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Abstract

Let G be a simple graph with vertex set V(G) and edge set E(G),
and let Z; = {0,1}. Any edge labeling f induces a partial ver-
tex labeling f* : V(G) — Z; assigning 0 or 1 to f*(v), v being
an element of V(G), depending on whether there are more 0-edges
or l-edges incident with v, and no label is given to f*(v) other-
wise. For each i € Zg, let vy(i) = |{v eV(G): f*t(v)= z}l and
let ef() = |{e € E(G) : f(e) =i}|. An edge-labeling f of G is said
to be edge friendly if {|es(0) — ef(1)] £ 1. The edge-balance in-
dex set of the graph G is defined as EBI(G) = {Jus(0) — vs(1)| :
f is edge-friendly.}. In this paper, we investigate and present results
concerning the edge-balance index sets of L-product of cycles with
stars.

Keywords and phrases: vertex labeling, edge labeling, friendly labeling,
cordiality, edge-balance index set, L-products, cycles, stars.
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1 Introduction

In [5], Kong and second author considered a new labeling problem of graph
theory. Let G be a simple graph with vertex set V(G) and edge set E(G),
and let Z; = {0,1}. An edge labeling f : E(G) — Z induces a vertex
partial labeling f+ : V(G) — Z defined by f*(v) = 0 if the edges labeled
0 incident on v is more than the number of edges labeled 1 incident on v,
and f+(v) = 1 if the edges labeled 1 incident on v is more than the number
of edges labeled 0 incident on v. f*(v) is not defined if the number of
edges labeled by 0 is equal to the number of edges labeled 1. For i € Z, let
vs(i) = |{v € V(G) : f*(v) =1}, and let es(¢) = |{e € E(G) : f(e) = i}|.

With these notations, we now introduce the notion of an edge-balanced
graph.

Definition 1. An edge labeling f of a graph G is said to be edge-friendly
if |es(0) — es(1)| < 1. A graph G is said to be an edge-balanced graph if
there is an edge-friendly labeling f of G satisfying |vf(0) — vs(1)] < 1.
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Chen, Lee, et al in [1] proved that all connected simple graphs except
the star K ax+1, where k > 0 are edge-balanced.

Definition 2. The edge-balance index set of the graph G, EBI(G), is
defined as {|vs(0) — vg(1)| : the edge labeling f is edge-friendly.}.

We will use v(0), v(1), e(0), e(1) instead of vf(0), vs(1), ef(0), ef(1),
provided there is no ambiguity.

Example 1. EBI(nK3) is {0} if n is even and {2} if n is odd.

g
O
O
jv(0) ~v(1)|=0 w(0) = v(1)| =2

Figure 1: The edge-balance index set of 2K5 and 3K,

For any n > 1, we denote the tree with n + 1 vertices of diameter two
by St(r). The star has a center ¢ and n appended edges from c.

Example 2. The edge-balance index set of the star St(n) is

_J{0} ifniseven,
EBI (St(n)) = {{2} if n is odd.

Example 3. In [12], Lee, Lo and Tao showed that

{2} ifnis 2,
{0} ifnis3,
EBI(P,) = { {1,2} ifn is 4,
{0,1} if n is odd and greater than 3,
{0,1,2} ifn is even and greater than 4.

Figure 2 shows the EBI of P; and P;.

Example 4. Figure 3 shows that the edge-balance index set of a tree with
six vertices is {0, 1,2}.

The edge-balance index sets can be viewed as the dual of balance index
sets. The balance index sets of graphs were considered in [4, 6, 8, 9, 10,
11, 13, 15]. Let G be a simple graph with vertex set V(G) and edge set
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0 1 1 1
0
[v(0) —»(1)| =0 [v(0) —v(1)[=1 |v(0) —v(1)] =2

Figure 2: The edge-balance index set of P3 and Py

u1,1 u2,1 u3,1 u1,1 u2,1 ug,1

[v(0) —v(1)| =0 (0) —v(1)| =1 [v(0) — v(1)] =2

Figure 3: The edge-balance index set of a tree with six vertices

E(G), and let Z; = {0,1}. A labeling f : V(G) — Z; induces an edge
partial labeling f* : E(G) — A defined by f*(vw) = f(v), if and only if
f(v) = f(w) for each edge vw € E(G). For i € Zs, let vf(i) = card{v €
V(G) : f(v) =i} and es- (i) = card{e € E(G) : f*(e) = i}. A labeling f of
a graph G is said to be friendly if [vs(0) —vs(1)] < 1. If |ef(0)—ef(1)| < 1
then G is said to be balanced. The balance index set of the graph G,
BI(G), is defined as {|es(0) — ef(1)| : the vertex labeling f is friendly}.

Edge-balance index sets of trees, flower graphs and (p,p + 1)-graphs
were considered in [7, 12, 14].

Let H be a connected graph with a distinguished vertex s. Construct a
new graph G xp, (H, s) as follows: take |V(G)| copies of (H, s) and identify
each vertex of G with s of a single copy of H. We call the resulting graph the
L-product of G and (H, s). In this paper, exact values of the edge-balance
index sets of L-product of cycles with stars, C,, % (St(m), ¢)), where ¢ is
the center of the star graph and m is odd or 2 are presented.

2 On edge-balance index sets of L-product of
C, with St(1)

In this section we first consider the edge-balance index sets of the C,, X
(St(1), ).

Lemma 2.1. Let n = 3k+r wherer =0, 1, or 2. The highest edge-balance
index of Cp, x1, (St(1),c¢) is 2k.
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Proof. By looking at the structure of Cy, x 1 (St(1), ¢), we notice that if you
label one edge in C,, and the two edges of St(1)s adjacent to the adjacent
two vertices 0, then you have four O-vertices in three 0-edges. This is the
most effective way to gain the most 0-vertices with the least 0-edges.

To get the maximal edge-balance index, we label the above package as
many as we can. Since each one requires three 0-edges, we can have as many
as k packages. Because C,, has n = 3k + 7 edges, we have enough rooms
for k packages. We position each package separately in C,, by inserting a
1-edge in between. These 1-edges do not alter any vertex labeling since they
connect two 0-vertices with two 0-edges each. We also label two end edges
on Cy, 1. They do not alter any already labeled vertices since they connect
to two O-vertices with two 0-edges each. This step occupies 3k 0-edges and
k+1 l-edges. Also, it labels 2k adjacent vertices on C,, 0 and 2k edges of
St(1)s 0. The number of O-vertices created so far is 4k.

The rest r 0-edges can label at most two O-vertices by placing them in
the edges of other St(1)s. So, we totally have 4k + r O-vertices. Note here
that these two 0-edges do not affect the labeling of the vertices on C,, they
connect to since the other two edges must be labeled 1 by our setting.

After filling in the rest 1-edges, the rest 2n — (dk + 7) = (6k + 2r) —
(4k + 1) = 2k + r vertices are all labeled 1. Thus, the edge-balance index
is (4k +7) — (2k + ) = 2k. This completes the proof. O

Theorem 2.2. The edge-balance indez set of Cp x 1 (St(1),¢)) is {0,2,-- -, 2k}
forn =3k, 3k+1 and 3k + 2.

Proof. In C, xp (St(1),c), there are totally 2n vertices. Thus, for a
friendly edge labeling, e(0) = n = e(1). Also, all vertices on C,, are of order
3 and all vertices on St(1) are of order 1. Because all vertices are of odd
order, every vertex must be labeled either 0 or 1. Since the total number
of vertices is even, the possible edge-balance indexes are all even.

First, we label all edges on Cy, 1 and all edges on St(1) 0. Obviously, its
edge-balance index is 0. Name all the vertices on C,, v; where 1 < i < n.
Also name all the leaf vertices u; if it connects to the vertex v;. Note that
all v; are labeled 1 and all u; are labeled 0.

Now, exchange the 1-label of the edge vyv; with the O-label of the edge
UnlUpn. This turns the label of the vertex u,, into 1 and the labeled of v; and
vg into 0. The new edge labeling has edge-balance index 2.

If we continue by exchanging the 1-label of the edge v2:4.1v2:42 With the
0O-label of the edge vn_¢un—¢, We obtain a new edge labeling each time to
increase the edge-balance index by 2. After repeating k times, we archive
the maximal edge-balance index 2k. Thus, the edge-balance index set of
Cn xr (St(1),c) is {0,2,4,...,2k}. O

Example 5. Figure 4 shows that EBI(C, x, (St(1),¢)) = {0,2} for n =
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3,4,5.

Figure 4: EBI(C,, xp, (St(1),c)) for n = 3,4,5

Example 6. Figure 5 shows that EBI(C, xr (St(1),c)) = {0,2,4} for
n=26,7,8.
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O+N=0 -2 IO} (ipmd

Figure 5: EBI(C,, x (St(1),¢)) for n=6,7,8

3 On edge-balance index sets of L-product of
C, with St(2)
Lemma 3.1. The highest edge-balance indez of Cp, xr (S5t(2),c) is
1. 3k if n = 4k;
2 3k+2ifn=4k+1;
3 3k+1ifn=4k+2;
4 3k+3ifn=4k+3.

Proof. To find the highest edge-balance index, we try to construct a
labeling with the least 1-vertices possible. The strategy is to have as many
1-edges connected to a vertex labeled O or unlabeled as possible. When a
vertex labeled 1 cannot avoid, label all its edges 1.

By the above strategy, we first label all edges in C,, 1. Then, fill a copy
of St(2) by as many 1-edges as possible until we run out of 1-edges. All the
rest edges are labeled 0. In this construction, 0-edges are all in St(2)s.

To calculate the edge-balance index of this labeling, we consider the
following four cases:
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1. When n = 4k, the total number of edges is 4k + 2(4k) = 12k = 3n
with e(0) = 6k = e(1). To fill C, with 1-edges, we use n = 4k 1-edges.
There are 6k—4k = 2k 1-edges left for labeling St(2)s. Thus, there are
k copies of St(2) are filled by 1-edges and all other n—k = 4k—k = 3k
copies are filled by 0-edges. This tells us that there are k vertices
labeled 1 on C, and 2k vertices labeled 1 on St(2)s. Also, because
all 6k O-edges are in St(2)s, there are 6k vertices labeled 0. Since
the C, is labeled by just 1-edges, the vertex of C,, connected to the
St(2) filled by O-edges is unlabeled. This implies that there are 3k
unlabeled vertices. So, the edge-balance index is 6k — (k + 2k) = 3k.

2. When n = 4k + 1, the total number of edges is (4k+1) +2(4k+1) =
12k + 3. We first construct an edge labeling with e(0) = 6k + 2 and
e(1) = 6k + 1. To fill C, with 1-edges, we use n = 4k + 1 1-edges.
There are (6k + 1) — (4k + 1) = 2k 1-edges left for labeling St(2)s.
Thus, there are k copies of St(2) are filled by 1-edges and all other
n—k = (dk + 1) — k = 3k + 1 copies are filled by 0-edges. This tells
us that there are k vertices labeled 1 on C,, and 2k vertices labeled
1 on St(2)s. Also, because all 6k + 2 0-edges are in St(2)s, there are
6k + 2 vertices labeled 0. Since the C,, is labeled by just 1-edges, the
vertex of Cy, connected to the St(2) filled by 0-edges is unlabeled. This
implies that there are 3k + 1 unlabeled vertices. So, the edge-balance
index is (6k + 2) — (k +2k) = 3k + 2.

3. When n = 4k + 2, the total number of edges is (4k +2) +2(4k +2) =
12k + 6 with e(0) = 6k + 3 = e(1). To fill C, with 1-edges, we use
n = 4k + 2 1-edges. There are (6k + 3) — (4k +2) = 2k + 1 1-edges
left for labeling St(2)s. Thus, there are k copies of St(2) are filled
by 1-edges and one edge of St(2) is labeled 1. All other St(2) edges
are labeled 0 which means (n — k) — 1 = 3k + 1 copies of St(2) are
filled by only 0-edges. Note that one St(2) are split by one of each.
This tells us that there are & + 1 vertices labeled 1 on Cp, and 2k +1
vertices labeled 1 on St(2)s. Also, because all 6k 4+ 3 O-edges are in
St(2)s, there are 6k + 3 vertices labeled 0. Since the C, is labeled by
just 1-edges, the vertex of Cy, connected to the St(2) filled by 0-edges
is unlabeled. This implies that there are 3k + 1 unlabeled vertices.
So, the edge-balance index is (6k +3) — (k+1+2k+1) =3k + 1.

4. When n = 4k + 3, the total number of edges is (4k +3) +2(4k +3) =
12k + 9. We first construct an edge labeling with e(0) = 6k + 5 and
e(1) = 6k + 4. To fill C, with 1-edges, we use n = 4k + 3 1-edges.
There are (6k +4) — (4k+ 3) = 2k +1 1-edges left for labeling St(2)s.
Thus, there are k copies of St(2) are filled by 1-edges and one edge
of St(2) is labeled 1. All other St(2) edges are labeled 0 which means
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(n — k) — 1 = 3k + 2 copies of St(2) are filled by only 0-edges. Note

that one St(2) are split by one of each. This tells us that there are

k +1 vertices labeled 1 on C,, and 2k + 1 vertices labeled 1 on St(2)s.

Also, because all 6k +5 0-edges are in St(2)s, there are 6k +5 vertices

labeled 0. Since the Cj is labeled by just 1-edges, the vertex of Cp,

connected to the St(2) filled by 0-edges is unlabeled. This implies

that there are 3k + 2 unlabeled vertices. So, the edge-balance index
is(6k+5)—(k+1+2k+1)=3k+3.

Since, in this construction, all 0-edges are on St(2)s, any exchange with

1-edges on C, will increase the number of vertices labeled 1 by 1. Thus,

this labeling yields the maximal edge-balance index. o

Lemma 3.2. The edge-balance indez set of Cp, x, (St(2),¢) contains
C1{1,2,---,3k} if n = 4k;

2 {2,3,---,3k+2} ifn=4k+1;

3 {1,2,---,3k+1} if n=4k+2;

4 {2,3,---,3k+3} ifn =4k +3.

Proof. Let us start with the edge labeling constructed at Lemma, 3.1. The
number of unlabeled vertices is listed as follow:

1. 3kif n = 4k;
2. 3k+2ifn=4k+1;
3. 3k+1ifn=4k+2;

4. 3k+3ifn=4k+3.

Note that these unlabeled vertices are connected to two 0-edges and two
1-edges. Without loss of generality, we can assume that they are lining up
sequentially.

First, we work on the unlabeled vertex adjacent to a 1-vertex on C,. By
switching a 0-edge on St(2) leaf and a 1-edge adjacent to another unlabeled
vertex, we replace a O-vertex on a leaf by a 1-vertex and change the adjacent
unlabeled vertex into a vertex labeled 0. This move reduces the edge-
balance index by 1.

Next, we move on to the adjacent vertex. (Now, it is labeled 0.) Repeat
the same exchange method as above, we can reduce the edge-balance by 1
again.

This exchange method works until you have turned all the adjacent un-
labeled vertices into 0-vertices. Thus, we can reduce the edge-balance index
by one the number of unlabeled vertices minus one times. This completes
the proof. m]
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Theorem 3.3. The edge-balance index set of Cp, x, (St(2),¢)) is
1. {1,2,-.-,3k} if n = 4k;
2 {2,3,---,3k+2} ifn=4k+1;
3 {1,2,--,3k+1} if n =4k +2;
4. {2,3,---,3k+3} ifn=4k +3.

Proof. When n is even, we can label all pairs of edges in each copy of
St(2) by 0 and 1. Then label C, by the sequence 0,1,0,1,---. It is easy
to see that the edge-balance index is 0. With the results of Lemma 3.2, we
complete the proofs of (1) and (3).

When 7 is odd, we construct two edge labeling with edge-balance index
0 and 1. Since n is odd, the total number of edges is n + 2n = 3n is also
odd. Moreover, if we assume that n = 2t + 1, we may have ¢(0) = 3t +1
and e(1) =3t + 2.

First, we label every pair of edges on St(2) by 0 and 1 and edges on Cy,
by the sequence 1,0,1,0,---,1. It is easy to see that all vertices on C, are
unlabeled except one is labeled 1. The leaves of St(2) provides the equal
number of O-vertices and 1-vertices. Thus, the edge-balance index is —1
in the sense of e(0) — e(1). By taking absolute value, we obtain an edge
labeling with the edge-balance index 1.

By switching a 1-edge leaf of the unlabeled vertex on C,, with the 0-edge
adjacent to the same unlabeled vertex, we replace the 1-vertex on the leaf
by a O-vertex. At the same time, we turn the adjacent unlabeled vertex
into a vertex labeled 1. Everything else remains the same. Thus, the edge-
balance increases by 1. This creates an edge labeling with the edge-balance
index 0.

With these two edge labelings, we complete the proofs of (2) and (4).
0

Example 7. Figure 6 shows that EBI(Cy %t (St(2),¢)) = {0,1,2,3}.

€} 0,

Example 8. Figure 7 shows that EBI(Cs x, (St(2),¢)) = {0,1,2,3,4,5}
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Figure 6: EBI(Cy x1 (St(2),¢))

4 On edge-balance index sets of L-product of
C, with St(m) where m is odd and greater
or equal to three

Lemma 4.1. Consider C, x (St(m),c) where m is odd and greater or
equal to three. Letn = mk+1r where0 < r < mandr = 2t if r is
even orr = 2t + 1 if r is odd. We also define ﬂ"‘z_“l = mko + 1o and

1(";;11 = mky + 11 where 0 < ro,71 < m. Let T = rory — 2. The highest
edge-balance indez is

L. n+kifr=0;

2. n+kifT <0 andr is even;

3 n+k—-14iT <0 andr is odd;
4. n+k+2iT >0 andr is even;
5 n+k+14iT >0 andr is odd.

Proof. By the same strategy as Lemma 3.1, to find the maximal edge-
balance index, we first label all edges in Cy, 1. Then, fill a copy of St(m) by
as many l-edges as possible until we run out of 1-edges. All the rest edges
are labeled 0. In this construction, 0-edges are all in St(m)s.

In C,, x (St(m), c) where m is odd and greater or equal to three, there
are totally n(m + 1) edges. Since m is odd, n(m + 1) is even. Thus, for
a friendly labeling, we should have e(0) = -'51"2*'—1)- = e(1). Since we use
n l-edges in C,, there are 1(1'2#2 -n= m;—_ll 1-edges left for St(m)s.
It produces ﬂ%’—ll vertices on St(m)s. Also, all O-edges are on St(m)s.
Therefore, there are ﬂl‘;’—lz vertices on St(m)s.
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Figure 7: EBI(Cs x 1, (St(2), ¢))

To calculate the edge-balance index of this labeling, we consider the
following three cases:

1. When r = 0, we have m 1-edges on St(m)s. Since m is odd,
M'zi‘-'—ll is a multiple of m. Thus, we have ﬂ";—'ll = 25k vertices
labeled 1 on C,,. Since the C,, is labeled by just 1-edges and m > 3,
the vertex of C,, connected to the St(m) filled by 0-edges is labeled
0. This implies that there are n — 1‘;—" = 22ﬂ=. 0-vertices on C,. So,
the edge-balance index is

[n(m2+1) +n+k] _ [n(m—1)+n—k] =n+k.

2 2 2

2. When T < 0, we have ro < r; + 2. This implies that the vertex with
mixed 0- and 1-edges has more 1-edges than O-edges so it is labeled
1. If r is even, then

(mk+r;(m—1) _ mk(m—l

+tm—t

= m(k(m—;ll-;-(t—l)) + (m —t).

Thus, we have 5('—”2;9 +(t-1) = l’é‘—" vertices labeled 1 on C,, with
all 1-edges only. Since the C,, is labeled by just 1-edges and m > 3,
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the vertex of C, connected to the St(m) filled by 0-edges is labeled
0. This implies that there are n — 2=5=2 — ] = 2k (_vertices on C.
So, the edge-balance index is

(n(m+1> +n+k) _ (n(m—lun-;-hl) =n+k.

2 2 2
If r is odd, then
(mk+r)(m—-1) k(m -1) (2t +1)(m—-1)
2 B 2
k(m-1) -1
= (—2— ) tp

Note that since r < m, we have 2L > t. Thus, we have £(2=1) 14 —
-";"rl- vertices labeled 1 on C,, with all 1-edges only. Smoe the C,
is labeled by just 1-edges and m > 3, the vertex of C,, connected to

the St(m) filled by 0-edges is labeled 0. This implies that there are
n— 2=k=l_ 1 = ntk=l Q.vertices on C,, with all O-edges on St(m)

only. So, the edge-balanoe index is

nm+1) n+k-1 nm-1) n-k-1 _
( 5 + 5 )—( 5 + 3 +1) =n+k-1.

. When T > 0, we have rg > r; + 2. This implies that the vertex with
mixed 0- and 1-edges has more O-edges than 1-edges so it is labeled
0. If r is even, then

(mk +7)(m—-1) _ mk(m—l)

2 +tm—t¢

m(@w-n)ﬂm_t,

2

Thus, we have ﬂmz——"ll-!-(t—l) = 11"5—"—2- vertices labeled 1 on Cy, with
all 1-edges only. Since the C, is labeled by just 1-edges and m > 3,
the vertex of C,, connected to the St(m) filled by 0-edges is labeled
0. This implies that there are n — ﬁ-ﬂ 1= —'L O-vertices on Cj,.
So, the edge-balance index is

nm+1) n+k nm-1) n—-k—2\ _
( D) + ) +1)—( ) + ) =n+k+2.

If r is odd, then

(mk+r)(m-1) k(m-1) (2t+1)(m-1)
2 A 2
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k(m —1) m—1
= m( ) +t)+—2——t.

Note that since 7 < m, we have -'"—;—1- > t. Thus, we have ﬂ%:ﬂ +t=
2=k=1 vertices labeled 1 on Cy with all 1-edges only. Since the C,
is labeled by just 1-edges and m > 3, the vertex of Cy, connected to
the St(m) filled by 0-edges is labeled 0. This implies that there are
n — 2=k=1 _ 1 = ndk=l Q.vertices on C, with all 0-edges on St(m)
only. So, the edge-balance index is

n(m+1) n+k-—1 am—-1) n—k-1) _
( — t— +1)( — =n+k+1.

Since, in this construction, all 0-edges are on St(m)s, any exchange with
1-edges on C, will increase the number of vertices labeled 1 by 1. Thus,
this labeling yields the maximal edge-balance index. O

Theorem 4.2. Consider C,, xp, (St(m),c) where m is odd and greater or
equal to three. Let n = mk+r where0 < r < m andr = 2t if r is
even or r = 2t + 1 if r is odd. We also define 1'-(";—"'12 = mkg + ro and
2(1",;—11 = mky +r, where0 < ro,7y <m. LetT =r9—1, —2. The
edge-balance indez set of Cr, X (St(m),c) is

1. {0,2,4,6,- - ,n+k} ifr=0;

2. {0,2,4,6,--- ,n+k} if T <0 and r is even;

3. {0,2,4,6,--- ,n+k—1} if T <0 and r is odd;
4. {0,2,4,6,--- ,n+k+2} if T >0 and r is even;
5. {0,2,4,6,-+-,n+k+1} if T >0 and r is odd.

Proof. In C, x1 (St(m), c), there are totally n 4+ nm vertices. If m is odd,
then it has even number of vertices. Also, all vertices on C, are of order
m+2 and all vertices on St(m) are of order 1. As m is odd, all vertices are
of odd order. This means every vertex must be labeled either 0 or 1. Since
the total number of vertices is even, the possible edge-balance indexes are
all even.

Let us start with the edge labeling constructed at Lemma 4.1. Without
loss of generality, we can assume that all O-vertices on C,, are lining up
sequentially.

First, we work on the vertex mixed with 0-edges and 1-edges on C,.
Note that if » = 0, then we skip this step. By switching a 0-edge on St(m)
leaf and a 1-edge adjacent to another O-vertex, we replace a O-vertex on leaf
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by a 1-vertex. Everything else remains the same. This move reduces the
edge-balance index by 2.

Second, we work on the 0-vertex adjacent to the previous vertex. Note
that if r = 0, then we start working on the 0-vertex adjacent to a 1-vertex
on C,. By switching a 0-edge on a St(m) leaf and a 1-edge adjacent to
another O-vertex, we replace a 0-vertex on a leaf by a 1-vertex. Everything
else remains the same. This move reduces the edge-balance index by 2.

Next, we move on to the adjacent vertex. Repeat the same exchange
method as above, we can reduce the edge-balance by 2 again.

This exchange method works until you run out of all 0-vertices on C,.
Thus, we can reduce the edge-balance index by two the number of 0-vertices
times. By the proof of Lemma 4.1, the number of O-vertices on C,, is listed

as follow:
1. 2k ifr = 0;
2. %"ifT<0andriseven;
3. 23k=1l if T < 0 and r is odd;
4. %t-+1ifT>0andriseven;
5. %ﬂ+1ifT>0andrisodd.

Since, as numerical values, they are all half of the highest edge-balance
index, we have enough O-vertices on Cy, to reduce the edge-balance index
by two each time all the way down to 0.

This completes the proof. o

Example 9. For Cg x (5t(3), ¢), we have n = 8 and m = 3. Thus, k = 2,
r=2and t = 1. Also, we have rg = Ismcem2 =16=5x3+1
a.ndrl-2smceﬂ";—'z—8—2x3+2 Therefore,T—1—2 2 =
—3 < 0. By Theorem 4.2(2), EBI = {0,2,4, --,8 + 2}. Figure 8 shows
that EBI(Cs x (St(3),¢)) = {0,2,4,6,8,10}.
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Figure 8: EBI(Cs x 1, (St(3),¢))
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