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Abstract

In 1975, Leech introduced the problem of labelling the edges of
a tree with distinct positive integers so that the sums along distinct
paths in the tree were distinct, and the set of such path-sums were
consecutive starting with one. We generalize this problem to la-
bellings from arbitrary finite Abelian groups, with a particular focus
on direct products of the additive group of Z.

1 Definitions and history

Let T be a tree on n vertices and n — 1 edges; since every pair of vertices
in T is joined by exactly one path, there are (3) distinct paths in 7. Let
P be this set of paths. Given a labelling w : E(T) — Z* of the edges of T,
for a path p € P we define

w(p) = Y _ wle).

eEcp
Such a labelling is a Leech labelling if

n
woiwe = [(3)]
In other words, each path in T has a distinct sum of weights along its edges,

and those sums are the consecutive integers 1,2, ..., (3). We say that T is
a Leech tree if it admits a Leech labelling.
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Figure 1: Leech labellings of all known Leech trees.

Only five Leech trees are known, presented in Figure 1; they were listed
along with their labellings in the original 1975 paper [3] by Leech. The
motivation there was an application in electrical engineering: such a la-
belling would give a way of constructing a universal resistor with possible
impedance of 1 up to (3) units from n — 1 simple resistors.

In 1977, Taylor (8] used a parity argument to prove the following key
result.

Theorem 1.1 (Taylor, 1977). If T is a Leech tree on n vertices, then n is
either a square or two more than a square.

Yang, Zhang, and Ding [9] consider a weaker version of the problem:
given a positive integer n, what is the largest integer N such that there is
a tree on n vertices and a labelling on its edges with distinct integers such
that 1,2,..., N appear as path-sums? They performed computer searches
for values of n up to 11, distinguishing between branched and unbranched
trees.

More recently, Székely, Wang, and Zhang [6, 7] performed computer
searches to show the nonexistence of Leech trees of orders 9 and 11. They
also provided upper bounds on the diameter and maximum degree of Leech
trees, and conjecture that only finitely many Leech trees exist.

Leech labellings have also been studied under the name “perfect dis-
tance labellings” by Calhoun et al. [1] and Calhoun and Polhill {2]. The
former paper broadens the search to “distinct distance labellings” where
the condition that the path-sums be consecutive is removed; the question
of interest is the minimum largest path-sum required for a tree on n ver-
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tices. (In the course of this, they show that there cannot be a Leech tree
on 16 vertices.) It also extends the initial problem to forests (and graphs
in general), an investigation that is taken up in the latter paper.

2 G-Leech trees

Let (G, +) be a finite Abelian group with identity element 0. A G-Leech
labelling of a tree T with path-set P is a function w : E(T) — G such that
the weight-sums w(p) for p € P are all distinct and {w(p)|p € P} = G—{0}.
Clearly, if T has n vertices, then |G| = (3) + 1. Naturally, we call a tree
that admits a G-Leech labelling a G-Leech tree.

We want G to be Abelian because we assume our trees to be undirected;
one could allow for non-Abelian groups by considering oriented paths (that
is, distinguishing between the path from u to v and the path from v to
u), though of course we must then require that G contains no elements
of order 2. We exclude the group’s identity element from the set of path-
sums by analogy with the original problem: with this constraint, Leech
labellings with path-sums 1,2,...,m directly translate to Z,,+;-Leech la-
bellings. However, one could easily consider the alternative problem of
requiring every group element, including the identity, to appear as a path-
sum; in this case, one must ensure that the path containing 0 is maximal.

Two cases of particular interest to use are the binary Leech labellings,
where G = Zj for some r, and the cyclic Leech labellings, where G = Z,,,
for some m. In this paper, we solve the existence problem for the former
case completely.

Taylor’s result on Leech trees extends naturally to G-Leech trees, as
long as G allows for a notion of parity. The proof we give of the following
result is essentially identical to the proof of Theorem 1.1 as reproduced in

[6].

Theorem 2.1. If G is a finite Abelian group of even order and T is a
G-Leech tree on n vertices, then n = k% + 2 for some positive integer k.

Proof. Let ¢ : G — Zj be the natural homomorphism. Given a G-Leech
labelling w : E(T) — G, take the composition w which maps each edge
to either 0 or 1; define a bipartition of the vertices of T into sets A, B such
that if e = uv then pw(e) = 1 if and only if v and v are in different sets.
(This defines a unique bipartition up to renaming the sets.) Any odd path
(that is, path with a sum that maps to 1 under ¢) must have one endpoint
in each of A and B. Therefore, there are exactly |A| - | B| such paths.

Since |G| is even, |G| — 1 = () must be odd since every nonidentity
group element appears on a path of T. Hence, there are 1[(3) + 1] odd
paths in T'. Therefore:
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(141 = |BI)* = (1Al +|BI)* - 4|4] - |B|

==2((z) ]

=n-2

Therefore n = k% + 2, where k = [A| — |B|. [ |

3 Binary Leech trees

Here we are labelling the edges of trees with binary strings, with addition
defined componentwise in Z;, and we want the set of path sums to be
precisely the set of nonzero binary strings. To do this with strings of length
7 on a tree with n vertices, we must have that 2" — 1 = (3). There are
precisely four pairs of positive values that satisfy this constraint, derived
from the Ramanujan-Nagell equation [4] and illustrated in Table 1.

Order | String length
2 1
3 2
6 4
91 12

Table 1: Possible orders of binary Leech trees, with corresponding string
lengths.

Of these four cases, the first two are easily dispatched; there is exactly
one labelling of K; with a nonzero one-bit string, which (miraculously!)
is a Leech labelling, while any pair of two distinct nonzero two-bit strings
will give a binary Leech labelling of Ps. The last pair is inadmissible by
Theorem 2.1. This leaves us only the case of n = 6 to contend with.

There are six nonisomorphic trees on six vertices; however, if we can
find a solution for one tree then we can find a solution for all trees (of that
order). Given an edge-labelling f of T and u,v € V(T'), let f(uvr) denote
the sum of the weights along the uv-path in T

Lemma 3.1. Let T be a tree on n > 2 vertices with binary edge-labelling
w: E(T) —» Zj. Let v be a leaf in T with neighbour u, and let  # v
be a neighbour of u. Construct a new tree T' = T + vz — uv, and define
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w' : E(T) - Zj by
w(e) = {'w(e) e# vz

w(uv) + wluz) e=uvz

Then for any vertices y,z € T, w(yzr) = w'(y2qv).

Proof. If neither y nor z is equal to v, then the path between them does
not include v and hence the values of w and w’ coincide for every edge in
the yz-path.

If y = v, then either the vz-path in T goes through z or it does not.
If it does, then the corresponding path in 7" shares with the path in T
all edges in the zz-path and therefore the path-sum, and by construction
w'(vz) = w(uv) + w(uz), as required. Otherwise, the vz-path in T and in
T’ coincide on the edges of the uz-path, and w'(vz) + w'(uz) = w(uv) as
required.

Corollary 3.2. For any positive integer n, either none or all trees on n
vertices are binary Leech trees.

Proof. By performing successive “leaf-shifts” of the type used in the previ-
ous lemma, any tree can be transformed into a star; since the operation is
reversible, :any tree can therefore be transformed into any other tree of the

same order. [ ]

?

1111

Figure 2: A binary Leech labelling of K 5.

We demonstrate in Figure 2 that the star K 5 is a binary Leech tree,
and therefore that all trees on six vertices are binary Leech trees. There
are many more such labellings; a computer search revealed the existence of
20160 = 120 x 168 Leech labellings of a labelled K 5, yielding 168 Leech
labellings of an unlabelled 5-star. This is evocative in that it is the number
of ovoids in the projective 3-space over GF(2). (Recall that an ovoid in
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the space PG(3,q), with ¢ a prime power, is a set of g2 + 1 points with no
three collinear. It is well-known that every subplane intersects an ovoid in
either 1 or g+1 points, a fact that we have some use for. See [5] for further
details about ovoids in projective 3-space.) This is not just a numerical
coincidence.

Theorem 3.3. Let S be a set of five binary strings of length 4. Then S
gives a Leech labelling of K15 if and only if S is an ovoid in PG(3,2).

Proof. Let S be the labels of a binary Leech labelling of K3 5. If S does
not comprise an ovoid in PG(3,2), then some a,b,c € S must be collinear,
with @ + b = c. But this gives two paths in the star that have the same
sum, which is impossible. Therefore S must be an ovoid.

Now let S be the points of an ovoid, say S = {e,b,c,d,e}. We know
that no sum of two elements of S can equal a third, since that would give
three collinear points; we need therefore only check that no two pair-sums
are equal. So suppose that £ = a + b = ¢ + d; then the subplane that
contains a, b, and ¢ must also contain z since £ = a + b, and also d since
d = z + c. But this gives a subplane of the space containing four points
of the ovoid, which is impossible. Therefore all of the pair-sums must be
distinct both from the members of S and from each other, meaning that S
is a label set for a binary Leech labelling of the 5-star. [ |

One further note on this fact is that the leaf-shifting operation from
Lemma 3.1 has the property that the sum on any “named” path is invariant:
that is, if we name two vertices u,v in T and perform a sequence of leaf-
shifts on T then the weight of the uwv-path in any tree in the resulting
sequence is equal to that in T. Given a labelled star, we can use a sequence
of leaf-shifts to transform it into another star with a different center (six in
total). By doing this, we get six labellings that are equivalent in the sense
that for any pair of vertices z and y, w(z,y) is the same in all labelings.
Between this equivalency and the graph automorphisms we end up with
twenty-eight families of labellings of K} 5, each with 6! instantiations. This
holds true for the other trees on six vertices as well, and the 6! can be
derived directly as the number of ways to label the vertices of the tree in
question.

4 Some notes on cyclic Leech trees

Our investigations on the cyclic Leech trees are much less developed. To
give the flavour of the work we shall describe some results concerning the
first few admissible cyclic groups: Z2,Z4,Z7,Z,1, and Zje.

Notice that, for all of these except Z;;, we get examples of cyclic Leech
trees for free: as we remarked earlier, any [integer] Leech labelling can also
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Figure 3: A Z¢-Leech labelling of a tree.

be interpreted as a cyclic Leech labelling. Thus, the trees in Figure 1 are
cyclic Leech trees. We can find one more example for Zjg quite easily:
the leaf-shifting operation described in Lemma 3.1 works in a more general
setting, as long as the supporting edge of the shift (uz in the terminology of
the lemma) has a label of order 2 in the group. Applying this to the known
Leech tree on six vertices gives us another cyclic Leech tree, depicted in

Figure 3.
For Z,,, there are three possible candidates for cyclic Leech labellings.

Lemma 4.1. The star K, 4 is not a Zy;-Leech tree.

Proof. Suppose that a,b, ¢, and d comprise a cyclic Leech labelling of the
4-star. Clearly no two of these are additive inverses (and in fact, for any
z € G at most one of £ and —z can appear in a G-Leech labelling of a
graph), and hence we must have the element —a appearing as a sum of two
others.

We cannot have, say, —a = b+ c for the following reason: suppose we
took the sum of all of the path-sums under this labelling. Since each edge
occurs in four paths, this sum must be 4(a + b + ¢ + d); since this is the
sum of all nonzero group elements in Z;;, it must also be 0. Therefore,
a+b+c+d=0; and if it were the case that —a = b + ¢, then we have
e+ b+ ¢ =0 and hence d = 0, which is impossible.

Without loss of generality, therefore let —a = a+b and hence b = —2a =
9a. By the same line of reasoning, however, —b must be expressed as a sum
of b with another edge label, and so forth. At some point this chain must
lead us back around to a, meaning that a = 9%a for some k < 4. This is
also impossible. Therefore —a cannot be a path-sum under this labelling
and so the labelling is not a cyclic Leech labelling. [ |

Note that in the above proof we exploited the properties of Z;; as a
ring, a useful set of tools in these analyses.
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Lemma 4.2. All trees on five vertices except for K1 4 are Zy;-Leech trees.

Proof. For Ps, label the edges 1, 9, 7, 8 in sequence along the path. A
computer search has shown that this is unique up to group and graph
automorphisms.

For the other tree with degree sequence (3,2,1,1,1), label as follows: 8
on the central edge, 1 and 2 on the pendant edges adjacent to the vertex of
degree 3, and 7 on the pendant edge adjacent to the vertex of degree 2. W
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