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Abstract

We investigate the existence of fixed point families for the
eccentric digraph (ED) operator, which was introduced in [1).
In [2], the notion of the period p(G) of a digraph G (under
the ED operator) was defined, and it was observed, but not
proved, that for any odd positive integer m, Cpn X Cn, is
periodic, and that p(ED(Cm X Cn)) = 2p(ED(Cp)). Also
in (2], the following question was posed: which digraphs are
fixed points under the digraph operator? We provide a proof
for the observations about Crn X Cr, and in the process show
that these products comprise a family of fixed points under
ED. We then provide a number of other interesting examples
of fixed point families.

1 Introduction

In [1], the idea of the eccentric digraph (ED) operator was introduced, and
in [2], a number of conjectures were posed about iterating this operator.
The eccentricity e(u) of a vertex u in a digraph G is defined to be the
maximum distance of any vertex from u. This maximum may be infinity,
if some vertex is unreachable from u. The eccentric digraph ED(G) of a
digraph G has the same vertex set as G, and has a directed edge from u to v
if and only if the distance from « to v in G is e(x). In [2], the notion of the
period p(G) of a digraph G (under the ED operator) was defined, as follows:
p(G) is the smallest positive integer p such that EDP**(G) = ED*(G) for
some nonnegative integer ¢. A digraph is said to be periodic if t¢(G) = 0.
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It was noted in [2] that Cpn X Cp, is periodic and p(ED(Cpm x Cp)) =
2p(ED(C,,), where m is an odd positive integer, but the authors stated that
they did not have a proof of this fact. Also in [2], the following question was
posed: which digraphs are fired points under the ED operator? That is,
for which digraphs G do we have ED(G) 2 G, where £ represents digraph
isomorphism. Note that this question is posed in terms of isomorphism,
rather than equality, because the only digraphs G for which ED(G) = G
are the complete graphs K,,. In this paper, we provide a proof that, for
any odd positive integer m, Cp, X Cp, is periodic, and we prove the noted
equality p(ED(Cm X Cp)) = 2p(ED(Crs)). In the process we will show
that these products comprise a family of fixed points under ED, for odd
m. We then provide a number of other interesting examples of fixed point

families.

2 Cycle Products

Theorem 2.1 Letk > 0, and let ag, a1, ..., a2k and bo, b1, ..., box be the ver-
tices of two copies of Cog41. Then ED(Cazr41%Cary1) also has the structure
of Car 1 X Caxq1 and there is a graph isomorphism ¢ : V(Carq1 X Capq1) —
V(ED(Cak+1 X Cary1)) defined by p((as,b;)) = (akigks» bik+1)ipk;), where
@ denotes addition mod 2k + 1.

Proof. We will analyze the adjacencies of vertex (ag,bp) in ED(Cax41 X
Cor+1), and extend this analysis to all other vertices by symmetry. A
breadth-first traversal in Cax4+1 X Ca2x+1 easily reveals that the furthest ver-
tices from (ao, bo) are the four unique vertices that have a shortest distance
of 2k steps (by different paths) away from (ao, bo), namely the set

{(ak) bk)a (ak-l—l) bk)a (a'lﬂ bk+l)1 (ak+1) bk-l-l)}'

So in ED(Cak41 X Cok41), these four vertices (see Figure 1) will be the
only ones adjacent to (ao, bo). Furthermore, by symmetry, in ED(Car41 X
Cak+1), each vertex (ai, b;) is adjacent to the four vertices

{(aior, biok): (@ip(k+1) biok)s (@iok: bior+1))s (Gio(k+1)s bio(k+1)) }-

Thus, every vertex has degree four, just as in the original product, and
therefore it will suffice to show that the function ¢ is edge-preserving, and
is a bijection.

To show that ¢ is edge-preserving, since every vertex in each graph has
degree four, it will suffice to show that every horizontal edge is preserved



under ¢, as is every vertical edge. Given an arbitrary horizontal edge
{(ai,b;5), (@i, bj@1)} in the edge set of Cax41 X Cak41, ¢ maps the endpoints
to (ak,'@kj,b(k+1)i$kj) and (Wm‘ek(jel):b(k+1)i$k(jel)) respectively. These
two vertices are k steps apart in Cor41 X Cory1, since k(j @ 1) =kjd k
(mod 2k + 1), and hence are adjacent in ED(Cax4y1 X Cok41). A similar
straightforward calculation verifies that every vertical edge is preserved un-
der .

To show that ¢ is bijective, it will suffice to show that ¢? is bijective,
and for this it will suffice to show that ¢? is injective, since ? is a function
from a finite set to itself. To this end we make the following calculation of
2%, where all operations on indices are reduced modulo 2k + 1.

©*((as, b))
= {definition of ¢}

P((akiokis bk +1)ioks))
= {definition of ¢}

(@k(ki@k)@k((k-+1)i@k7)1 D+ 1)(kidki)@k((k+1)idks))
= {reduction modulo 2k + 1}

(@k+1)71bri)

The proof that ¢? is injective follows:

¢*((ai b)) = ¥*((aw, b5))

<= {by the above calculation}
(@(k+1)) Oki) = (Gis1)57, brir)

=
(k+1)j=(k+1)j Aki=ki

= {multiplication by 2 and 4k, respectively }
2(k +1)j = 2(k + 1)5’ A 4k%i = 4k%¢’

=> {since 2(k +1) =4k =1 (mod (2k + 1))}
j=fAi=1

—
(ai,0;) = (aw, bj)
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Figure 1: Anillustration of Theorem 2.1 with k = 4, showing the vertices of Cg xCg in a
grid structure. Each vertex is connected by four undirected edges (showr only for (o, bo))
to its two horizontal neighbors and its two vertical neighbors, with wraparound from right
to left and bottom to top, giving the grid a toroidal topology. The four filled vertices
are those as far as possible (eight steps) from (a0, bo), and so are adjacent to (ao,bo) in
ED(Cy x Cg).

The following lemma is implicit in the proof of a claim in Example 3.4
of [2]). It is stated and proved explicitly here for the convenience of the
reader and for use in later theorems.

Lemma 2.2 Forall k > 0, ED(Czk.H) 2 Coktel-

Proof. This follows since two vertices in ED(Cax4+1) are adjacent in
ED(Cag41) if and only if those vertices are exactly k steps apart in the
cycle Cory1. The function ¢ : V(Cogs1) — V(ED(Cax41)), defined by
¢(v;) = vigk, where ® denotes multiplication modulo 2k + 1, is a graph
isomorphism. It is easy to see that ¢ is a bijection, with ¢ =(v;) = vigax,
since 4k ® k = 1. Using modular arithmetic, it is straightforward to show
that ¢ and ¢~! are edge-preserving. [ |

Theorem 2.3 Forallk Z 0, ED2(021¢+1X021¢+1) = ED(Czk+1)XED(Cgk+1).

Proof. First recall that two vertices in ED(Cak+1) are adjacent in ED(Cax41)
if those vertices are exactly k (or equivalently k+1) steps apart in the cycle
Cak+1. In the proof of Theorem 2.1 above, it was shown that ¢%((a:,b;)) =
((k+1)j»bki). This can be written as ¢ = 6 o 7, where 8((a;,b;)) =
(@(k+1)is bxj) and 7((as, b;)) = (a;,b;). Now observe that, in Cak41 X Cok+41,
every vertical edge {(a:,b;), (aig1,b;)} is mapped by @ to the vertices of a
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vertical edge {(ak+1)i: bks), (@k+1)(i@1)1 0k7)} Of ED(Caxt1) X ED(Car1),
since @(k+1); is k+1 steps away from @(x41)ig(k+1) in ED(Cak+1). It is sim-
ilarly straightforward to verify that every horizontal edge of Cpry1 X Coky1
is mapped by & to a horizonal edge of mathitED(Caj+1) X ED(Cax41).
Therefore, 8 is an isomorphism between Cai41 X Cory1 and ED(Cary1) X
ED(C3k41), and since 7 is an automorphism of Cary1 X Cak41, the func-
tion ¢? is also an isomorphism between Car41 X Carqy and ED(Caryy) X
ED(C2k+1). Furthermore, by Theorem 2.1, ¢? is an isomorphism between
Cok+1 X Capy1 and E’Dz(Cng X Cor+1). The proof can now be com-
pleted by observing that ED*(Caks1 X Cok41) = ¢*(Coks1 X Coxy1) =
ED(Ca2x+1) X ED(Ca41)- L

Note that in the proof since 7 is an automorphism of Cax41 X Cak4 that
simply transposes the product structure, every horizontal edge of Cop4; X
Csk+1 is mapped under 7 to a vertical edge of ED(C2x+1) X ED(Cak41) and
every vertical edge is mapped to a horizontal edge. Furthermore, as noted
in the proof, @ carries every vertical edge to another vertical edge, and
every horizontal edge to another horizontal edge. Thus, overall 2 = o7
carries every vertical edge to a horizontal edge, and every horizontal edge
to a vertical edge (see Figure 2).

Theorem 2.4 For all k > 0, and for allt > 0, Eth(Czk.,.l X Caky1) =
ED‘(Cgk.H) X EDt(Cgk.H).

Proof. The proof will by induction on ¢, with the base case ¢t = 1 provided
by Theorem 2.3. In the calculation below of the inductive step, we replace
the cycle Cyi41 by C to streamline the notation.

ED**%(C x C)

ED*(ED*(C x C))

= { base case: Theorem 2.3 }
ED*(ED(C) x ED(C))

= { let C' = ED(C) by Lemma 2.2 }
ED®(C' x C')

= { inductive assumption }
ED(C') x ED*(C")

EDY(ED(C)) x EDY(ED(C))
ED*Y(C) x ED*1(C)
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An illustration of Theorem 2.3 with k = 4. The first diagram shows the vertices
that are one and two steps away from (ao, bo) in ED(Cyg x Cg) by annotating those vertices
with a 1 and 2, respectively. The next diagram adds those that are 3 and 4 steps away, and
the next adds those that are 5 and 6 steps away. The last diagram labels those that are 7
and 8 steps away, and those marked by an 8 are adjacent to (ao, bp) in ED2(Cy x Cy).

Theorem 2.5 For allk > 0, p(Cak41 X Cok+1) = 20(Cap+1)-

Proof. By Theorem 2.4, and the definition of p, p(Cort+1 X Car41) <
20(Cak+1). In order to prove the reverse inequality, let s be an integer with
0 < s < 2p(Cak+1), and consider two cases. First, if s is even, then let

g = %. In this case,
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ED*®(Caxy4y x Cak41)

= {by Theorem 2.1}
©°(Cak41 X Car41)

= {s =2¢g}

©?9(Caky1 X Cars1)

= {by Theorem 2.4}
ED%(Cak+1) x ED*(Cox41)

and since ¢ < p(Cok41), EDYCo+1) # ED(Cagy1). Therefore, s #
P(Cak41 X Cak41). In the other case, if s is odd, then let s = 2q + 1, which
gives ED*(Cak1 X Caki1) = 9(9?9(Cars1 X Cakq1)). After the proof of
Theorem 2.3, it was noted that ? carries every vertical edge to a horizontal
edge, and by symmetry that 2 carries every horizontal edge to a vertical
edge. Therefore for every q, ¢ carries every horizontal edge to either a
horizontal or a vertical edge, depending on the parity of g. Also note that
¢ carries each horizontal edge, and each vertical edge, to an edge joining
two vertices that are in different factors of the domain product structure.
Therefore ¢° = ¢(p??) cannot carry any horizontal (or by symmetry ver-
tical) edge to itself, and therefore p® cannot be t he identity map. Hence

8 # p(Cak41 X Cogy1). .

3 Conjunctions of cycles

Another way to combine two graphs G and H is by the conjunction, or ten-
sor product, G A H, as defined in [2]. In G A H, the vertex set is the same
as in the Cartesian product G x H, namely it is the Cartesian product of
the vertices of G and H. That is, V(GAH) = V(G) x V(H). However, the
edges are defined differently; there is an edge (in G A H) between (a;,b;)
and (ag,b;) if and only if there is an edge in G from a; to a2, and also an
edge in H from b; to by. The following theorem is straightforward, but we
include a proof for the convenience of the reader.

Theorem 3.1 For all k > 0,C2x41 A Cogt1 = Copq1 X Coky.

Proof. Define ¢ : V(Cak41 X Cakt1) = V(Caks1 A Car41) by p(ai,05) =
(@i@j, @igj) Where @ and © are addition modulo 2k + 1 and subtraction
modulo 2k + 1, respectively. Since 2 has a multiplicative inverse (namely,
k + 1) modulo 2k + 1, it is easy to show by modular arithmetic that this
function is an injection, and therefore is also a bijection. An explicit for-
mula for ¢=! is given by ¢~1(a:,a;) = (ar+1)8(i®7), Ak+1)8(i05)), Where
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® represents multiplication modulo 2k + 1. It remains, then, to show that
both ¢ and are ¢! edge-preserving. Consider an edge (a,a;), (ai,ajp1)
in Cog4+1 X Cok4+1. The image under ¢ of these two vertices is the pair
((aipj» ios), (dipje1, Gio(jo1)))- It is easy to see that these two vertices are
adjacent in Cok41 A Cok41, and the other three cases are similarly straight-
forward calculations. It is also easy to check with similar calculations that
¢~ is edge-preserving. ]

4 Fixed points

The following theorems address Question 3.3 in [2]. That is, which unle-
beled graphs are fixed points under the ED operator? Here we consider
unlabeled graphs since the only graphs that are fixed points as labeled
graphs are the complete graphs. In the theorems and definitions below,
any labeling of the vertices is described as an aid to exposition; these ver-
tex labelings are not preserved in the isomorphisms used to exhibit the

fixed point property.

Theorem 4.1 For allk > 0, Coiy1 is a fized point under the ED operator.

Proof. This isomorphism is proved in Lemma 2.2. ]

Theorem 4.2 For all k > 0, Copq1 X Caxy1 8 a fized point under the ED
operator.

Proof. This isomorphism is proved in Theorem 2.1 above. [ ]

Theorem 4.3 For all k > 0, Ca4y A Caky1 18 a fized point under the ED
operator.

Proof. This isomorphism follows from Theorem 3.1 and Theorem 4.2. =

Theorem 4.4 Let n be an odd positive integer, and let k be a positive
integer such that k divides n — 1, and define B, i to be the directed graph
on vertices {vo, V1, ..., Un—1}, where each v; has a directed edge to the “next-
k” vertices. That is, for each vertez v;, there is a directed edge (v;,v;) for
each j =i ®1,i ©2,...i ® k, where ® denotes addition modulo n. Then
By« is a fized point under the ED operator.

Proof. Starting at any vertex v;, a breadth first search reveals that the
vertices farthest away are the “previous-k” vertices {vig1,vig2, ..., Vigk } (€
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denotes subtraction modulo n), since k divides n — 1. So, in ED (B, ),
there is a directed edge from v; to each of these. We will show that the
function ¢ : V (B, x) — V (ED(Bn)) defined by ¢ (v;) = vngi where ©
represents subtraction modulo n, is a graph isomorphism. The function ¢
is clearly a bijection, with ¢ = ¢, so it will suffice to show that ¢ and ¢!
are edge-preserving. Let (v;,v;) be a directed edge of By, &, then j =i®dm
for some m € {1, 2,..., k}. Therefore,

rej=no(idm)+<=>noj=(noi)om]

and so, in ED (B, ), there is a directed edge from ¢ (v;) to ¢ (v;), as
required. A similar calculation (but starting with an edge in ED(By x))
verifies that ¢~ is edge-preserving. (]

Figure 3: An illustration of Theorem 4.4 with n = 17 and k = 4. Each of the
other vertices has the same pattern of adjacencies as v, but these edges are not
shown in the figure. The vertices adjacent from vo in ED(B17,4) are marked
with solid squares.

Theorem 4.5 Letn, k, and s be positive integers, such that k dividesn—1
and s is relatively prime to n. Define By , to be the digraph on vertices
{vo,v1, ..., Un—1}, where each v; has a directed edge to the “next-k with step
size s” vertices. That is, for each vertez v;, there is a directed edge (v, v;)
for each j = i®s,i®2s,...iD ks, where ® denotes addition modulo n. Then
By k,s i3 a fized point under the ED operator.

Proof. The function v; — v, is a digraph isomorphism between B,, x and
By x,s since s and n are relatively prime. So by Theorem 4.4, By, s is a
fixed point under the ED operator. [ |

The next theorem refers to the double complete digraph (DK,), the

digraph on n vertices, in which there is a directed edge from every vertex
to each of the others.
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Figure 4: An illustration of Theorem 4.5 with n = 17 and k = 4, and s = 5,
Note that the first three steps give vs, vi0, and v15, while the fourth step wraps
around to vz. Each of the other vertices has the same pattern of adjacencies as
vp, but these edges are not shown in the figure.

Theorem 4.6 Let G be the digraph with 2n vertices formed by taking DK,
and adding n vertices each having a directed edge into every vertez of DK,,.

Then G is a fized point.

Proof. Let vy, ..., v, be the vertices of DK ,, and uy,...,u, be the remain-
ing vertices. Then, we will show there is a graph isomorphism ¢ : V(G) —
V(ED(G)) given by ¢(v;) = u; and ¢(u;) = v;. The function is clearly a
bijection on the vertices, so it will suffice to show that ¢ preserves the edge
structure. Let (v;, v;) be one of the directed edges of G. Then, ¢ takes this
edge to (u;,u;) which will certainly be in ED(G) as there is no path from
u; to u; in G. Similarly, the edges (u;,v;) in G will be sent to (v;,u;) by
v and again these edges are in ED(G) as there is no path from v; to u; in
G. Since all of the edges of G are of the form (v;,v;) or (u;,v;) and the
edges of ED(G) are only of the form (ui,u;) or (vi,u;), we know ¢ is an
isomorphism. Thus, G is a fixed point. [ ]

Another way to show that the digraphs of the family defined in The-
orem 4.6 are all fixed points is to utilize Proposition 2.1 in [3], which is
restated below as Proposition 4.7, for the convenience of the reader. This
lemma relies on a construction G, the reduction of G, which is defined
to be digraph G with all outgoing edges removed from any vertex v that
is adjacent to all the other vertices. A digraph with no such vertices is
said to be reduced, and the reduced complement, denoted G—, is defined
to the usual digraph complement of the reduction of G. Note that each
digraph G in the family defined in Theorem 4.6 satisfies the local transi-
tivity condition of 4.7, which implies that ED(G) = G~. So it suffices to
verify that G = G—, which follows since G is reduced and isomorphic to its
complement G.
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Figure 5: An illustration of Theorem 4.6 with n = 4. The upper four vertices
comprise a complete graph, where each undirected edge denotes two edges, one
in each direction. The lower four vertices each have four directed edges, one to
each of the upper four vertices.

Proposition 4.7 Let G be a digraph of order n > 1. Then ED(G) = G-
if and only if for any vertex u € V(G) with ecceniricity > 2 the following
(local) transitive condition holds:

(u,v), (v, w) € BE(G) = (u,w) € E(G), Yo, w € V(G) and v # w.
Theorem 4.8 ED(P,) is a fized point, forn > 1.

Proof. The cases n = 1 and n = 2 are easy to check separately. For n > 3,
let G = ED(P,). Let vp,...,vn—1 be the vertices along the unidirectional
path. The edges of G consist of:

(v0,¥n-1), and
(viyvj) forall0<j<i<n-1

The edges of ED(G) consist of:

(Yn—2,Vn-1),
(vi,v;) forall 0 <i<j<n—2 and
(vn—la‘vj) foral0<j<n-2

Using these lists of edges, it is easy to see there is a digraph isomorphism
between G and ED(G) given by ¢ : V(G) — V(ED(G)) with p(vp-;) =
n_1 and p(v;) = vp_z_; for 0 < i < n—2. Thus, G = ED(P,) is = fixed
point. [ ]
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Flgure 6: An illustration of Theorem 4.8 with n = 5. The upper left dlgraph
is Pg, the upper right digraph is ED(F%), and the lower digraph is ED%(Fs).

The last few fixed point families we will describe are all based on the fol-
lowing balanced coloring property of any initial segment of positive integers
of odd length.

Lemma 4.9 Let n be an odd positive integer, and let k be a positive integer
smaller than n. For each pair {i,j} of positive integers with i+ j = n, color
one red and the other blue. Then either k is red, or there is a pair (a,b) of
red numbers, such that a® b = k, where @ represents addition modulo n.

Proof. If there is no pair (e, b) with @ # b and a + b = k, then a bipartite
graph can be constructed in which every vertex has degree 2 except vertex
k and vertex k¥ @ 2. Here k @ 2 represents division modulo n (Note that
since 7 is odd, every number k smaller than n has a unique half modulo n).
Construct the graph by beginning with k, then attaching & to n — k, then
attaching n — k to k © (n — k), and so on, alternating as in Figure 7 until
arriving at k © 2. At this point, k£ and k @ 2 must be in opposite parts of
the partition, since the values in the same part as k are of the form n — j
for some j (# n — j) in the opposite part. This is not possible for k @ 2,
since n — k @ 2 = k @ 2. Therefore if k is blue, then k @ 2 is red, so taking
a=k@2,andb=kQ@2,wehavea®b =2(k@2) =k. n

Theorem 4.10 Let n be an odd positive integer, and let R be a subset
of {1,2,...,n — 1} such that for every pair {i,j} of positive integers with
i+ j = n, exactly one of {i,j} is a member of R. Define G, r to be the
directed graph on vertices {vo,v1,...,Un—1}, where each v; has a directed
edge to vertez vigy if and only if k € R, where ® denotes addition modulo
n. Then Gp g is a fized point under the ED operator.
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Proof. By Lemma 4.9, for every vertex v;, the vertices v; that are not
adjacent from v; are all a distance of two steps away from v;, which makes
them the vertices adjacent from v; in the eccentric digraph ED (G gr).
Therefore, ED (Gn,r) = Gy g, where R denotes the complement of R in
{1,2,...,n —1}. We will show that the function ¢ : V(Gn,r) = V (G, g)
defined by ¢ (v;) = vngi, Wwhere © represents subtraction modulo n, is a
graph isomorphism. The function is clearly a bijection on the vertices, so
it will suffice to show that ¢ and ¢~! are edge-preserving. Let (v;,v;)
be a directed edge of G g, then j = i ® k for some k € R. Therefore,
nOj = (nOi)®(nok), and n—k € R, and so in G, g, there is a
directed edge from ¢ (v;) to ¢ (v;), as required. The verification that ¢!
is edge-preserving is similarly straightforward. [ |

1, 2, 3, 4, 5, 6, 7, 8 9, 10,11,12, 13, 14, 15, 16, 17, 18, 19,20
o0 000 00 0O0O@®@®e®ee0e00 o0

9 12
18 3
6 15

Figure 7: An illustration of Lemma 4.9 with n = 21 and k = 9, and k@ 2 = 15. A solid
dot represents the color red, and an open dot represents the color blue.

Vo

o b oo

Figure 8: An example of the digraph Gn g of Theorem 4.10 with n = 33 and R =
{1,2,3,6,10,11, 12,13, 16, 18, 19, 24, 25, 26, 28, 29}. Each of the other vertices has the same

pattern of adjacencies as vo, but these edges are not shown in the figure.
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This is another family of digraphs which are interesting to examine in
the light of Proposition 2.1 in (3], which is included above as Proposition 4.7.
The proof of Theorem 4.10 can be modified slightly into a proof that a
digraph G satisfying the conditions of Theorem 4.10 is isomorphic to its
reduced complement G—. Furthermore, Lemma 4.9 can be used to show
the local transitivity property of Lemma 4.7. Therefore from Proposition
2.1 in [3], it can be shown that G is a fixed point under the ED operator.

Corollary 4.11 Let n be an odd positive integer, and let k be a positive
integer such that k divides n — 1, and such that (n — 1)/k is even. Define
G to be the digraph on vertices {vo,v1,...,Yn-1}, where each v; has a
directed edge to vertex vig; if and only if (j — 1) /k is even. Then Gn is
a fized point under the ED operator.

Proof. G, satisfies the conditions of Theorem 4.10, by taking R to be
the set of positive integers j with (j — 1) /k even. With this choice of
R, foreachj € R, (n—j—1)/k+(j—1) /k = (n —2) /k, which is odd.
Therefore, (n — j — 1) /k must be odd, which implies that n — j ¢ R. This
confirms that set R satisfies the conditions of Theorem 4.10, and therefore
G,k is a fixed point under the ED operator. ]

L]

-]
o

Figure 9: A Gp i of Corollary 4.11 with n = 33 and k = 4. Each of the other vertices
has the same pattern of adjacencies as vg, but these edges are not shown in the figure.
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Corollary 4.12 Let P = (ky, k2, ..., km) be a palindromic sequence of pos-
itive integers, so that k, = k, wheneveru+v=m+1, andletn =1+
23" ki. Define Gy, p to be the directed graph on vertices {vg, 1, ..., Un_1},
where each v; has a directed edge to vertez vig; if and only if 22,_1 k; <
I<@YXL k) + kg1 for some g with 0 < ¢ < m. Then Gy p is a fized
point under the ED operator.

Proof. Apply Theorem 4.10, where
R={(j123L ki <j< (22X ki) + ko1 for some q with 0 < ¢ < m}.

The complement of this set can be denoted by

R={(h| (2%, ki) + kgr1 < h <2571 k; for some q with 0 < g < m}

Then subtracting each part of this inequality from n — 1 gives:

(n=1)=-230  ki>(n-1)—j2(n—-1)- (XL, ki) + kgs1)
=

2221"’1‘-22 1ki>n—-1- J>2Ez-1ki"'(2:z_1k)"kq+1
=

22;’1q+1k.->n—1-j2(22;’;q+1k..)—kq+1

22:,~1 ki>n-1-72 (2505°k) = kng

(22"“%) kmeg <n—1-7 <2577k

(2SR k) + g Sn=1-5 <2E70K:

—
(25037 k) + kg <n—§ S 2507k

i=1

II

This shows that for each j € R, n — j € R, which satisfies the condition for
set R in Theorem 4.10, and therefore G, p is a fixed point under the ED
operator. n
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Figure 10: A Gy,p of Corollary 4.12 with n = 33 and P = {5,1,4,1,5}. Each of the

other vertices has the same pattern of adjacencies as vp, but these are not shown in the
figure.
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