Partition Types
JOHN J. LATTANZIO

Department of Mathematics
Indiana University of Pennsylvania, Indiana, PA 15705
John.Lattanzio@iup.edu

ABSTRACT. For a graph G having chromatic number &, an
equivalence relation is defined on the set X consisting of all proper
vertex k-colorings of G. This leads naturally to an equivalence rela-
tion on the set P consisting of all partitions of V' (G) into & indepen-
dent subsets of color classes. The notion of a partition type arises
and the algebra of types is investigated.

1. INTRODUCTION AND NOTATION

The graphs considered in this paper are finite, undirected, and simple. For
a given graph G, the vertex and edge sets of G are denoted by V (G) and
E (@), respectively. For convenience, the vertex set is often written as
V(G)={1,2,...,n}. The order of G is the cardinality of V (G) and is
denoted by n = |V r} |. It is tacitly assumed that the two usages of n will
not create any confusion. Any vertex having degree n — 1 will be called
a terminal vertex. A subset I of V (G) is independent provided that no
two distinct vertices in I are adjacent. The maximum cardinality of an
independent subset of V (G) is denoted by o (G). For a subset X of V (G
or E (G), the induced subgraph of G by X is denoted G[X]. A graph
is vertex k-critical whenever x (G) = k and x (G —v) = k — 1 for every
vertex v € V (G), where x (G) is the chromatic number of G. A complete
subgraph K having order 7 is called an 7-clique and will be denoted by K.
Lastly, a critical r-clique of G is a subgraph K, having the property that
x (G- K;)=x(G) —r. A critical r-clique will be denoted by KX?.

his paper focuses on partitions admitting critical r-cliques especially
when 7 > 2. A graph in which every subgraph isomorphic to Ks is a
critical 2-clique deserves special mention. A graph G is said to be vertex
double-critical provided that x (G —u —v) = x &G) — 2 for every adjacent
pair of vertices u, v. This definition arises out of its relation to the Erdés-
Lov4sz Tihany Conjecture in [2]. One particular case of this conjecture is
equivalent to the statement that the only vertex double-critical graph is the
complete graph; it is often referred to as the Erdés-Lovész double-critical
conjecture. A discussion of this conjecture can be found in [6]. In [9],
Stiebitz has shown that Kj is the only 5-chromatic vertex double-critical
graph. Related results for quasi-line graphs are given in [1]. To date,
the Erd8s-Lovész double-critical conjecture remains open for k-chromatic
graphs with k > 6. In Theorem 6 of [7] and in [5], the edge analogue of the
Erdés-Lovész double-critical conjecture is proved. Studying the properties
of the pairs of vertices u, v satisfying x (G — v — vt) = x (G) - 2, and more
generally critical r-cliques, motivates the notion of a partition type.
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2. PARTITION TYPES

Let G be a graph with x (G) = k and fix a set C = {c1, ¢z, ..., cx} con-
sisting of k distinct colors. = The group of all permutations of C' will be
denoted by S and the group of all automorphisms of G will be denoted by
G. Hence, S = Perm (C) and G = Aut(G). A proper vertex k-coloring of
G is a function f : V (G) — C such that f () # f (j) whenever ij € E (G).
Let X denote the set of all proper k-colorings of G. Define a relation on
X by the following rule: f; ~ fo if and only if thereexist a € Sandoc € G
such that ao fo = f; oo. Whenever there is no possibility of confusion,
we shall adopt the usual convention and write a:o f as af.

Proposition 1. ~ is an equivalence relation on X.

Proof. Denote the identity element of G by eg and the identity element
of S by es. Clearly, esf = feg for every f € X. Hence, f ~ f for
every f € X and so ~ is reflexive. To see that ~ is symmetric, suppose
that f1, f2 € X with fi ~ fo. Then there exist « € S and 0 € G such
that afs = fic. But then a~! € § and 07! € G with a~1f; = foo~l.
Thus fo ~ fi. Finally, suppose that fi, f2, f3 € X with f; ~ fo and
f2 ~ f3. Then there exist a, 8 € S and o, 7 € G such that af; = fio and
Bf3 = for. As a result,

(aB) f3 = a(Bf3) = a(f27) = (af2) T = (fio) T = f1 (07).

Consequently, fi ~ f3 and it follows that ~ is transitive. Therefore, ~ is
an equivalence relation on X.

Remark 1. By considering the group action of the product group S x G
on X by the rule (o, 0)- f = afo~1, the equivalence relation of Proposition
1 is in fact the equivalence relation on X induced by this group action. It
is a straightforward to confirm that this is a well-defined group action.

fﬁ'%po%tion 2. Let f1, fo € X. Then f; ~ f5 if and only if f; ~ Bfo for
€.

Proof. Let f1, fo € X. Suppose that f; ~ Sf, for all 3 € S. Simply
choosing 8 = es implies that f; ~ fa. Conversely, suppose that f; ~ f.
Then there exist a € S and o € G such that af; = fyo. Now observe that

forany B€ S, (ef™) (Bf2) = afo= fi0. Therefore, f1 ~ 8f,. B

Let f € X. In order to compute |f|, the cardinality of the equivalence
class of f, let Py denote the partition of V' (G) induced by f. Because
f is a k-coloring of G, the partition Py can be expressed in terms of the
color classes determined by f as: Py = { P{*, P¢, ..., Pfc'“}, where P;’

represents the jth color class for j =1, 2, ..., k. Define P to be the set of
all partitions of V (G) induced by the elements of X, i.e., P = {Ps | f € X}.
Next, define an action of G on P by the rule:

o-Pr=cP={o(Pp),o (Pg), ..o (P*)}-
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Indeed, the defining properties of a group action are easily verified: For all
o, T € G and for all Py € P,

I eg:-P;=PFsand

I. o-(7-Ps)=(o7): Py.
This group action naturally induces an equivalence relation on the set P
defined by the following rule: Py, ~ Py, if and only if there exists 0 € G
such that Py, = o - Pj,. Let it be understood that there are now two

equivalence relations both of which will be denoted by ~, unambiguous by
context. Let the stabilizer of Py in G be denoted by Gp,. Then by the

orbit-stabilizer theorem,

- 14

Pr|=1G:Gp,) = 1o

I f | [ I] lgPI |'
i.e., the cardinality of the orbit of Py equals the index of the stabilizer of
P;in G. Now there is a means by which |f | can be computed and is given
by the next proposition.

Proposition 3. Let f € X. Then |f| =|S]-|P;|.
Proof. Let fe X. Thenforallae Sandforall o €g,

Pap = {P{, P, . P01 = py

and also
Py, = {P;;,P;;,...,P;;}

= (o (7)o (o7 e (7))

Moreover, for all f1, fo € X, it is asserted that f; ~ fo if and only if
Py, ~ Py,. To prove the assertion, observe that if f; ~ fa, then there exist
o € S and o € G such that afs = fio. Thus, it follows that

h~fo — oafe=fio
- Pafz =Pf1°’
— P, =0Py,
— Pp=0-Py
— Pp ~ Py,

Conversely, if Py, ~ Py,, then there exists o € G such that Py, = o - Py,.
Hence, for some a € 9,

Pp ~Pp, — Pp=0-Py
— Pf2=an1
— Pp =P,
— af:= fio
— fi~fo



From this result together with Proposition 2, Proposition 3 follows. W

Remark 2. With regard to the remark following Proposition 1, it should
be noted that Proposition 3 also follows from the following computation:

|f|=,|5><g| __Isl-1gl iG]
I(ng)fl I(ng)fl |Ge, |

It is possible to exhibit bijection from the stablizer of f in S X G to the
stablizer of Py in . This establishes the fact that |(S x §),| = |Gr,|.

=181 7.

=181

Recall that a graph G is uniquely k-colorable whenever |P| = 1, i.e.,
every k-coloring of G induces the same partition of V (G). In this case,
analysis of the graph under certain conditions is trivial, at least in terms of
colorations. For instance, it is not difficult to verify that if G is uniquely
k-colorable and vertex k-critical, then G must be isomorphic to a complete
graph. In general, a given graph G has a multitude of k-colorings, and
consequently a multitugzz of partitions of V (G) into k independent subsets.
The objective is to systematically organize the set P via the equivalence
relation defined above so that what need to be analyzed are the equivalence
classes of P and not the totality of all objects in P.

Definition 1. A graph G is said to be (k, 7)-type colorable whenever
X SG) B—-I k and |’P/g]:v = . If k is understood, G is simply called v-type
colorable.

Example 1. Any path, cycle, star, or wheel is 1-type colorable. Also, the
Petersen graph is 1-type colorable.

Can general properties of a graph be determined based on its type para-
meter? For instance, do all 1-type colorable graphs possess a high degree
of symmetry? As stated above in [6], the long standing double-critical
conjecture of Lovész speculates that a vertex double-critical graph must be
isomorphic to a complete graph, and hence uniquely k-colorable. Is it at
least possible to prove that a vertex double-critical graph must be 1-type
colorable? Or, is it [at least] possible to establish the existence of an edge
e = uv such that x (G —u— gz x (G) — 1 whenever G is y-type colorable
with v > 2?7 Can the structure of the automorphism group of G be deter-
mined for small 47 These are just some of the questions one might consider
when considering types as defined in Definition 2 below.

Definition 2. Let P; € P/ ~, where Py = {P}", Pa, L, P}"‘} An ele-

ment Py of P/ ~ is called a type. The type sequence of Py is defined to be
the ordered non-decreasing k-tuple of positive integers T = (t1, ta, ..., tx),

Pl fori=1,2,...,n and Y ti=n
R
Additionally, the type of an element P of P is defined as the‘ type of the
equivalence class containing P and the type of a k-coloring f of G is defined
to be the type of the equivalence class of the image of f under the map

fr— Py.

subject to the conditions t; =
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Let T1, T3, ..., T, be the type sequences for a (k, v)-type colorable
graph G, where T; = (t},¢%,...,t¥) for i = 1,2,...,v. It should be
noted that it is possible for distinct types to give rise to the same type
sequence, i.e., it is possible for T; = T;, whenever 'PZ # P_f, As a result,
it is possible to have two different k-colorings which fail to be equivalent
but inducing partitions of V (G) whose corresponding color classes have the
same cardinality. Indeed, the analysis of types is non-trivial.

3. THE ALGEBRA OF TYPES

This section develops a few basic results concerning types. Before proceed-
ing, some additional terminology is required. The automorphism group
G acts on V (G) and consequently partitions V (G) into orbits. The orbit
of v € V(G) is denoted by Gv. Also, the stabilizer of v € V (G) will be
denoted by G,. It follows by the orbit-stabilizer theorem that

1Gv] =[G : Gl = ,'gi'l

ie., the cardinality of the orbit of the vertex v is equal to the index of
the stablizer of v in G. Next, for a k-coloring f € X, it is desirable to
distinguish the singleton color classes from the remaining color classes in
P; € P. To this end, the partition Py is expressed as: Py = (A; B).
Here, the set A = cg{vl}, {'02;, ..., {vr}} is the set consisting of all of
the singleton color classes of Py and B = {By, Ba, ..., Br—r} is the set
consisting of the remaining color classes. In terms of the notation defined
in the previous section, Pf* = {v;} fori=1,2,...,r and P;"*’ = B; for
i=12, ..., k—r. Moreover, Py = AUB. For convenience, set A* =|JA
and B* =JB.

Theorem 1. Let G be a graph containing at least one critical vertex. Sup-
pose also that P; € P/ ~ with |P;| =1 and A* is nonempty. Then either
G = K,, or there exits at least two distinct orbits of V (G).

Proof. Consider Py = (A; B). By hypothesis, the set .A* is nonempty.
The condition |Py| = 1 guarantees that the stabilizer of P; is the entire
group G. Therefore, G (A*) C A* as well as G (B*) C B*. Now, if B* = @,
then clearly A* = V (G) so that G = K,,. Otherwise, both A* and B* are
nonempty and the facts that G (A‘z) CA*and G &") C B* guarantee the
existence of at least two distinct orbits of V (G).

There are additional relationships that exist between the orbits of V' (G)
and the set A*. They will be investigated below. Of particular interest is
the action of the automorphism group G on the set P and on the collection
of subsets induced by an element of P.

Definition 3. Let v € V (G) with v € A*. Then v is said to be o-
invariant, provided that v € o A*.
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Definition 4. For v € V (G) and Py = (A; B) € P subject to v € A",
define the set
H(P;;v)={c€G:veEaA’}
and associate with Py the set W = (Gv) [ (A*).
Observe that for every automorphism o € G,
o (W) =0 ((Gv)N(A") = o (Gv)No (A") = GvNa (A7).
Thus it is evident that each critical clique, within a particular type, contains

the same number of vertices from each orbit that is represented in the
corresponding set of singleton color classes.

Given a graph G, it would be straightforward, albeit tedious, to compute
H (Ps ; v) for a particular vertex and partition. One need only have at
their disposal the automorphism group of G. However, Definition 4 does
not provide a useful method for determining |H (Ps ; ”5|, a quantity that
is of interest. The following proposition circumvents this shortcoming.

Proposition 4. Let v € V(G). Then H(Ps;v)= | (Gv)Tw, where
weEW

Tw € G is any automorphism such that T, (w) = v and w € W. Hence,
[H(Ps 5 v)] = W] - |Gol-

Proof. Let v € V(G) and consider an arbitrary u € H(Ps; v). By
the definition of H (Ps ; v), it follows that v € uA*. Hence, there exists a
vertex wo € A* with v = p(wp). As a result, wo = p~! (v) € Gv and so
wp € W. Now let 7, € G be any automorphism such that 7, (we) = v,
where wg € W, and define n = p7;}. Observe that 5 € G, since

n(v) = (pros) (v) = 1 (T2, (v) = p(wo) = v.
Moreover, gt = NTw, € (Gv) Two © U (Gv) Tw. Therefore,
weW

H(Pr;v)C w[ng (Gy) .

For the reverse inclusion, suppose that u € |J (Gy)Tw. Then there
weW

exists 2 wo € W and automorphisms o € G, and 7y, € G with 7y, (wp) = v
such that y = 07,,. The fact that v € u.A* follows from the computation

p(wo) = (0Tw,) (wo) = 0 (Two (w0)) = o (v) = .
Thus, u € H(Ps; v). Hence, Uw (Gv) T C H(Ps; v). To complete the

€

proof of the proposition, let w; and wy be distinct elements of W. Observe
that for any Ty, , Tw, € § with 7, (w1) = Tu, (w2) = v, it must be that
(Gv) Tw, N(Gv) Tw, = @. If to the contrary there was an automorphism
B € (Gv) Tw, [1(Gv) Tw,, then both w; and wz would map to v under S,
which is clearly impossible. Consequently, |H %P, s )| = [W|-1G,]. I

It is also of interest to consider elements of B* that remain unmoved by
automorphisms of G. The analogous definitions and proposition follow.
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Definition 5. Let z € V (G) withv € B*. Then z is said to be p-invariant,
provided that z € pB*.

Definition 6. For z € V (G) and P, € P, define the set
K(Byi2)={peG:ze pB)
and set Y = (Gz)((B*).
Proposition 5. Let z € V(G). Then K(P,;z) = Uy (G.)n, where
v

€
n € G is any automorphism such that 7(y) = z and y € Y. Hence,
IK(Pg; 2)| =Y |G

Proof. Let z € V(G) and consider an arbitrary p € K(P,; z). By
the definition of KL (P, ; 2), it follows that = € pB*. Hence, there exists

a vertex yo € B* with z = p(yp). As a result, yo = p~1 (2) € Gz and so
Yo € Y. Now let 5, € G be any automorphism such that 7,, () = 2,

where y € J, and define A = pn!. Observe that \ € G, since
A = () (2)=p(n™" () =P () ==
Moreover, p = An € (G.)n € U (Gz)n. So, K(Fy;2) C Uy (G:)n.
yey Y€
For the reverse inclusion, we suppose that p € |J (G:)n,. Then there
€

v
exists a yo € Y and automorphisms ¢ € G, and 1, € G with 7, (y0) = 2
such that p = ¢n,, . The fact that z € pB* follows from the computation

P (¥o) = (By,) (Wo) = B (1, (¥0)) = B(2) = z.
Thus, p € K(P,; 2). Hence, |J (G:)n C K(P,; z). To complete the
yey

proof of the proposition, let y; and . be distinct elements of ). Observe
that for any 7, ,7,, € G with 9, (¥1) = n,, (¥2) = z, it must be that
(G:)ny, N(G:)ny, = @. If to the contrary there existed an automorphism
¥ € (Gz) ny, N (G2) ny,, then both y; and y would map to z under «, which
is clearly impossible. Consequently, |K (P ; 2)| = |V|-|G:|. B

If reasonable additional conditions are imposed on the set of partitions
P, then some other numerical results are obtainable. It will be shown
below in Proposition 9 that certain additional conditions imposed on P
seem appropriate for investigation.

Proposition 6. Let v € V (G) and let Py,, Py, € Py with WiNW;, = {v}.
Then H (Py, ; v)NH(Py, ; v) =G,

Proof. Clearly G, C H (Py, ; v)NH (Py, ; v). For the reverse inclusion,
suppose that ¢ € H(Py, ; v) N H(Py, ; v). Then there exist wy € Wy
and wa € W; such that v = o (w1) = o(w2). Since o is injective and
Wi N W, = {v}, it follows wy = ws = v. Therefore, o € G,.
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Corollary 1. Let v € V(G). Also, let Py, Py,, ..., Py, € P; satisfy
Wi W; = {v} and |W;| = |Wj| for i # j. Then for the set Z defined by

m
Z= _LJ1 H(Pf«;v);
i=

it follows that |Z| = |Gy| - (mA — m + 1), where A = |W;| for each i. More-
over, |[Gv| > mA—m+1.

Proof. By Proposition 4,|H (P, ; v)] = |Wi| - |Gy| and the condition
Wi N'W; = {v} implies H (P, ; v) NH (Py; ; v) =Go. Consequently,

2 = |_L"J H(Py, 5 v)

i=1

- ,-gl " (Py, ; v)| — (m = 1) (G|

= X 1G]~ (m = 1)16.]

mA |Gy| = (m — 1) |Gl
= |Go|- (MA=m+1).

The inequality |Gv| > mA — m + 1 follows immediately from the facts that
ZCGand |G| =G |Gv]. B

With regard to the conclusion of Corollary 1, consider the case that
mA —m > deg(v). Should this inequality hold, then |Gv| > degg (v) + 1.
What can be said in case of equality?

Proposition 7. If H(P; ; v) = G and G is 1-type colorable, then v is a
terminal vertex.

Proof. Assume that G is 1-type colorable and H (Py;v) = G. The
fact that H (Ps ; v) = G implies that {v} is a sinéleton, color class in some,
and, in fact, every partition of the lone type of G. Because v is a critical
vertex, x (G —v) = x(G) — 1. Now, if there was a vertex w € V (G) that
is not adjacent to v, then it would be possible to have {v, w} being a color
class for some k-coloring of G. To see this, simply color G — v using colors
c1, C2, ..., Ck—1 and then color v using color ¢i to obtain a k-coloring of
G. As v is the only vertex colored with ¢, it is clear that vertex w could
be recolored with color ci so that {v, w} determines a color class, a clear
contradiction of the hypotheses. Hence, deg(v) =n —1.

Corollary 2. If H(Ps ; v) = G, then either v is a terminal vertex or G
contains at least two orbits.

Proof. Set P; = (A; B). The hypothesis H (Py ; v) = G implies that
GA"CN[q). R
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Proposition 8. IfG is a vertex k-critical graph and 1-type colorable, then
(Gv)N (A*) is nonempty for every pair (v, Py). Hence, the number of
orbits in V (G) is a lower bound for the critical clique number w, (G).

Proof. Assume that G is a vertex k-critical graph and 1-type colorable.
Select an arbitrary pair (v, Py), where v € V(G) and P; = (A; B). If
v € A", then there is nothing to show. Else, there exists a partition
Py = P, (v) such that H (P, ; v) is nonempty. Now, because G is 1-type
colorabfe, there exists an automorphism o € G such that Py = o - F,.
Consequently, o (v) € A*. B

4. ON VERTEX DOUBLE-CRITICAL GRAPHS

Stiebitz in [g] has shown that Kj is the only 5-chromatic vertex double-
critical graph. It would be desirable to prove this result by using partition
types. But presently, it is not known whether or not it is possible to give
an alternate proof of the result by Stiebitz. The next proposition is a small
start. In [4], the maximum order of a critical clique of G is called the critical
clique number and is denoted by w. (G). Moreover, it is an elementary fact
and consequence of Proposition 10 below that w, (G) < w (G) with equality
holding if and only if G is complete.

Proposition 9. If G is 5-chromatic, vertex double-critical, and 1-type col-
orable, then G acts transitively on V (G).

Proof. Assume that G is 5-chromatic and vertex double-critical. By
a more general result in [4], any k-chromatic vertex double-critical graph
which contains K_; as a subgraph is complete. Hence, if w, gG) =5, 4, or
3, then w (G) > 4 and there would be nothing to show. Therefore, it can be
assumed that w, (GG) = 2. Now suppose to the contrary that G does not act
transitively on V (G) so that there are at least two orbits of V (G). Observe
that if there are three or more orbits, then by Proposition 8 it would follow

that w, gC\}) > 3. Hence, it can further be assumed that there are only two
orbits of V' (G). In this case, notice that these two orbits cannot both be
independent subsets of V (G). Else, G would be 2-chromatic contradicting
the fact that G is 5-chromatic. Thus, there are adjacent vertices u and v
contained in the same orbit. Since G is vertex double-critical, there exists
a partition Py = (A; B) such that {u, v} C A*. Again by Proposition 8,
it would follow that w. (G) > 3 as all orbits must have a representative in
A*. However, this contradicts the additional assumption that w. (G) = 2.
Consequently, G acts transitively on V (G). B

Definition 7. For a graph G, let
C={ecE(G) |e=uwand x(G-u—v)=x(G) -2}

En[dciieﬁne the core of G, denoted by Core (G), to be the induced subgraph

It is immediate from the definition above that the Erdés-Lovész double-
critical conjecture is equivalent to the statement: Core (G) = G if and only
if G = K,,. By determining properties of Core (G), it is believed that the
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Erdés-Lovész double-critical conjecture can be proved in the affirmative.
By a careful analysis of Core (G) in conjunction with the equivalence rela-
tion defined above, would it be possible to construct an edge not in C under
the assumption that G is not complete? Helpful with this analysis is the
following theorem from [4] which generalizes the fact that if v is a critical
vertex of a k-chromatic graph G, then v must be adjacent to at least one
vertex from each color class in any (k — 1)-coloring of G — v.

Proposition 10. Let K¢ be a maximal critical r-clique of G and suppose

that G # K. Then
C:in [ N N(v)] #0

€ K
for each color class C; with |C;| > 2.

Proof. Set V (K¢) = {v, v, ..., vr} and suppose, without loss of gen-
erality, that vertex v; is colored with color ¢y(gy—r4i fori =1,2,..., 7
Now consider P = P (V (K¢)), the power set of V (KF). For each X € P,
define the set

C;(X)={weC( : Nw)nV(K;)=X}.

Then {C; (X)}x ¢ p forms a partition of C;. To see this, select any vertex
w e C; and set X, = N (w)NV (K?). Clearly, X, € P and w € C; (X,,)

so that
= |J ax).
XeP

Moreover, suppose z € C; (X1) NC; S(Xz). Then N(2) NV SK,?) = X,;and
N(Z) nv (Kf = X, implying that X; = Xo. Thus, C; (Xl NC; (Xz) =0
for X; # Xa. Hence, {C; (X)}x ¢ p forms a partition of C;. Also note that
for each X € P, X # V (K¢), there exists a vertex vy, = vj, (X) € V(WK,?)
such that v;, ¢ X. Now suppose to the contrary that C; (& é ) =0.If
this is the case, then for each X € P, X # V (K¢), the set ,-SX can be
recolored using color ¢y(g) —r+i,- This would yield a proper coloring of G
using fewer than x& ) colors which is impossible. Therefore, it must be
that C; (V (K?)) # 0, i.e., there exists a vertex w € C; that is adjacent to
every vertex in V (KF). n

5. CONCLUDING REMARKS

In conclusion, it is noted that Seinsche in l[:|8] has shown that x (G) = w (G)
whenever G contains no induced subgraph isomorphic to P, the path on
four vertices. Clearly the Erdés-Lovédsz double-critical conjecture can be
proved in the affirmative if it can be shown that G contains no induced
subgraph isomorphic to P;. But this is not an easy task to accomplish.
Conjecture 1 requires a much deeper investigation of Core (G) than what
is presented here.

Co;iecture 1. Core (G) contains no [vertex] induced subgraph isomorphic
to Fy.
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By Corollary 1 of [3], it is possible for Core(G) to be disconnected.
Thus one need only consider the connected components of Core (G). Ob-
serve that the Erdés-Lovész double-critical conjecture is an immediate con-
sequence of this Conjecture 1 if it can be proven to be true. For if
Core (G) = G and Core (G) contains no [vertex] induced subgraph isomor-
phic to Py, then x (G) = w (G) so that G contains a subgraph isomorphic
to K (g). Therefore, G would be isomorphic to a complete graph.
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