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Abstract
In this paper, we derive some necessary existence conditions for balanced
arrays (B-arrays) of strength eight and with two levels by making use of
some classical inequalities such as Cauchy, Hélder, and Minkowski. We
discuss the usefulness of these conditions in the study of the B-arrays, and
also present some illustrative examples.

1 Introduction and Preliminaries

First, we list some basic concepts and definitions frequently used in the study
of balanced arrays (B-arrays).
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Definition. A balanced array (B-array) T with m rows (constraints, factors), N
columns (runs, treatment-combinations), two symbols (say, 0 and 1; also called
levels), and of strength t = 8 with index set ' = (po,p,...,us) is merely a
matrix T of size (m x N,m > 8) with elements 0 and 1 such that in every 8-
rowed submatrix T of T (clearly, there are () such submatrices), the following
condition is satisfied: every colamn vector ¢ of weight i (the weight of a vector
¢ means the number of 1s in it; 0 < i < 8) appears with the same frequency
(say, ui). The B-array T is sometimes denoted by BA(m, N,t = 8, u').

Remark: It is obvious that the number of columns N in T is known, once we
are given &/, and N = Yoo (%) ss.

Definition. A B-array is called an orthogonal array (O-array) if p; = p, for
each 4. In this special case, N = 28y = 256p.

Thus, O-arrays are special cases of B-arrays.

Initially, the researchers confined themselves to O-arrays which were exten-
sively used in information theory, coding theory, in industry, and the statisti-
cians employed them in the construction of symmetrical as well as asymmetrical
fractional factorial designs. Factorial designs play a very important role to study
situations in which the final response is affected by numerous factors (i.e. ex-
perimental conditions), each factor being at different settings (i.e. levels). The
total number of treatment-combinations becomes enormously large with the in-
crease in the number of factors and their levels. For example, if the number m
of factors is equal to six with each factor at two levels, then a complete factorial
design would have 28 = 64 treatment-combinations. A researcher would prefer
to achieve his (her) objectives by running a cost-effective experiment. Fractional
factorial designs (FFD) provide the necessary tools to the experimenter to con-
duct a cost-effective experiment. To this end, the concept of strength ¢ of an
O-array was introduced. An O-array T is said to be of strength t (= 2u, 4 > 1)
if one can estimate all the effects (up to and including p-factor interactions)
under the assumptions that all higher order interactions are negligible. T is
said to be of strength ¢ (= 21 + 1,4 2 1) if one can estimate all the effects
up to and including ‘u’ factors in the presence of (i + 1)-factor interactions
(higher than (i + 1)-factor interactions being assumed to be negligible). It is
well-known that O-arrays may not exist for each N. For example, for an O-
array of strength ¢, the total number of treatment-combinations N has to be a
multiple of 2¢ (i.e. N = p-2%, u being the index of the O-array) which imposes
a very severe limitation on the experimenter. Thus, the combinatorial struc-
ture on O-arrays was replaced by a weaker one, giving rise to B-arrays which
appeared first in Chakravarti [2] (the idea given by Rao to Chakravarti). It is
well-known that a B-array exists for each V. Thus, B-arrays would cover all ex-
perimental situations. In this paper, we will concern ourselves to experimental
situations in which the researcher is interested to estimate all the effects up to
and including 4-factor interactions when higher-order interactions are assumed
to be negligible. Naturally, the value of ¢ has to be equal to eight to resolve
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this problem. It is clear that B-arrays, as defined above, are generalizations of
O-arrays. Furthermore, there are other combinatorial structures (such as bal-
anced incomplete block designs, rectangular designs, doubly balanced designs,
etc.) which are closely related to B-arrays. To gain further insight into the
importance of these combinatorial arrays, the interested reader is referred to
the list of references at the end (by no means an exhaustive list) of this paper,
and also further references listed therein.

It is obvious the construction of a B-array T amounts to constructing a
matrix T under a combinatorial constraint imposed on its {-rowed submatrices.
The matrix T', when considered as a B-array, represents a factorial design of 2™
Series (m factors, each at 2 levels) in which the rows of T correspond to factors,
columns to treatment-combinations (also called runs), and the symbols 0 and 1
to the levels of each factor. In general, for a given N, we may have more than
one B-array. It is also clear that for a given y'(u) and m, a B-array (O-array)
may not exist. The problem of constructing these arrays, for a given p'(p),
with the maximum value of m is very important-both in combinatorics and
statistical design of experiments. This problem, for O-arrays, has been studied
(among others) by Bose and Bush [1], Rao [11, 12], Seiden and Zemach [14],
Yamamoto et. al [16], etc. while the corresponding problem for B-arrays has
been investigated (among others) by Cheng (3], Chopra (4], Chopra and Dios [5],
Chopra and Bsharat [6], Longyear [8], Rafter and Seiden [10], Saha et. al [13],
etc. In this paper, we consider B-arrays with ¢t = 8, and derive a set of necessary
existence conditions involving the parameters o, p1,. .., s and m using some
of the classical inequalities such as Cauchy, Holder, and Minkowski. We present
some illustrative examples of obtaining, for a given y’, the maximum number
of constraints m for which the B-array may possibly exist.

2 Main Results with Applications

We first state some results on B-arrays with ¢ = 8 for later use.
Lemma 1. Fort =8, a B-array T with m = 8 always exists.

Lemma 2. A B-array T with indez set ' = (po, p1,. .., u8) is also of strength
t', where 0 < t' < 8. Considered as an array of strength t/, its index set y'(t')
is given by (Aj ;7 =0,1,2,...,t'), where A; ¢ is a linear function of the p;’s
given by Ajy = Ef;é (7 )iz, 3=0,1,2,...,¢.

Remark: It is clear that ¢’ = 0 corresponds to NV (the total number of columns),
while ¢ = 8 corresponds to the index set y'.

The next result will connect the moments of the weights of the column
vectors of the array T with its parameters po, 1, ..., 4s and m.

Lemma 3. Let z; (0 < j < m) be the frequency of the columns of weight j
constituting a B-array T with m constraints and having y' as its indez set. For
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T to exist, the following results must hold:

k-1

Ly =Y s*z; =Y (-1)** oLy + mpAek, for 2< k<8, with (21)
3=0 =1
m
Ly=) z;=N,
j=0

L1 = ZJZJ = m1A1,1, where
my=m(m-1)(m-2)---(m—7r+1).

Remark: It is not difficult to observe that the nine equalities in (2.1) represent
the moments Lx (0 < k < 8) of order k of the weights of the column vectors
of T in terms of the parameters of T'. The constants ay; in (2.1) appear in the
process of deriving (2.1) and are known. Clearly, any moment of order k is a
linear function of moments of lower order.

Proof. (Outline). (2.1) can be derived easily by counting vectors of weight ¢’
(0 € ' < 8) in two ways-through columns and through rows using the fact that
T is also of strength ¢'. (]

Remark: For computational ease, we provide the values of a; x which appear in
(2.1). The values of a; « (listed in order, starting with = 1 and ending with [ =
k—1) are: (k=2;a1,2 =1), (k=3;2,3), (k=4;6,11,6), (k = 5,24, 50, 35, 10),
(k = 6;120,274,225,85,15), (k = 7;720,1764,1624,735,175,21), and (k =
8; 5040, 13068, 13132, 6769, 1960, 322, 28).

Next, we state the three classical inequalities (Cauchy, Hélder, and Minkowski)
which will be used in this paper.

Cauchy’s Inequality: If a = (a1,a2,...,a,) and b = (by, ba,...,b,) are se-
quences of real numbers, then

el e

k=1
Minkowski’s Inequality: For a;, b; > 0 and p > 1, we have

1 1 1
[Z(as+bi)‘°] < [Eas] + [Eb{-’] : (2.3)

i=1 i=1 i=1
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Hélder’s Inequality: For ay, b > 0, zl’ + % = 1 with p > 1, we have
n 11 n % n %
Doazbi <D ax LZbk} : (2.4)
k=1 k=1 =1

Theorem 1. Suppose that T is a B-array with m rows and with indez set
= (uo, p1,...,18). For T to exist, the following must be satisfied:

L2 < LLy. (2.5)
L2 < LgL,. (2.6)
L < L7Ls. (2.7)
Lg < LgLs. (2.8)
L% < Ly Ls. 2.9)
L2 < LgLy. (2.10)
L2 < LgLs. (2.11)

Proof. We prove (2.5) and for the rest of the inequalities, we provide appropriate
substitutions in Cauchy’s Inequality. To derive (2.5), we set ax = j \/— and
b = \/_7_:13_ in (2.2), and we obtain (3 j%z;)? < (T j7z;)(3 jz;), which leads
to L2 < LyL,. For (2.6) through (2.11), we use the following substltutxons in
(2.2) respectively: (ax = j \/_;:bk = J_), (ax —J'}\/_bek =3 \/_), (ar =
J \/_abk=.7\/_) (ak —Ji\/—pbk —J’\/_)1 (a'k —J \/—erk "J \/_)1 a‘nd
(ak =J \/_J’bk =j \/—)

Theorem 2. For a B-array T with m rows and index set y' = (o, pt1, .. - , f18)
to exist, the following inequalities must hold:

Lo+ Le < YToLelld + L. (2.12)
Ls+ Ly < VIoLs(L} + LY. (2.13)
Ls+Ls < YIaLolL} + L), (2.14)
2Ls +3Le + 2L, < LiL$L} +3L3L} + oL} (2.15)

Lo+2Ls+2La+Ls < LYLR(LE +ordit vortrd + 18  (216)

Proof. We use Minkowski’s Inequality here. For (2.12) to (2.14), we takep = 3
and raise both sides to the third power to obtain

Sah+ Latt < e s g ()’ +(T#)°].

Setting a; = <} and b; = j2z}, we obtain (2.12). For (2.13) and (2.14), we
set (a; = ‘13.1:é b; = ]ga:}) and (a,- = j:z:;":,b.- = j%} ), respectively. For (2.15),
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take p = 4, raise both sxdes of Minkowski’s Inequality to the fourth power, and
set (a; = j:z:i bi=3j :z:‘) For (2.16), set p = 5, raise both sides of Minkowski’s

Inequality to the fifth power, and set (a; = {/7z;, b = ¥/7%7;). a

Theorem 3. Consider a B-array T with m rows, of strength 8, and with indez
set y'. For T to exist, the following conditions must hold:

Li< LWL (2.17)
L < LLE. (2.18)
L < L,L% (2.19)
Li< L L3 (2.20)
Li< LI} (2.21)
L} < LsL}. (2.22)
L3 < LsL}. (2.23)
L} < L, L§. (2.24)
L§ < Lo L3, (2.25)
Lé< L, L3. (2.26)
LS < L,L§. (2.27)

Proof. We use Holder’s Inequahty here. To obtain (2.17) and (2.18), we take
p=3,q=12, ax = jz;, and bx = j4z; in (2.4). This yields

z a3 < (Z”"ﬂ) (zj.;zj)%,

which is Lz < LéLf Cubing both sndes of this 1nequahty gives (2.17). In
similar fashion, the substitutions ak j%z; and by = j8z; give (2.18). For (2.19)
through (2.22), take p 4,q=$ and the followmg subst1tut10ns, respectlvely
(ax = j \/—M’k 38 VE7), (e = jzj, be = 5°%;), (ak = jiz; b = J 8z;), and
(ax = §5z;, b = jz;). For (2.23) through (2. 25) take p =5, ¢ = 2 and the
followmg substltutlons, respectxvely (ax = j3zj,bx = j3x;), (ax = ]Z,,bk =
ki z,), and (ax = j%z;,bx = j7z;). Finally for (2.26) and (2.27), take p = 6,
q= g and the followmg substitutions, respectively: (ax = jz;,br = jz;) and
(ak = 3%z, by = j8z;). ]

3 Comments and Illustrative Examples

Note 1: It is quite clear that all the inequalities given above involve functions
(in many cases, polynomial functions) of m, po, 11, ..., 8. These are necessary
conditions for the existence of balanced arrays. Given a B-array T with m and
4/, each of these conditions must be satisfied for T' to exist. However, we must
point out that 7" may still not exist, even if all of the inequalities are satisfied.



Nonetheless, it is obvious that for m = 8 and any ', all of these conditions
must be satisfied (see Lemma 1). The problem of finding the maximum m for
an array T' (with a given ') can be addressed by these inequalities. Since uis
given, both sides of the inequality are functions of m only. Thus, we are able to
determine the maximum m, given &', for which a B-array may possibly exist.
Using a specific condition and starting with m = 9, if the first contradiction
occurs at m = k (say, k > 9), then max(m) =k — 1.

Note 2: Next, we present some illustrative examples to demonstrate that no
condition is uniformly better than every other condition. We make some com-
parisons of these conditions using B-arrays with given p’, and also compare
these new results with some of the old ones. -

Ezamples:

1. Take p' = (1,1,1,1,1,7,2,1,1). Using (2.13), we found m < 10, where
as the rest of the condmons gave us m > 11 (e.g. (2.6) gave us m < 12,
while (2.15) gave us m < 1000). So, condition (2.13) is the best one for

this array.

2. Let us now consider u’ = (4,6,6,6,6,2,6,6,4). For this, (2.13) gives us
a very large m (exceeding 1000), but (2. 11) gives us the best result of
m < 17 when compared with all the other conditions.

3. Take p' = (9,7,5,3,2,3,9,5,7). Here, the best value of m (< 25) comes
from using (2.11); (2.15) gives m < 43 while (2.13) gives a very large m
(< 1000).

4. Take p' = (1,1,1,1,1,4,6,3,1). The best m (< 11) is obtained by using
(2.15); while (2.6), (2.11), and (2.13) respectively give us m < 13, m < 12,
and m < 13.

5. The following two inequalities are found in Chopra and Bsharat [6]. We
compare these particular inequalities with the new ones.

(a) Lg+2L3 <2 L7L21 + L72L1.
(b) LG + 2L4 < 2\3/ L8L2 + Y L8L2.

For u/ = (111116311),(a)g1vwm<11and(b)g1vesm<12
Thus, (a) is the better of the two in this particular case. For g =
(1,1,3,1,1,6,6,2, 2), we get m < 13 using (a), and m < 12 using (b). So
for this particula.r ', (b) is the better of the two. Using our conditions on
the array ' = (1,1,3,1,1,6,6,2,2), we observed that (2.13) gives m < 12,
while (2.5) gives m < 11 for the array ¢’ = (1,1,1,1,1,6,3,1,1). However,
conditions (a) and (b) do not fare well for other arrays, when compared
with our conditions. For example, if we take u’ = (1,3,3,2,2,2,3,3,3),
we get m < 33 using (2.9). This is the best result using our conditions.
However in this particular case, conditions (a) and (b) give us m < 99 and
m < 53, respectively.
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The study of the existence and construction of these combinatorial arrays is
very complex, and the results presented here do tend to provide some partial
answers to some of the problems.
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