related in a number of very interesting ways(7]. Ghyka[5] explains
that the ancient Greeks, who discovered the Golden Ratio, were familiar
with the Fibonacci Sequence as one ramification of numerical operations on
the Golden Ratio. No mention is made, in the article mentioned(3, 4], re-
garding possible relationships between the two alternative mappings. The
ratio of a Fibonacci number to the number that precedes it in the sequence
approaches the Golden Ratio at the limit of the sequence[7]. It is also
a mathematical fact that any Fibonacci number can be represented by a
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general formula, known as Binet’s Formula that incorporates the Golden
Ratio[1]. Letting F(n) represent the n** number of the Fibonacci sequence,
Fn)=—=

(-5

The following theorems, each establishing an alternative mapping of
paired Fibonacci numbers into the binomial coefficients, and each mapping
being induced by the Golden Ratio, are due to Echevarria(3, 4].

1

Theorem 1.1 Let F(n) be the Fibonacci Sequence defined by F(O) = 0
FQl)=1and F(n) = F(n—1)+F(n-2)Vn 2 2 and z = p = L8
Then & : {F(n) - F(n+ 1)} — n** row of Pascal’s Triangle such that as
z=¢, F(n)+ F(n+ 1)z = (z+1)" is one-to-one.

Theorem 1.2 Let F(n) be the Fibonacci Sequence defined by F(O) = 0
FQ)=1and F(n) = F(n—-1)+F(n-2)Vn > 2 andz = p = 145
Then ¢ : {F(n) - F(n + 1)} — n** row of Pascal’s Triangle such that as
z =, F(n) 4+ F(n+ 1)z = z(z + 1)" is one-to-one and onto.

2 An Equivalence Subset of Rétional Func-
tions with the Golden Ratio as Fixed Point

Consider a subset of rational functions in the variable z of the form

E ”:1++F nﬁzz’, where z is any real number. The following theorem
shows that, for specific values of F(n), F(n + 1), and F(n + 2) (in fact,
infinite in number), this subset of rational functions forms an infinite equiv-
alence subset, equivalence being defined by a fixed point relationship with

the Golden Ratio.

Theorem 2.1 Let F(n) be the Fibonacci Sequence defined by F(0) = 0,
F(l)=1and F(n) = F(n—-1)+F(n—-2)Vn>2andz = = iﬁ Then
T = W@ = ¢ is an equivalence subset of mtzonal function
with Golden Ratio as fized point. Also liffin .o it = .

Proof: From Theorems 1 and 2, the two systems of equations given below
hold when = = .
1+1z=2+1,248z=(c+1)% -, Fn)+ F(n+ 1)z =(z + 1)
0+1z=z(1),1+2z==z(z+1), -+, F(n+1) +F(n+2):c =z(z+1)"
Since F(n +2) = F(n) + F(n + 1), dividing the nt* equation of the
second system by the n*? equation of the first system, we obtain:

188



z(z+1)" _ F(n+1)+F(n+2)z _F(n+1)+F(n+2)z
@+)*  Fm+Fa+De T Fm+Fm+is

There remains to show that z = ¢. Dividing the (n+1)t" of the first set
of equalities by the n** of the second set of equalities in this proof yields:

4+ Fn+1)+Fn+2z z+1
z{z+1)* Fn)+F(n+lz =~ =z

However,

o= Fn+1)+F(n+2)z z+1
T Fn)+F(n+l)z =~ =
We arrive at 22 —z2—1=0 -2z = %5@ In particular z = l—‘"@@ = .
This concludes the proof of the first part. To prove the other remark, as

n — 00 , using the Binet’s Formula for F(n):
F(n) = ’:—:bﬂwhere:z:= 448 = 1o¥6 o4y —landz—y=6.

+1 n+41 1
lim F(n + 1) _lim T — Y + _lim ™t =z
n=~—00 F(n) —n—oo " — yn T n—o0 " &

Since |y| < 1, as n — oo then y™ — 0.
Hence,

im F(n+1)+Fn+2)z 4, Fn+1)+F(n+2)z F(n+l)
" FPn)+ Fn+1)z " F@m)+Fn+1)z F(n+1l)

F(n+2
_im F41)+F(n+2s Fam _ym 1T For
n—00 F(n) +F(n+ 1)1‘ F'(anﬁ n—00 Fn:1 +z

_1+x~x_1+x2_1+x2. T _$_1+\/§__
T T 1+22 -3 =¥

This concludes the proof.
Corollary 2.2 The smallest positive Fibonacci triples satisfying

o = Bpiiratde i (1,1,9).
Proof: This is immediate from Theorem 2.1. By inspection, the consecu-
tive Fibonacci triples forming the equivalence subset of rational functions

are: (1,1,2), (2,3,5), (5,8,13), ..., (F(n), F(n + 1), F(n + 2)) which yields
F(n) =1,F(n+1) =1,F(n+2) = 2 as the smallest positive Fibonacci

triples.
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3 ALGEBRAIC PROPERTIES AND STRUC-
TURES

It is interesting to note that the equivalence subset of rational functions is
related to the Golden Ratio in more ways than can be determined by the
use of algebraic methods. At least two such properties, namely, the absence
of extreme values and convergence to the Golden Ratio, can be identified.
We show that this equivalence subset of rational functions possesses an
algebraic structure, namely, the formation of a commutative semigroup of
rational functions under the operation of composition of functions.

3.1 Extreme Values

To verify if the equivalence subset of rational functions has extreme values,
one sets:

d (F(n+ 1) +F(n+2)x) o

dz \" F(n)+F(n+1)z
F(n) + F(n+)o(F(n +2)) — (F(n +1) + F(n+ 2z(F(n+1)) _
(F(n) + F(n +1)x)? -
F(n) F(n+2) - (F(n+1)* _
(F(n) + F(n+1)z)? -

If F(n) - F(n +2) — (F(n + 1))? # 0, then the equation will not hold
for finite values of n. Recall that it is always true that F(n) - F(n +2) —
(F(n +1))? = £1. Therefore, the equivalence subset of rational functions
has no extreme values for finite values of F(n), F(n + 1), and F(n + 2).

3.2 Convergence of Real-Valued Rational Functions

Since each rational function of the equivalence class is uniquely determined
by the values of F(n), F(n+1), and F(n 4+ 2) corresponding to it, one can
construct a sequence of rational functions in terms of increasing values for
F(n), F(n+1), and F(n+2). The sequence of rational functions converges
to the Golden Ratio as the values of the Fibonacci numbers in the function
tend to infinity.

3.3 A Commutative Semigroup of Rational Functions

We show that the equivalence subset of rational functions forms a com-
mutative semigroup under the operation of composition of functions. In
addition, the infinite number of elements is generated by a single element
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under the same operation, converging to a limit. The general form of the
rational function is %}H}{%}’- where F(n), F(n+ 1), and F(n + 2)
are consecutive Fibonacci numbers and z represents any real number other
than — nil . It will suffice to show that this subset of rational functions
is closed, associative and commutative under composition of functions, and
that it is contained a cyclic subgroup that converges to a limit.

3.4 Closure, Associativity and Commutativity

Associativity follows immediately from associativity of composition of real
valued functions. We show closure and commutativity simultaneously.

. : F(n+1)+F(n+2)x F(m+1)+F(m+-2)z spe
Given functions —&w and —;(,r.(,;)-_,)_-n,inml-, composition follow-
ing the order of appearance of the functions gives:

F(n+1)+F(n+2)- (%*;3}5{5‘%2&)
F(n)+ F(n+1) - (SRairio)

_ F(n+1)- (F(m)+ F(m + 1)z) + F(n+2) - (F(m + 1) + F(m + 2)z)
F(n)- (F(m) + F(m+ 1)z) + F(n+ 1) (F(m + 1) + F(m + 2)z)

_F(n+1)*+F(n+2)*z
~ F(n)*+F(n+1)z
where F(n)* = F(n)-F(m)+F(n+1)-F(m+1); F(n+1)* = F(n)-F(m+

1)+ F(n+1)-F(m)+F(n+1)- F(m+1) = F(n+1)-F(m)+F(n+2)-F(m+1);
F(n +2)* = F(n)* + F(n 4+ 1)*. The fact that F(n)* and F(n + 1)* are
consecutive Fibonacci numbers follows from the number theoretic result
that F(n +m) = F(n)F(m + 1) + F(m)F(n — 1). Reversing the order of
composition gives:

F(m+1)+F(m+2)- (_‘Fén:h)wngﬁzgz)
Flm) +Fm+ 1) (SF#655%)

_F(m+1)-(F(n)+ F(n+1)z) + F(m+2) - (F(n+1) + F(n +2)z)
T F(m)-(F(n)+F(n+1)z)+Fm+1).- (F(n+1) + F(n + 2)z)

_Fan+1)*+F(n+2)*z
T F(n)*+F(n+1)z
The equivalence subset of rational functions is, therefore, closed, asso-
ciative and commutative under the composition of functions, which makes
it a commutative semigroup under the operation.
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3.5 Absence of an Identity Element

Letting g(z) = %%, an identity element under composition of

functions should yield fg(z) = gf(z) = g(z). However, it is known that
this fixed point relationship does not generally hold, but only when
Fin+1)+F(n+2)z _
F(n)+ F(n+1)z

3.6 The Generator

The element LHTQ where F(n), F(n+1), and F(n + 2) are the first three
Fibonacci numbers 0, 1 and 1, generates all the others under composition
of functions. The second element (corresponding to the second, third and

Qiz)
fourth Fibonacei numbers) is %lli_'_"’;”)l which is 1—*'&— Given any arbitrary
%ﬁ%ﬁz, replacing = with 11':—“’1 yields
(F(n+2)+ (F(n+1) + F(n +2))x)
Fin+1)+ F(n+2)z
which is the element immediately following the arbitrary element. Thus,

&:—’2 generates all the rational functions in the semigroup under composi-
tion of functions.
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