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ABSTRACT. We show, for k = 3,4, 5, that the necessary conditions
are sufficient for the existence of graph designs which decompose
Ky (A, ), the complete (multi)graph on v points with A multiple edges
for each pair of points and j loops at each vertex, into ordered blocks
(a1, a2, ..., ax—1, a1). Each block is the subgraph which contains
both the set of unordered edges {a;, a;}, for each pair of consecutive
edges in the ordered list, and also the loop at vertex a;.
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1. Introduction

The purpose of this note is to consider a new type of combinatorial
design or graph design which we call a loop design. We use the notation
LD(v, k, A, 7). From the graph point of view, we decompose K,(, j), the
complete (multi)graph on v points with A multiple edges for each pair of
points and with j loops at each vertex, into ordered blocks (a3, a2, ..., ax—1,
a,) of size k. Each block is the subgraph which contains the unordered edges
{as,a;}, for each pair of consecutive edges in the list, and which contains
the loop at vertex a;. The block (g, b, ¢,d, a) contains the unordered edges
{a,b}, {b,c}, {c,d}, {d,a} and the loop {a,a}. Each block consists of two
cycles (or loops) of lengths 1 and k& — 1 which share a common vertex. For
brevity, we denote blocks simply as aba or abea, etc.
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It may be noted that LDs have characteristics of other designs such as
Mendelsohn designs, which apply the idea of cyclic triples of ordered pairs,
and balanced ternary designs (BTDs) in which a point appears in a block
0, 1 or 2 times, or cycle designs in which a graph is decomposed into copies
of C. In short, loop designs present an interesting variation from designs
of current research interest. Undefined terms can be found in [2] or [4].

A balanced incomplete block design (or graph design), a BIBD with
parameters (v, b, 7, k, A), is a decomposition of K, (},0) into b copies of the
complete graph K. Each copy of K} is called a block, and here r is the
replication number, the number of blocks in which each point appears.
BIBDs play an important role in later sections, and we give the well-known
[4] necessary conditions for existence of BIBDs:

vr = bk and A(v—1) =r(k - 1).

The replication number of an LD will be defined shortly. In ternary
designs, each point occurs as a singleton in p; blocks and p; times as a
doubleton. The replication number r is thus given by r = p; + 2p3 so that,
in the ternary block {a,a,b,c,d}, for example, there are 9 (unordered)
edges, {ab,ab,ac,ac,ad, ad,be,bd.cd}. In ternary designs, blocks need not
have doubletons, and the doubleton is usually not considered as a loop
(although this latter point is a matter of convention only). The loop block
abeda, however, has only 5 edges (counting the loop aa). In a cycle design
block, there is no distinguished vertex to contain the loop.

We will define j; to be the number of blocks in which, say, point z occurs
as an interior point. This means there are 2j non-loop edges incident with
z in blocks in which z is the endpoint and 2j; edges incident with = in those
blocks in which z is an interior point. It follows that 2j + 2j; = A(v — 1),
and this equation is independent of . This shows that j; is a constant
for any point in an LD, and, therefore, it is proper to define a replication
number for LDs by r = j + j; = A(v - 1)/2.

The equations just derived also imply that A(v — 1) is necessarily even,
but this fact is also a consequence of the equation in part (a) Theorem 1,
below, which gives a fundamental new necessary condition.

THEOREM 1. For any LD(v,k, ), j), it is necessary that
(a) j= %é"&:;; and
(b) 3i = i(k — 2).

PRooOF. From the definition of LD, the number of blocks is the same
as the number of loops. Part (a) follows from £2;(3) = jv. The right

hand side counts the number of loops (blocks), and the left hand side is the
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number of non-loop edges divided by the number of such edges per block.
Part (b) follows from part (a) and the discussion of j; just above. (]

'We next specialize to different values of k, the block size.

2. Loop Designs with k = 3.

When k = 3, an LD(v, 3, ), j) is essentially equivalent to a balanced
ternary design in which each block has exactly one doubleton (see Section
3 of [3]).

EXAMPLE 1. An LD(7,3,2,3).

010 121 232 343 454 565 606
020 131 242 353 464 505 616
030 141 252 363 404 515 626

Table 1: The blocks of an LD(7, 3,2, 3)

THEOREM 2. There exist LD(2t+1,3,2,t) for allt > 1 and LD(2t,3,4,
2t — 1) for allt > 2.

PROOF. For v = 2t + 1, we use the cyclic construction illustrated in
the example. If v = 2t + 1, the starter blocks are 0i0 for 1 < i < t. When
v is even, the minimum A is 4. An LD(2¢, 3, 4,2t — 1) may be constructed
by including blocks aba and bab for every distinct pair {a,b} of points. O

If k = 3 in Theorem 1, then j = A(v—1)/4. It follows that the preceding
theorem gives a construction for the minimum index A = 2 for odd values
of v and A = 4 for even values of v.

THEOREM 3. The necessary conditions are sufficient for the existence
of LD(v,3, A, j).

ProOF. By Theorem 1, A and j are directly proportional. Higher
values A = 2s (for odd v) and A = 4s (for even v) may be obtained using
multiple copies of the blocks for the minimal case. O

3. Loop Designs with k = 4.

Theorem 1 implies that j = A(v — 1)/6 is a necessary condition when
k = 4. We show in this section that LD(v, 4, ), j) can be constructed from
BIBD(w, 3, A). It is convenient therefore to divide the proof into the different
cases for v mod 6. First, however, we derive our main construction for this

section.
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This requires a structure result of H. Agrawal on binary equi-replicate
designs. A binary equi-replicate design is a collection of b blocks of size
k (i.e. sets) over a v-set of elements such that each element appears in r
blocks.

THEOREM 4. [1] The elements of every binary equi-replicate design
with bk = vr and b = mv, can be arranged in a k-by-b array such that each
column represents a block of the design and each row contains m copies of
every element.

THEOREM 5. (Construction 1) Suppose a BIBD(v,3,)) satisfies b =
mv for some m. Then there exists an LD(v,4, )\, m).

ProoF. The hypothesis b = mv guarantees that Agrawal’s theorem
applies (and that r = mk). Let A denote the Agrawal array and suppose
the block abc of the BIBD is a column in the array A ordered with point a
in row 1, b in row 2, and ¢ in row 3. Replace this block with the ordered
block abca in the LD. The number of edges of the BIBD is the same as
the number of non-loop edges for the LD since each has 3 per block. Since
each point appears in row 1 of A exactly m times, there are m loops per
point. O

When k = 3, the index \ was necessarily even. When k=4, A=11is
possible.

THEOREM 6. (a) There exist LD(6t + 1,4,1,t) for all t > 1.
(b) There exist LD(6t + 2,4,6,6t + 1) for allt > 1.
(c) There exist LD(6t + 3,4,3,3t+ 1) forallt > 1.
(d) There exist LD(6t +4,4,2,2t + 1) for allt > 1.
(e) There exist LD(6t + 5,4,3,3t+2) forallt > 1.
(f) There exists an LD(6t,4,6,6t — 1) for allt > 1.

PRroOF. The proofs of each part follow from the fact that b = Av(v —
1)/6 for a BIBD(v, k, A). (a) There exist BIBD(6¢t+1,3,1) and in this case,
b = t(6t + 1). Thus, we may apply Agrawal’s construction with m = ¢.
Now this part follows by Construction 1. (b) For v = 6t + 2, we have
J = A(6t+1)/6. It is clear that A = 6 is the smallest integer such that j is an
integer. Now, since BIBD(6t+2, 3, 6) exist, and as b = (6t+2)(6t+1) = mv
for m = v — 1, this part follows by Construction 1. (c) For v = 6t + 3, we
have j = A(6t + 2)/6. Thus, A = 3 is the least possible index. From the
existence of BIBD(6t + 3,3,3), we have b = (6t + 3)(63t + 1) = mv for
m = 3t + 1. This part follows by Construction 1. The rest is similar. O
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In the preceeding theorem the index ) is the least possible index for
the LD in each of the various cases. However, we note as a curiosity, for
v = 6t +3 and v = 6¢, the smallest index A for which there exists an LD is
not the smallest index for which there exists a BIBD(v, 3, u).

The vital connection between minimal indices of LDs and related BIBDs
is far more involved for larger block size, as we will see in the next section.

For every possible value of v we have constructed a minimal index
example, and since for any LD (by Theorem 1) the index is necessarily a
multiple of the minimal one, the existence problem for LDs with k = 4 is
solved, and we have proved the following:

THEOREM 7. The necessary conditions are sufficient for the existence
of LD(v,4, A, j).

4. Loop Designs with k£ = 5.

For convenience, we note that, in this section, § = A(v—1)/8. We begin
with several useful examples:

EXAMPLE 2. An LD(4,5,8,3) with 12 blocks. The columns are blocks,
and the indez is minimal.

111222333444
2 2333444111 2
34 2 413124231
4 3 41412123 23
111222333444

Table 2: The blocks of an LD(4, 5, 8, 3).

ExaMPLE 3. An LD(5,5,2,1) is shown with columns as blocks. If the
bottom row is deleted, the four columns give a BIBD(5,4,3).

® 0O LD
[N o]

® 9 A0
oo

oo o

o
o
[=9

e
Table 3: An LD(5,5,2,1).

EXAMPLE 4. A cyclic LD(9,5,1,1) s generated modulo 9 by the starter
block (0,2,5,4,0). This is the smallest possible example with indez A = 1.

EXAMPLE 5. An LD(6,5,8,5) is generated cyclically modulo 5 using
starter blocks 0021300, 100341, 300123, 000420, 12341, 02410.
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EXAMPLE 6. An LD(8,5,8,7) with starter blocks expanded modulo 7:
02140, 01420, 04210, 02140, 500635, 600356, 300563, co35600.

EXAMPLE 7. An LD(10,5,8,9) with starter blocks expanded modulo 9:
use 6 copies of (0,4,5,3,0) and one copy each of (o0, 1,0,2,00), (1,00,2,
0, 1), (4,00,3,0,4), and (3,00,4,0,3).

In the next three subsections below, we show the necessary conditions
are sufficient for existence of loop designs with k£ = 5 and with v = 24t + s.
For s = 7,13,19 we use a doubling construction and Agrawal’s theorem
(Section 4.1). In Section 4.3, for all other odd v, we construct cyclic designs.
Minimal index LDs for all even v come from the examples above and the
Latin square construction in Section 4.2. These will prove:

THEOREM 8. The necessary conditions are sufficient for the existence
of LD(v,5, A, 7).

Some values of v mod 24 allow for alternative constructions, and, to
simplify the argument for the main result (Theorem 8), we have deferred
discussion of such possibilities to Section 5 where there are two additional
constructions which are of interest in their own right.

4.1. A Doubling Constructions for k = 5. Agrawal’s Theorem
can be used in a powerful way for k = 5. For the convenience of the
reader we recall the necessary and sufficient conditions for existence of
BIBD(v, 4, 1) for a minimal p [2].

v minimal y
1,4 (mod 12) 1
7,10 (mod 12) 2
0,5,8,9 (mod 12) 3
2,3,6,11 (mod 12) 6

Table 4: Minimal index BIBD(v, 4, ).

THEOREM 9. (Construction 2) If there exists a BIBD(v, 4, \) with repli-
cation number r = 4m for some m, then there exists an LD(v,5,2,3m).

PROOF. Let X be a BIBD(v,4,)) with r = 4m. In this case, r =
A(v —1)/3 = 4m and the number of blocks b = Av(v —1)/12 = vm, and so
Agrawal’s theorem may be applied. For each block of X, with w in the first
row of the Agrawal array, say for block {w,z,y, 2}, create the following 3
blocks for the LD: wryzw, wyzzw, wzezyw. Observe that wx was an edge
in the block of X, but wz is an edge in two corresponding blocks of the
LD, and similarly for y and z. The rest is clear. a
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THEOREM 10. There erist LD(v,5,4,j) whenever v = 7,19 (mod 24)
and LD(v,5,2,7) for v =13 (mod 24). In both cases the index is minimal.

ProorF. The result will follow immediately from Table 4 and Con-
struction 2. Note that, for a BIBD(v,4, ), the number of blocks is b =
Av(v —1)/12. For example, when v = 24t + 7, and A = 2 (see Table 4),
b = muv for m = 4t + 1 and Agrawal’s theorem applies. The other two cases
are similar and we omit the details. O

4.2. The Latin Square Construction. A Latin square (LS) of order
7 is a square n-by-n array of cells, each of which contains some element from
a set of size n. It is required that every row and every column contains each
element exactly once. In what follows we assume that {0,1,2,...,n—-1} = N
are the n elements in any Latin square and that these numbers are used
to index the rows and columns. The (3, j) entry of any LS will usually be
denoted L(ioj). Two Latin squares are mutually orthogonal if the squares,
when superimposed, contain each of the n? pairs of elements exactly once.
These are called MOLS. An LS is idempotent if L(io%) = i for every i € N.

'We construct a set of blocks of size k = 4 using two idempotent MOLS,
say L; and L;, on the set {0,1,2,..,n — 1} = N for n > 12. Suppose
a,b € N and a # b. Then form the block {a,b, Ly (a o b), La(a o b)}. Since
the MOLS are idempotent, neither Lj(a o b) nor Ly(a o b) equals a or b,
and Lj(a ob) # La(a o b) by the orthogonality. If we form such a block
for every ordered pair of elements in N, we note we have also formed,
for instance, the block {b,a,L;(bo a), La(bo a)}. Consider those blocks in
which point a occurs in the first position. Point b also occurs those blocks,
obviously once in the second position, but also in positions 3 and 4 in
other blocks. This is because Latin squares (or quasigroups) have a unique
solvability property. Thus, with point @ in position 1, as all the other
points of N appear in position 2 with a in some block, there is a block say
{a,z,Li(aoz), Ly(aoz)} which will have Li(aoz) = b, and another which
will have Lz(a oy) = b. Thus, a and b appear together 3 times in blocks in
which a is in the first position. The same argument, applied to positions
2, 3, and 4, demonstrates that a and b appear together 12 times in blocks.
Thus, the unordered blocks created give a BIBD(v, 4,12).

Now we alter each unordered BIBD block of size 4 to an ordered LD
block of size 5 as follows: for all @ # b € N, construct the block (a, b, L1(ao
b), La(a o b), a).

Notice that point a and point L) (aob) are not adjacent in the LD block
and are not counted in the index. This means that, when L;(aozx) = b, the
points a and b occur together one time less than in the BIBD. Also, when
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a is in positions 2, 3, and 4 in other blocks, points a and b occur one time
less. Thus, the total number of times a and b appear together in LD blocks
has dropped from 12 to 8. This is clearly true for every pair of points, and
the ordered blocks constructed give an LD(v, 5, 8,v — 1).

THEOREM 11. (Construction 3) There is a minimal indez LD(v, 5, 8, v—
1) for all even v > 4.

PROOF. For v = 4, 6,8, 10 see Examples 2,5,6,7. It is well-known that
there are 3 MOLS for each order v > 10, and that from these one can get
2 idempotent MOLS. Thus, the existence of our LDs follows for all v for
which there exist two idempotent MOLS; in particular they exist for 11 <v
= 2¢t, and the index A = 8 is minimal for these values. g

4.3. A Striking Property of Differences. The only examples for
k = 5 and with index 1 occur for v = 8¢t + 1.

THEOREM 12. There exist LD(8t +1,5,1,5) for allt > 1.

PROOF. Suppose v = 8t+1. Use ¢ starter blocks (0, 4s,8s—3,4s—1,0)
where 1 <s<t. O

The difference family given above has a striking property. The differ-
ences between adjacent elements in (0,4,5,3,0) are, respectively, left to
right: 4,1,2,3. When s = 2, the differences are 8,5, 6,7, and so on. In gen-
eral, the differences are 4s — 3, 4s — 2, 4s — 1, and 4s. One can exploit this
regularity of the differences to obtain difference families for other values of
v if, omitting or altering the last starter block(s), one can obtain the other
needed differences.

EXAMPLE 8. An LD(11,5,4,5), with minimal index 4. The design is
cyclic, generated mod 11 by the starter blocks: 04530, 04530, 05940, 05610,
02530.

EXAMPLE 9. An LD(27,5,4,13). The design is cyclic, generated mod-
ulo 27, and the blocks are: (0,4,5,3,0)x4, (0,8,13,7,0)x4, (0,12,21,11,
0)x2, (0,9,22,14,0), (0,13,25,12,0), (0,10,21,11,0), where b x i
means i-copies of block b.

THEOREM 13. There erist LD(24t + 3,5,4,12¢t + 1) for allt > 1.
PROOF. Use the starter blocks (0,45,8s —3,4s - 1,0) x4 for 1 < s <
3t -1, and (0,12t,24t — 3,12t — 1,0) x 2. Also, use one copy each of block

(0,12t — 3, 24t — 2,12t +1,0), with differences 12t —3 and 12t +1 twice each;
block (0, 12¢ + 1,24t + 1,12¢,0) with differences 12t + 1 and 12t twice each;
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and block (0,12t — 2,24t — 3,12t — 1,0) with differences 12t — 2, 12t — 1
twice each. O

THEOREM 14. There ezist LD(24t +5,5,2,6t + 1) for allt > 0.

Proor. Table 3 shows the case for v = 5. We assume v > 29. Use
the starter blocks (0,4s,8s — 3,43 —1,0) x 2 for 1 < s < 3¢, and (0,12t +
1,24t + 3,12t + 2,0). 0

THEOREM 15. There ezist LD(24t + 11,5,4,12t + 5) for all t > 0.

PROOF. Use blocks (0, 4s,85—3,4s—1,0) x4 for 1 < s < 3¢, (0,12¢ +
4,24t +5,12¢ + 3,0) x 2, (0,12¢ + 5,24t + 9,12¢ + 4,0), (0, 12¢ + 5, 24t +
6,12t +1,0), and (0,12t + 2,24t + 5,12t + 3,0). O

THEOREM 16. There exists LD(24t + 15,5,4,12t + 7) for allt > 0.

PROOF. Use the starter blocks (0,4s,83—3,4s—1,0) x4, for1 < s <
3t+1, and (0, 12¢+-8, 24¢t+13, 12t +7,0) x 2. In this last block, the differences
12t + 7 and 12¢ + 8 both occur, but they are additive inverses mod v. The
other two differences mod v in this block (which we use twice) are 12t+5 and
12t + 6. It thus only remains to use 12t + 5 and 12¢ + 6 as differences twice
more each, and we do this with block (0,12t + 5,24t + 11,12t +6,0). O

THEOREM 17. There exist LD(24t + 21,5,2,6t + 5) for allt > 0.

PROOF. Use starter blocks (0,4s,85—3,4s—1,0)x2for1 < s < 3t+2,
and (0,12¢ + 10, 24t + 19,12t + 9,0). O

THEOREM 18. There ezist LD(24t + 23,5,4,12t + 11) for allt > 0.

PROOF. Use starter blocks (0,4s,85—3,4s—1,0)x4 for 1 < s < 3t+2.
Use (0,12t + 12, 24¢ + 21,12t + 11,0) x 2 and one copy of (0, 12t + 9, 24t +
19,12¢ + 10,0). O

Since we have shown LD(v,5,),5) exist for all v and with minimal
index ), we have proved Theorem 8.

5. Additional Remarks

To clarify the earlier exposition, we omit discussion of larger & and
present some other constructions which may be useful for another purpose.
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5.1. Some Useful Constructions. The first is a second doubling
construction.

THEOREM 19. (Construction 4) If there exists a BIBD(v,5,)), then
there erists an LD(v,5,2], j) where j = A(v —1)/4.

ProoF. For each block in the BIBD, create 5 blocks as in Example
3. 0O

THEOREM 20. (a) Supposev=10n+1 orv=10n+5 forn > 1 but
v # 15. Then there exist LD(v,5,4,5). (b) If v=20n+1 or 20n + 5,
then LD(v,5,2,j) exist. (c) If v=0,1 (mod 5), then LD(v,5,8, j) ezist.

PRroOF. BIBD(v, 5, 2) exist for v = 1,5 (mod 10) except for v = 15.
Note BIBD(v,5,1) exist for v = 1,5 (mod 20). BIBD(v,5,4) exist for
v=0,5 (mod 5) (see p.72 of [2]). a

A BIBD(v, k, A) is near-resolvable if the blocks of the design can be par-
titioned into near-parallel classes so that one and only one point is missing
in each class. There exist near-resolvable BIBD(v,3,2) for every v = 1
(mod 3) (see p. 128 of [2]).

THEOREM 21. (Construction 5) Suppose v =1+ 3s for some s. Then
there exist LD(v,5,8,v — 1).

PROOF. Suppose C; is a near-parallel class of a near-resolvable BIBD(v,
3, 2) with point z missing.. If abc is any block in that class, create blocks
zabezx, zbeaz, and zcabr for the LD. Do this for each class. Points = and a
appear 2 times in BIBD blocks in some 2 classes, say Cy and C,, but not
C, and C,. Using C, and C,, points  and @ appear together 4 times in
newly created LD blocks. They appear twice more in blocks created from
each of C, and C,, and thus appear 8 times in LD blocks. O

This was useful for certain even values of v, but Constructions 2 and 3
dealt with the relevant cases.

A pair-wise balanced design, a PB(v, K), of order v with block sizes
from K is a pair (V,B) where V is a set of size v and B is a collection of
subsets of V, and these satisfy the properties: (1) If B € B then |B| € K;
(2) Every pair of distinct elements of V' occurs in exactly one block of B.

For K = {5, 7}, there exist PBD(v, K) for all odd v = 2s + 1 > 641.
There are 13 values of v (”definite exceptions”) for which there is no such
PBD and about 80 possible exceptions with 9 < v < 639 (see Chap. IV.3
of [2]). It follows that:
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THEOREM 22. (Construction 6) There exist LD(v,5,4,7) for all odd
v > 5 ezcept for exceptional values in [2].

PROOF. Suppose v is odd and X is a PBD(v, {5,7}). For any block of
size 5 in X, construct two copies of the blocks indicated in Table 3. For
any block of size 7, use one copy of the blocks constructed as in Theorem
10 for LD(7,5, 4, 3). This constructs an LD(v, 5,4, j). This construction is
minimal for v = 4¢ + 3. a

5.2. Loop Designs with k = 6. We include this brief subsection only
to illustrate that the techniques used earlier can be applied to loop designs
with larger indices. In particular, we give a doubling construction like those

in previous sections.

ExAMPLE 10. An LD(6,6,2,1). Columns are blocks.

1 2 3 45 6
251133
33635 21
4 6 5 21 4
5 4 4 6 6 2
1 23 45 6

Table 6: The blocks for an LD(6,6,2,1).

THEOREM 23. If there exists a BIBD(v,6,])), then there exists an
LD(v,6,2), 7).

Proor. Expand every block of the BIBD using Table 6. O

EXAMPLE 11. There ezists an LD(11,6,1,1) using the starter block
(0,5,3,7,10,0) modulo 11.
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