### On Edge-Balance Index Sets of L-product of Cycles with Stars, Part I

Chao-Chih Chou General Education Center St. John's University Tamsui, Taipei Shien, Taiwan chao@mail.sju.edu.tw

Meghan Galiardi
Department of Mathematics
Stonehill College
Easton, MA 02357, USA
mgaliardi@students.stonehill.edu

Man Kong
Department of Electrical Engineering and Computer Science
University of Kansas
Laurence, KS 66045, USA
kong@eecs.ku.edu

Sin-Min Lee
Department of Computer Science
San Jose State University
San Jose, CA 95192, USA
lee@cs.sjsu.edu

Daniel Perry
Department of Mathematics
Stonehill College
Easton, MA 02357, USA
dperry1@students.stonehill.edu

# Hsin-Hao Su Department of Mathematics Stonehill College Easton, MA 02357, USA hsu@stonehill.edu

#### Abstract

Let G be a simple graph with vertex set V(G) and edge set E(G), and let  $\mathbb{Z}_2 = \{0,1\}$ . Any edge labeling f induces a partial vertex labeling  $f^+: V(G) \to \mathbb{Z}_2$  assigning 0 or 1 to  $f^+(v)$ , v being an element of V(G), depending on whether there are more 0-edges or 1-edges incident with v, and no label is given to  $f^+(v)$  otherwise. For each  $i \in \mathbb{Z}_2$ , let  $v_f(i) = |\{v \in V(G): f^+(v) = i\}|$  and let  $e_f(i) = |\{e \in E(G): f(e) = i\}|$ . An edge-labeling f of G is said to be edge friendly if  $\{|e_f(0) - e_f(1)| \le 1$ . The edge-balance index set of the graph G is defined as  $EBI(G) = \{|v_f(0) - v_f(1)|: f$  is edge-friendly.\(\)\). In this paper, we investigate and present results concerning the edge-balance index sets of L-product of cycles with stars.

Keywords and phrases: vertex labeling, edge labeling, friendly labeling, cordiality, edge-balance index set, L-products, cycles, stars.

AMS 2000 MSC: 05C78, 05C25

#### 1 Introduction

In [5], Kong and second author considered a new labeling problem of graph theory. Let G be a simple graph with vertex set V(G) and edge set E(G), and let  $\mathbb{Z}_2 = \{0,1\}$ . An edge labeling  $f: E(G) \to \mathbb{Z}_2$  induces a vertex partial labeling  $f^+: V(G) \to \mathbb{Z}_2$  defined by  $f^+(v) = 0$  if the edges labeled 0 incident on v is more than the number of edges labeled 1 incident on v, and  $f^+(v) = 1$  if the edges labeled 1 incident on v is more than the number of edges labeled 0 incident on v.  $f^+(v)$  is not defined if the number of edges labeled by 0 is equal to the number of edges labeled 1. For  $i \in \mathbb{Z}_2$ , let  $v_f(i) = |\{v \in V(G): f^+(v) = i\}|$ , and let  $e_f(i) = |\{e \in E(G): f(e) = i\}|$ .

With these notations, we now introduce the notion of an edge-balanced graph.

**Definition 1.** An edge labeling f of a graph G is said to be **edge-friendly** if  $|e_f(0) - e_f(1)| \le 1$ . A graph G is said to be an **edge-balanced** graph if there is an edge-friendly labeling f of G satisfying  $|v_f(0) - v_f(1)| \le 1$ .

Chen, Lee, et al in [1] proved that all connected simple graphs except the star  $K_{1,2k+1}$ , where  $k \ge 0$  are edge-balanced.

**Definition 2.** The *edge-balance index set* of the graph G, EBI(G), is defined as  $\{|v_f(0) - v_f(1)| : \text{the edge labeling f is edge-friendly.}\}.$ 

We will use v(0), v(1), e(0), e(1) instead of  $v_f(0)$ ,  $v_f(1)$ ,  $e_f(0)$ ,  $e_f(1)$ , provided there is no ambiguity.

**Example 1.** EBI  $(nK_2)$  is  $\{0\}$  if n is even and  $\{2\}$  if n is odd.

Figure 1: The edge-balance index set of  $2K_2$  and  $3K_2$ 

For any  $n \ge 1$ , we denote the tree with n+1 vertices of diameter two by St(n). The star has a center c and n appended edges from c.

**Example 2.** The edge-balance index set of the star St(n) is

EBI 
$$(St(n)) = \begin{cases} \{0\} & \text{if } n \text{ is even,} \\ \{2\} & \text{if } n \text{ is odd.} \end{cases}$$

Example 3. In [12], Lee, Lo and Tao showed that

$$EBI(P_n) = \begin{cases} \{2\} & \text{if } n \text{ is } 2, \\ \{0\} & \text{if } n \text{ is } 3, \\ \{1,2\} & \text{if } n \text{ is } 4, \\ \{0,1\} & \text{if } n \text{ is odd and greater than } 3, \\ \{0,1,2\} & \text{if } n \text{ is even and greater than } 4. \end{cases}$$

Figure 2 shows the EBI of  $P_3$  and  $P_4$ .

**Example 4.** Figure 3 shows that the edge-balance index set of a tree with six vertices is  $\{0, 1, 2\}$ .

The edge-balance index sets can be viewed as the dual of balance index sets. The balance index sets of graphs were considered in [4, 6, 8, 9, 10, 11, 13, 15]. Let G be a simple graph with vertex set V(G) and edge set



Figure 2: The edge-balance index set of  $P_3$  and  $P_4$ 



Figure 3: The edge-balance index set of a tree with six vertices

E(G), and let  $\mathbb{Z}_2 = \{0,1\}$ . A labeling  $f: V(G) \to \mathbb{Z}_2$  induces an edge partial labeling  $f^*: E(G) \to A$  defined by  $f^*(vw) = f(v)$ , if and only if f(v) = f(w) for each edge  $vw \in E(G)$ . For  $i \in \mathbb{Z}_2$ , let  $v_f(i) = \operatorname{card}\{v \in V(G): f(v) = i\}$  and  $e_{f^*}(i) = \operatorname{card}\{e \in E(G): f^*(e) = i\}$ . A labeling f of a graph G is said to be **friendly** if  $|v_f(0) - v_f(1)| \le 1$ . If  $|e_f(0) - e_f(1)| \le 1$  then G is said to be **balanced**. The **balance index set** of the graph G,  $\operatorname{BI}(G)$ , is defined as  $\{|e_f(0) - e_f(1)|: \text{the vertex labeling } f \text{ is friendly}\}$ .

Edge-balance index sets of trees, flower graphs and (p, p + 1)-graphs were considered in [7, 12, 14].

Let H be a connected graph with a distinguished vertex s. Construct a new graph  $G \times_L (H, s)$  as follows: take |V(G)| copies of (H, s) and identify each vertex of G with s of a single copy of H. We call the resulting graph the L-product of G and (H, s). In this paper, exact values of the edge-balance index sets of L-product of cycles with stars,  $C_n \times_L (\operatorname{St}(m), c)$ , where c is the center of the star graph and m is odd or 2 are presented.

### 2 On edge-balance index sets of L-product of $C_n$ with St(1)

In this section we first consider the edge-balance index sets of the  $C_n \times_L (\operatorname{St}(1), c)$ .

**Lemma 2.1.** Let n = 3k + r where r = 0, 1, or 2. The highest edge-balance index of  $C_n \times_L (St(1), c)$  is 2k.

**Proof.** By looking at the structure of  $C_n \times_L (\operatorname{St}(1), c)$ , we notice that if you label one edge in  $C_n$  and the two edges of  $\operatorname{St}(1)$ s adjacent to the adjacent two vertices 0, then you have four 0-vertices in three 0-edges. This is the most effective way to gain the most 0-vertices with the least 0-edges.

To get the maximal edge-balance index, we label the above package as many as we can. Since each one requires three 0-edges, we can have as many as k packages. Because  $C_n$  has n=3k+r edges, we have enough rooms for k packages. We position each package separately in  $C_n$  by inserting a 1-edge in between. These 1-edges do not alter any vertex labeling since they connect two 0-vertices with two 0-edges each. We also label two end edges on  $C_n$  1. They do not alter any already labeled vertices since they connect to two 0-vertices with two 0-edges each. This step occupies 3k 0-edges and k+1 1-edges. Also, it labels 2k adjacent vertices on  $C_n$  0 and 2k edges of St(1)s 0. The number of 0-vertices created so far is 4k.

The rest r 0-edges can label at most two 0-vertices by placing them in the edges of other St(1)s. So, we totally have 4k + r 0-vertices. Note here that these two 0-edges do not affect the labeling of the vertices on  $C_n$  they connect to since the other two edges must be labeled 1 by our setting.

After filling in the rest 1-edges, the rest 2n - (4k + r) = (6k + 2r) - (4k + r) = 2k + r vertices are all labeled 1. Thus, the edge-balance index is (4k + r) - (2k + r) = 2k. This completes the proof.

**Theorem 2.2.** The edge-balance index set of  $C_n \times_L (St(1), c)$  is  $\{0, 2, \dots, 2k\}$  for n = 3k, 3k + 1 and 3k + 2.

**Proof.** In  $C_n \times_L (\operatorname{St}(1), c)$ , there are totally 2n vertices. Thus, for a friendly edge labeling, e(0) = n = e(1). Also, all vertices on  $C_n$  are of order 3 and all vertices on  $\operatorname{St}(1)$  are of order 1. Because all vertices are of odd order, every vertex must be labeled either 0 or 1. Since the total number of vertices is even, the possible edge-balance indexes are all even.

First, we label all edges on  $C_n$  1 and all edges on St(1) 0. Obviously, its edge-balance index is 0. Name all the vertices on  $C_n$   $v_i$  where  $1 \le i \le n$ . Also name all the leaf vertices  $u_i$  if it connects to the vertex  $v_i$ . Note that all  $v_i$  are labeled 1 and all  $u_i$  are labeled 0.

Now, exchange the 1-label of the edge  $v_1v_2$  with the 0-label of the edge  $v_nu_n$ . This turns the label of the vertex  $u_n$  into 1 and the labeled of  $v_1$  and  $v_2$  into 0. The new edge labeling has edge-balance index 2.

If we continue by exchanging the 1-label of the edge  $v_{2t+1}v_{2t+2}$  with the 0-label of the edge  $v_{n-t}u_{n-t}$ , we obtain a new edge labeling each time to increase the edge-balance index by 2. After repeating k times, we archive the maximal edge-balance index 2k. Thus, the edge-balance index set of  $C_n \times_L (\operatorname{St}(1), c)$  is  $\{0, 2, 4, \ldots, 2k\}$ .

**Example 5.** Figure 4 shows that  $\mathrm{EBI}(C_n \times_L (\mathrm{St}(1),c)) = \{0,2\}$  for n=

3, 4, 5.



Figure 4: EBI $(C_n \times_L (\operatorname{St}(1), c))$  for n = 3, 4, 5

**Example 6.** Figure 5 shows that  $\mathrm{EBI}(C_n \times_L (\mathrm{St}(1), c)) = \{0, 2, 4\}$  for n = 6, 7, 8.





Figure 5: EBI $(C_n \times_L (St(1), c))$  for n = 6, 7, 8

### 3 On edge-balance index sets of L-product of $C_n$ with St(2)

**Lemma 3.1.** The highest edge-balance index of  $C_n \times_L (St(2), c)$  is

- 1. 3k if n = 4k;
- 2. 3k+2 if n=4k+1;
- 3. 3k+1 if n=4k+2;
- 4. 3k+3 if n=4k+3.

**Proof.** To find the highest edge-balance index, we try to construct a labeling with the least 1-vertices possible. The strategy is to have as many 1-edges connected to a vertex labeled 0 or unlabeled as possible. When a vertex labeled 1 cannot avoid, label all its edges 1.

By the above strategy, we first label all edges in  $C_n$  1. Then, fill a copy of St(2) by as many 1-edges as possible until we run out of 1-edges. All the rest edges are labeled 0. In this construction, 0-edges are all in St(2)s.

To calculate the edge-balance index of this labeling, we consider the following four cases:

- 1. When n=4k, the total number of edges is 4k+2(4k)=12k=3n with e(0)=6k=e(1). To fill  $C_n$  with 1-edges, we use n=4k 1-edges. There are 6k-4k=2k 1-edges left for labeling St(2)s. Thus, there are k copies of St(2) are filled by 1-edges and all other n-k=4k-k=3k copies are filled by 0-edges. This tells us that there are k vertices labeled 1 on  $C_n$  and 2k vertices labeled 1 on St(2)s. Also, because all 6k 0-edges are in St(2)s, there are 6k vertices labeled 0. Since the  $C_n$  is labeled by just 1-edges, the vertex of  $C_n$  connected to the St(2) filled by 0-edges is unlabeled. This implies that there are 3k unlabeled vertices. So, the edge-balance index is 6k-(k+2k)=3k.
- 2. When n = 4k + 1, the total number of edges is (4k + 1) + 2(4k + 1) = 12k + 3. We first construct an edge labeling with e(0) = 6k + 2 and e(1) = 6k + 1. To fill  $C_n$  with 1-edges, we use n = 4k + 1 1-edges. There are (6k + 1) (4k + 1) = 2k 1-edges left for labeling St(2)s. Thus, there are k copies of St(2) are filled by 1-edges and all other n k = (4k + 1) k = 3k + 1 copies are filled by 0-edges. This tells us that there are k vertices labeled 1 on  $C_n$  and 2k vertices labeled 1 on St(2)s. Also, because all 6k + 2 0-edges are in St(2)s, there are 6k + 2 vertices labeled 0. Since the  $C_n$  is labeled by just 1-edges, the vertex of  $C_n$  connected to the St(2) filled by 0-edges is unlabeled. This implies that there are 3k + 1 unlabeled vertices. So, the edge-balance index is (6k + 2) (k + 2k) = 3k + 2.
- 3. When n = 4k + 2, the total number of edges is (4k + 2) + 2(4k + 2) = 12k + 6 with e(0) = 6k + 3 = e(1). To fill  $C_n$  with 1-edges, we use n = 4k + 2 1-edges. There are (6k + 3) (4k + 2) = 2k + 1 1-edges left for labeling St(2)s. Thus, there are k copies of St(2) are filled by 1-edges and one edge of St(2) is labeled 1. All other St(2) edges are labeled 0 which means (n k) 1 = 3k + 1 copies of St(2) are filled by only 0-edges. Note that one St(2) are split by one of each. This tells us that there are k + 1 vertices labeled 1 on  $C_n$  and 2k + 1 vertices labeled 1 on St(2)s. Also, because all 6k + 3 0-edges are in St(2)s, there are 6k + 3 vertices labeled 0. Since the  $C_n$  is labeled by just 1-edges, the vertex of  $C_n$  connected to the St(2) filled by 0-edges is unlabeled. This implies that there are 3k + 1 unlabeled vertices. So, the edge-balance index is (6k + 3) (k + 1 + 2k + 1) = 3k + 1.
- 4. When n = 4k + 3, the total number of edges is (4k + 3) + 2(4k + 3) = 12k + 9. We first construct an edge labeling with e(0) = 6k + 5 and e(1) = 6k + 4. To fill  $C_n$  with 1-edges, we use n = 4k + 3 1-edges. There are (6k + 4) (4k + 3) = 2k + 1 1-edges left for labeling St(2)s. Thus, there are k copies of St(2) are filled by 1-edges and one edge of St(2) is labeled 1. All other St(2) edges are labeled 0 which means

(n-k)-1=3k+2 copies of  $\operatorname{St}(2)$  are filled by only 0-edges. Note that one  $\operatorname{St}(2)$  are split by one of each. This tells us that there are k+1 vertices labeled 1 on  $C_n$  and 2k+1 vertices labeled 1 on  $\operatorname{St}(2)$ s. Also, because all 6k+5 0-edges are in  $\operatorname{St}(2)$ s, there are 6k+5 vertices labeled 0. Since the  $C_n$  is labeled by just 1-edges, the vertex of  $C_n$  connected to the  $\operatorname{St}(2)$  filled by 0-edges is unlabeled. This implies that there are 3k+2 unlabeled vertices. So, the edge-balance index is (6k+5)-(k+1+2k+1)=3k+3.

Since, in this construction, all 0-edges are on St(2)s, any exchange with 1-edges on  $C_n$  will increase the number of vertices labeled 1 by 1. Thus, this labeling yields the maximal edge-balance index.

**Lemma 3.2.** The edge-balance index set of  $C_n \times_L (St(2), c)$  contains

- 1.  $\{1, 2, \dots, 3k\}$  if n = 4k;
- 2.  $\{2,3,\cdots,3k+2\}$  if n=4k+1;
- 3.  $\{1, 2, \dots, 3k+1\}$  if n = 4k+2;
- 4.  $\{2,3,\cdots,3k+3\}$  if n=4k+3.

**Proof.** Let us start with the edge labeling constructed at Lemma 3.1. The number of unlabeled vertices is listed as follow:

- 1. 3k if n = 4k;
- 2. 3k+2 if n=4k+1:
- 3. 3k+1 if n=4k+2;
- 4. 3k+3 if n=4k+3.

Note that these unlabeled vertices are connected to two 0-edges and two 1-edges. Without loss of generality, we can assume that they are lining up sequentially.

First, we work on the unlabeled vertex adjacent to a 1-vertex on  $C_n$ . By switching a 0-edge on St(2) leaf and a 1-edge adjacent to another unlabeled vertex, we replace a 0-vertex on a leaf by a 1-vertex and change the adjacent unlabeled vertex into a vertex labeled 0. This move reduces the edge-balance index by 1.

Next, we move on to the adjacent vertex. (Now, it is labeled 0.) Repeat the same exchange method as above, we can reduce the edge-balance by 1 again.

This exchange method works until you have turned all the adjacent unlabeled vertices into 0-vertices. Thus, we can reduce the edge-balance index by one the number of unlabeled vertices minus one times. This completes the proof.

**Theorem 3.3.** The edge-balance index set of  $C_n \times_L (St(2), c)$  is

1.  $\{1, 2, \dots, 3k\}$  if n = 4k;

- 2.  $\{2, 3, \dots, 3k+2\}$  if n = 4k+1;
- 3.  $\{1, 2, \dots, 3k+1\}$  if n = 4k+2;
- 4.  $\{2,3,\cdots,3k+3\}$  if n=4k+3.

**Proof.** When n is even, we can label all pairs of edges in each copy of St(2) by 0 and 1. Then label  $C_n$  by the sequence  $0, 1, 0, 1, \cdots$ . It is easy to see that the edge-balance index is 0. With the results of Lemma 3.2, we complete the proofs of (1) and (3).

When n is odd, we construct two edge labeling with edge-balance index 0 and 1. Since n is odd, the total number of edges is n + 2n = 3n is also odd. Moreover, if we assume that n = 2t + 1, we may have e(0) = 3t + 1 and e(1) = 3t + 2.

First, we label every pair of edges on St(2) by 0 and 1 and edges on  $C_n$  by the sequence  $1,0,1,0,\cdots,1$ . It is easy to see that all vertices on  $C_n$  are unlabeled except one is labeled 1. The leaves of St(2) provides the equal number of 0-vertices and 1-vertices. Thus, the edge-balance index is -1 in the sense of e(0) - e(1). By taking absolute value, we obtain an edge labeling with the edge-balance index 1.

By switching a 1-edge leaf of the unlabeled vertex on  $C_n$  with the 0-edge adjacent to the same unlabeled vertex, we replace the 1-vertex on the leaf by a 0-vertex. At the same time, we turn the adjacent unlabeled vertex into a vertex labeled 1. Everything else remains the same. Thus, the edge-balance increases by 1. This creates an edge labeling with the edge-balance index 0.

With these two edge labelings, we complete the proofs of (2) and (4).

**Example 7.** Figure 6 shows that  $EBI(C_4 \times_L (St(2), c)) = \{0, 1, 2, 3\}.$ 



**Example 8.** Figure 7 shows that  $EBI(C_5 \times_L (St(2), c)) = \{0, 1, 2, 3, 4, 5\}$ 



Figure 6: EBI $(C_4 \times_L (St(2), c))$ 

## 4 On edge-balance index sets of L-product of $C_n$ with St(m) where m is odd and greater or equal to three

**Lemma 4.1.** Consider  $C_n \times_L (St(m), c)$  where m is odd and greater or equal to three. Let n = mk + r where  $0 \le r < m$  and r = 2t if r is even or r = 2t + 1 if r is odd. We also define  $\frac{n(m+1)}{2} = mk_0 + r_0$  and  $\frac{n(m-1)}{2} = mk_1 + r_1$  where  $0 \le r_0, r_1 < m$ . Let  $T = r_0r_1 - 2$ . The highest edge-balance index is

- 1. n+k if r=0;
- 2. n+k if T<0 and r is even;
- 3. n+k-1 if T<0 and r is odd;
- 4. n + k + 2 if T > 0 and r is even;
- 5. n+k+1 if T>0 and r is odd.

**Proof.** By the same strategy as Lemma 3.1, to find the maximal edge-balance index, we first label all edges in  $C_n$  1. Then, fill a copy of St(m) by as many 1-edges as possible until we run out of 1-edges. All the rest edges are labeled 0. In this construction, 0-edges are all in St(m)s.

In  $C_n \times_L (\operatorname{St}(m), c)$  where m is odd and greater or equal to three, there are totally n(m+1) edges. Since m is odd, n(m+1) is even. Thus, for a friendly labeling, we should have  $e(0) = \frac{n(m+1)}{2} = e(1)$ . Since we use n 1-edges in  $C_n$ , there are  $\frac{n(m+1)}{2} - n = \frac{n(m-1)}{2}$  1-edges left for  $\operatorname{St}(m)$ s. It produces  $\frac{n(m-1)}{2}$  vertices on  $\operatorname{St}(m)$ s. Also, all 0-edges are on  $\operatorname{St}(m)$ s. Therefore, there are  $\frac{n(m+1)}{2}$  vertices on  $\operatorname{St}(m)$ s.



Figure 7: EBI $(C_5 \times_L (St(2), c))$ 

To calculate the edge-balance index of this labeling, we consider the following three cases:

1. When r=0, we have  $\frac{mk(m-1)}{2}$  1-edges on  $\operatorname{St}(m)$ s. Since m is odd,  $\frac{mk(m-1)}{2}$  is a multiple of m. Thus, we have  $\frac{k(m-1)}{2} = \frac{n-k}{2}$  vertices labeled 1 on  $C_n$ . Since the  $C_n$  is labeled by just 1-edges and  $m \geq 3$ , the vertex of  $C_n$  connected to the  $\operatorname{St}(m)$  filled by 0-edges is labeled 0. This implies that there are  $n-\frac{n-k}{2}=\frac{n+k}{2}$  0-vertices on  $C_n$ . So, the edge-balance index is

$$\left[\frac{n(m+1)}{2}+\frac{n+k}{2}\right]-\left[\frac{n(m-1)}{2}+\frac{n-k}{2}\right]=n+k.$$

2. When T < 0, we have  $r_0 < r_1 + 2$ . This implies that the vertex with mixed 0- and 1-edges has more 1-edges than 0-edges so it is labeled 1. If r is even, then

$$\frac{(mk+r)(m-1)}{2} = m\frac{k(m-1)}{2} + tm - t$$
$$= m\left(\frac{k(m-1)}{2} + (t-1)\right) + (m-t).$$

Thus, we have  $\frac{k(m-1)}{2} + (t-1) = \frac{n-k-2}{2}$  vertices labeled 1 on  $C_n$  with all 1-edges only. Since the  $C_n$  is labeled by just 1-edges and  $m \geq 3$ ,

the vertex of  $C_n$  connected to the  $\operatorname{St}(m)$  filled by 0-edges is labeled 0. This implies that there are  $n-\frac{n-k-2}{2}-1=\frac{n+k}{2}$  0-vertices on  $C_n$ . So, the edge-balance index is

$$\left(\frac{n(m+1)}{2} + \frac{n+k}{2}\right) - \left(\frac{n(m-1)}{2} + \frac{n-k-2}{2} + 1\right) = n+k.$$

If r is odd, then

$$\frac{(mk+r)(m-1)}{2} = m\frac{k(m-1)}{2} + \frac{(2t+1)(m-1)}{2}$$
$$= m\left(\frac{k(m-1)}{2} + t\right) + \frac{m-1}{2} - t.$$

Note that since r < m, we have  $\frac{m-1}{2} > t$ . Thus, we have  $\frac{k(m-1)}{2} + t = \frac{n-k-1}{2}$  vertices labeled 1 on  $C_n$  with all 1-edges only. Since the  $C_n$  is labeled by just 1-edges and  $m \ge 3$ , the vertex of  $C_n$  connected to the  $\operatorname{St}(m)$  filled by 0-edges is labeled 0. This implies that there are  $n - \frac{n-k-1}{2} - 1 = \frac{n+k-1}{2}$  0-vertices on  $C_n$  with all 0-edges on  $\operatorname{St}(m)$  only. So, the edge-balance index is

$$\left(\frac{n(m+1)}{2} + \frac{n+k-1}{2}\right) - \left(\frac{n(m-1)}{2} + \frac{n-k-1}{2} + 1\right) = n+k-1.$$

3. When T > 0, we have  $r_0 > r_1 + 2$ . This implies that the vertex with mixed 0- and 1-edges has more 0-edges than 1-edges so it is labeled 0. If r is even, then

$$\frac{(mk+r)(m-1)}{2} = m\frac{k(m-1)}{2} + tm - t$$
$$= m\left(\frac{k(m-1)}{2} + (t-1)\right) + (m-t).$$

Thus, we have  $\frac{k(m-1)}{2} + (t-1) = \frac{n-k-2}{2}$  vertices labeled 1 on  $C_n$  with all 1-edges only. Since the  $C_n$  is labeled by just 1-edges and  $m \geq 3$ , the vertex of  $C_n$  connected to the  $\operatorname{St}(m)$  filled by 0-edges is labeled 0. This implies that there are  $n - \frac{n-k-2}{2} - 1 = \frac{n+k}{2}$  0-vertices on  $C_n$ . So, the edge-balance index is

$$\left(\frac{n(m+1)}{2} + \frac{n+k}{2} + 1\right) - \left(\frac{n(m-1)}{2} + \frac{n-k-2}{2}\right) = n+k+2.$$

If r is odd, then

$$\frac{(mk+r)(m-1)}{2} = m\frac{k(m-1)}{2} + \frac{(2t+1)(m-1)}{2}$$

$$= m\left(\frac{k(m-1)}{2}+t\right)+\frac{m-1}{2}-t.$$

Note that since r < m, we have  $\frac{m-1}{2} > t$ . Thus, we have  $\frac{k(m-1)}{2} + t = \frac{n-k-1}{2}$  vertices labeled 1 on  $C_n$  with all 1-edges only. Since the  $C_n$  is labeled by just 1-edges and  $m \ge 3$ , the vertex of  $C_n$  connected to the  $\operatorname{St}(m)$  filled by 0-edges is labeled 0. This implies that there are  $n - \frac{n-k-1}{2} - 1 = \frac{n+k-1}{2}$  0-vertices on  $C_n$  with all 0-edges on  $\operatorname{St}(m)$  only. So, the edge-balance index is

$$\left(\frac{n(m+1)}{2} + \frac{n+k-1}{2} + 1\right) - \left(\frac{n(m-1)}{2} + \frac{n-k-1}{2}\right) = n+k+1.$$

Since, in this construction, all 0-edges are on St(m)s, any exchange with 1-edges on  $C_n$  will increase the number of vertices labeled 1 by 1. Thus, this labeling yields the maximal edge-balance index.

**Theorem 4.2.** Consider  $C_n \times_L (St(m), c)$  where m is odd and greater or equal to three. Let n = mk + r where  $0 \le r < m$  and r = 2t if r is even or r = 2t + 1 if r is odd. We also define  $\frac{n(m+1)}{2} = mk_0 + r_0$  and  $\frac{n(m-1)}{2} = mk_1 + r_1$  where  $0 \le r_0, r_1 < m$ . Let  $T = r_0 - r_1 - 2$ . The edge-balance index set of  $C_n \times_L (St(m), c)$  is

- 1.  $\{0,2,4,6,\cdots,n+k\}$  if r=0;
- 2.  $\{0, 2, 4, 6, \dots, n+k\}$  if T < 0 and r is even;
- 3.  $\{0, 2, 4, 6, \dots, n+k-1\}$  if T < 0 and r is odd;
- 4.  $\{0, 2, 4, 6, \dots, n+k+2\}$  if T > 0 and r is even;
- 5.  $\{0, 2, 4, 6, \dots, n+k+1\}$  if T > 0 and r is odd.

**Proof.** In  $C_n \times_L (\operatorname{St}(m), c)$ , there are totally n+nm vertices. If m is odd, then it has even number of vertices. Also, all vertices on  $C_n$  are of order m+2 and all vertices on  $\operatorname{St}(m)$  are of order 1. As m is odd, all vertices are of odd order. This means every vertex must be labeled either 0 or 1. Since the total number of vertices is even, the possible edge-balance indexes are all even.

Let us start with the edge labeling constructed at Lemma 4.1. Without loss of generality, we can assume that all 0-vertices on  $C_n$  are lining up sequentially.

First, we work on the vertex mixed with 0-edges and 1-edges on  $C_n$ . Note that if r = 0, then we skip this step. By switching a 0-edge on St(m) leaf and a 1-edge adjacent to another 0-vertex, we replace a 0-vertex on leaf

by a 1-vertex. Everything else remains the same. This move reduces the edge-balance index by 2.

Second, we work on the 0-vertex adjacent to the previous vertex. Note that if r = 0, then we start working on the 0-vertex adjacent to a 1-vertex on  $C_n$ . By switching a 0-edge on a St(m) leaf and a 1-edge adjacent to another 0-vertex, we replace a 0-vertex on a leaf by a 1-vertex. Everything else remains the same. This move reduces the edge-balance index by 2.

Next, we move on to the adjacent vertex. Repeat the same exchange method as above, we can reduce the edge-balance by 2 again.

This exchange method works until you run out of all 0-vertices on  $C_n$ . Thus, we can reduce the edge-balance index by two the number of 0-vertices times. By the proof of Lemma 4.1, the number of 0-vertices on  $C_n$  is listed as follow:

- 1.  $\frac{n+k}{2}$  if r=0;
- 2.  $\frac{n+k}{2}$  if T < 0 and r is even;
- 3.  $\frac{n+k-1}{2}$  if T < 0 and r is odd;
- 4.  $\frac{n+k}{2}+1$  if T>0 and r is even;
- 5.  $\frac{n+k-1}{2} + 1$  if T > 0 and r is odd.

Since, as numerical values, they are all half of the highest edge-balance index, we have enough 0-vertices on  $C_n$  to reduce the edge-balance index by two each time all the way down to 0.

This completes the proof.

**Example 9.** For  $C_8 \times_L (\operatorname{St}(3), c)$ , we have n = 8 and m = 3. Thus, k = 2, r = 2 and t = 1. Also, we have  $r_0 = 1$  since  $\frac{n(m+1)}{2} = 16 = 5 \times 3 + 1$  and  $r_1 = 2$  since  $\frac{n(m-1)}{2} = 8 = 2 \times 3 + 2$ . Therefore, T = 1 - 2 - 2 = -3 < 0. By Theorem 4.2(2), EBI =  $\{0, 2, 4, \dots, 8 + 2\}$ . Figure 8 shows that EBI $(C_8 \times_L (St(3), c)) = \{0, 2, 4, 6, 8, 10\}$ .

### References

- B.L. Chen, K.C. Huang, S-M. Lee and S.S. Liu, On edge-balanced multigraphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 42 (2002), 177-185.
- [2] D. Chopra, S-M. Lee and H-H. Su, On edge-balance index sets of wheels, unpublished manuscript.



Figure 8: EBI( $C_8 \times_L (St(3), c)$ )

- [3] D. Chopra, S-M. Lee and H-H. Su, On edge-balance index sets of fans and broken fans, to appear at Congressus Numerantium.
- [4] S.R. Kim, S-M. Lee and H.K. Ng, On balancedness of some graph constructions, Journal of Combinatorial Mathematics and Combinatorial Computing, 66 (2008), 3-16.
- [5] M.C. Kong and S-M. Lee, On edge-bananced graphs, in Proceedings of the 7th quadrennial international conference on the theory and applications of graphs, vol 2, 712-722, John Wiley and Sons, Inc. 1993.
- [6] H. Kwong and S-M. Lee, On balance index sets of chain sum and amalgamation of generalized theta graphs, Congressus Numerantium, 187 (2007), 21-32.
- [7] H. Kwong and S-M. Lee, On edge-balance index sets of flower graphs, unpublished manuscript.
- [8] H. Kwong, S-M. Lee and D.G. Sarvate, On balance index sets of onepoint unions of graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 66 (2008), 113-127.
- [9] A.N.T. Lee, S-M. Lee and H.K. Ng, On balance index sets of graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 66 (2008), 135-150.

- [10] S-M. Lee, B. Chen, and T. Wang, On the balanced windmill graphs, Congressus Numerantium, 186 (2007), 9-32.
- [11] S-M. Lee, A.C. Liu and S.K. Tan, On balanced graphs, Congressus Numerantium, 87 (1992), 59-64.
- [12] S-M. Lee, S.P.B. Lo and M.F. Tao, On the edge-balance index sets of some trees, unpublished manuscript.
- [13] S-M. Lee, H.K. Ng and S.M. Tong, On the balance index set of the chain-sum graphs of cycles, *Utilitas Mathematica*, 77 (2008), 113-123.
- [14] S-M. Lee, H-H. Su and Y.C. Wang, On edge-balance index sets of (p, p + 1)-graphs, unpublished manuscript.
- [15] M.A. Seoud and A.E.I. Abd el Maqsoud, On cordial and balanced labelings of graphs, Journal of Egyptian Mathematics Society, 7 (1999), 127-135.