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Abstract

In this paper, we present new results about the coloring of graphs.
We generalize the notion of proper vertex-coloring introducing the
concept of range-coloring of order k. The relation between range-
coloring of order k and total coloring is presented: we show that for
any graph G that has a range-coloring of order A(G) with ¢ colors,
there is a total coloring of G that uses (¢ + 1) colors. This result
provides a framework to prove that some families of graphs satisfy
the total coloring conjecture. We exemplify with the family of block-
cactus graphs.

Introduction

Let G(V,E) be a graph and C a finite set of colors. A vertez-coloring of
a graph G is a function ¢ : V — C such that c(v) # c¢(w) whenever v
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and w are adjacent. The smallest k such that G has a k-coloring (i.e., a
vertex-coloring ¢ : V' — {1,...,k}) is the chromatic number of G; it is
denoted by x(G). An edge coloring of G(V,E) is a function ¢ : E — C
such that c(e) # c(e’) whenever e and €’ are incident to the same vertex.
The smallest k such that G has a k-edge-coloring (i.e., an edge coloring
c: E — {1,...,k}) is the chromatic index of G; it is denoted by x/(G).
A total coloring of G(V, E) is an assignment of colors to its vertices and
edges so that adjacent or incident elements have distinct colors. The least
number of colors sufficient for a total coloring of a graph is called its total
chromatic number and it is denoted by x7(G). Clearly, for any graph G,
A(G) +1 £ x7(G), where A(G) is the maximum degree of G. The total
coloring conjecture (TCC), posed by Vizing and Behzad independently [16],
says:
For any graph G, x7(G) < A(G) +2.

For some families, as dually chordal graphs [4], interval graphs [1] and
spider graphs [13], the TCC has already been proved. The conjecture also
holds for planar graphs with A(G) # 6; the case of planar graphs with
A(G) = 7 is proved in [12] and the other ones were mentioned in (7, 8, 16].
Recently, it was proved that planar graphs with maximum degree 6 without
4-cycles satisfy the conjecture too [15].

In this paper, we first generalize the notion of vertex-coloring present-
ing the concept of range-coloring of order k. The relation between range-
coloring of order k and total coloring is presented. We show that for any
graph G that has a range-coloring of order A(G) with ¢ colors, there is
a total coloring of G that uses (t + 1) colors. This result provides a new
framework to prove that some families of graphs satisfy the total color
conjecture as, for instance, the block-cactus graphs. For this family, lin-
ear algorithms to perform its range-coloring of order A(G) and its total
coloring are presented, and the TCC is proved.

2 Basic concepts

Let G(V, E) be a simple connected graph, |V| = n and |E| = m. The open
neighborhood of a vertex v € V is the set N(v) = {u € V; uv € E}, and
the closed neighborhood is the set N[v] = {u € V; uwv € E} U {v}. The
degree of v is d(v) = |N(v)|.

A cut-verter is a vertex that if removed (along with all edges incident
with it) produces a graph with more connected components than the origi-
nal graph. A block of a graph is a maximal connected subgraph containing
no cut-vertices.
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Theorem 1 [6] The intersection of any two distinct blocks of a graph con-
sists of at most one vertez.

Let X denote the set of cut-vertices of G and Y the set of its blocks.
The block-cut-vertex graph of G is the bipartite graph H = (X UY, F) in
which there is an edge joining block B and cut-vertex v if and only if v is
a vertex in B.

Theorem 2 [3] The block-cut-vertex graph of a connected graph is a tree.

3 Range-coloring of order &

Let G(V, E) be a graph and a vertex-coloring ¢ : V — C of G. The set of
colors used by the neighbors of a vertex v € V is ¢(N(v)) and |e(N(v))] is
the number of colors appearing in the neighborhood of v.

A vertex-coloring ¢ : V — C of G is called a range-coloring of order
k, 1 <k < A(G), if for all v € V such that d(v) < k, |e¢(N(v))| = d(v);
otherwise |c(N(v))| 2 k.

For now on, A(G) will be simply denoted by A.

Examples of range-coloring of orders 1, 2 and 3 are shown for the star
graph K 4 in Figure 1.

2 3
0 O—0@ @ O—3 @ O—0
(> ) O

Figure 1: Range-colorings of a star graph

A graph G is t-range-colorable of order k if there exists a range-coloring
of order k that uses ¢ colors. Analogously, the range chromatic number
of order k, denoted by x*(G), is the least value of ¢ for which G can be
t-range-colorable of order k. Note that the range-coloring generalizes some
known vertex-colorings. The usual vertex-coloring of G is a range-coloring
of order 1. The equivalence of the range-coloring of order A and the distant-
2 coloring [2] was proved in [9].

The following lemma shows the determination of the range-chromatic
number of order A of a cycle graph C,.
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3, nmod3=0
Lemma 3 For any cycle C,, x2(Cn)=({ 5, n=5
4, otherwise

Proof: It is easy to verify that x2(Cs) = 5.
Consider C a finite set of colors and a vertex-coloring color : V — C.

In a cycle, A = 2; so the range-coloring of order A needs at least three
colors since, by definition, |color(N(v))| must be 2, for allv € V.

Let Cax = {vo,v1,...,v3k—1,v0) and color : V — {co,c1,c2} be a vertex-
coloring such that color(vi) = Cimod3 ¢ = 0,...,(3k — 1). Note that
color(vi—1) # color(vit1), ¢ = 1,...,(3k — 2); color(N(w)) = {color(v1),
color(vak_l)} = {cl, 62}, and COlO‘I‘(N('Uak_l)) = {COIOI‘(’U()), colm'(vak_z)} =
{co, ¢1}. Concluding, x2(Cst) = 3.

Let Cax be a colored cycle as above and consider a cycle Csr41 = CarU{v}.
Without loss of generality, Cag4+1 = (Vo, ..., ¥i, v, j,..., %) is colored with
color(vi—1) = co, color(v;) = c1, color(vj) = cz and color(vj+1) = co.

So,

color(v) # co otherwise |color(N(v;))| =1;
color(v) # ¢; otherwise v;v € E with color(v;) = color(v);
color(v) # c; otherwise vv; € E with color(v) = color(v;).

Clearly, all possible assignments are forbidden and x2(Cak41) = 4.

The same reasoning above can be applied to the cycle Caxy2 = CaxU{u, v},
k > 2. It is already known that vertex u must be colored with a fourth color,
¢3. In order to maintain a correct range-coloring, the sequence consisting
of three vertices before and the three vertices after the vertex u in the cycle
must be colored, at each side, with cp, ¢; and c3. So, vertex v receives also
color ¢z but between vertices u and v it must exist at least three vertices,
which is possible since k > 2. Finally, x>(Cak42) =4. =

4 Relating range-coloring and total coloring

The next theorem relates range-coloring of order A with total coloring. It
will be seen that it is possible, after performing a range-coloring of order
A, to extend this coloring to the edges, using just one more color. This
extension will allow us to prove the total color conjecture for some families

of graphs.
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Theorem 4 Let G(V,E) be a graph and c : V — {1,2,...,t} a range-
coloring of order A of G. There is a total coloring cr of G with at most
(t+1) colors.

Proof: Let K¢(V', E’) be the complete graph of order ¢t and ¢ : V' U
E' — {1,2,,...,t + 1} a total coloring of K;. We extend the given range-
coloring ¢ of order A to the edges of G to obtain a total coloring ey of G
as following.

First, we define a function f : V — V', f(v) = i such that c(v) = cjp(3).
So,er:VUE — {1,2,,...,t +1} is such that:

er(v) =c(v), vevV,
cr(vw) = ep(f(v)f(w)), vw € E.

The coloring cr is a total coloring of the graph G because, if two edges

vw,vu € E are incident in v, the colors ¢(v), ¢(w) and ¢(u) are all different,

since that ¢ is a range-coloring of order A. So, the vertices f(v), f(w), f(u) €
V' are also different, and cp(f(v)f(w)) # p(f(v)f(u)). Consequently,

cer(vw) # cr(vu). Reciprocally, if an edge vw € E is incident in v € V,

then c7(f(v)) # ¢r(f(v)f(w)). Then, er(v) # cr(vu). w

Let G(V, E) be a graph with all vertices labeled by the colors determined
by the range-coloring ¢ : V — {1,2,...,t} of order A of G, and A a
matrix of order (¢ + 1) with a total coloring of a complete graph K;. The
proof of Theorem 4 yields a simple algorithm to obtain a total coloring
er:VUE — {1,2,...,t +1} of G.

Algorithm TotalColor;
begin
for allv e V do
er(v) — c(v);
for all vw € E do
er(vw) — A(e(v), c(w));
end

Corollary 4.1 A graph G (A + 1)-range-colorable of order A satisfies the
total coloring conjecture.

Thus, Theorem 4 provides a new framework to prove that some families
of graphs satisfy the T'CC.
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5 Total coloring of block-cactus graphs

A graph G(V, E) is called a block-cactus graph [11] if each block of G is a
complete graph or a cycle. These graphs include two interesting subclasses,
which appeared frequently in the literature: the block graphs (blocks are
complete graphs) and the cactus graphs (blocks are cycles or K3) .

An example of a block-cactus graph is presented in Figure 2.

Figure 2: Block-cactus graph

Let G be a block-cactus graph and S the set of the cut-vertices of G. A
block B is called attached to a cut-vertex v € S when v belongs to B. A
block-cactus graph is trivial if it is composed by only one block.

Our goal here is to prove that block-cactus graphs satisfy the TCC.
First, we present an algorithm for the determination of a range-coloring of
order A of a non trivial block-cactus graph G with A > 4 using (A + 1)
colors. The next step is to extend this coloring to the edges using Theorem
4, obtaining a total coloring with, at most, (A 4 2) colors. Note that block-
cactus graphs with A < 4 are planar and it is already known that these
graphs satisfy the TCC. This means that if the block-cactus graph is planar
the conjecture holds even if A = 6.

The main idea of the algorithm is to greedily color the cut-vertices of
G together with the vertices of the blocks attached to them. It begins
by selecting a cut-vertex v such that d(v) = A. Vertex v is colored and
inserted in set S’, which stores the colored cut-vertices not yet processed
(we consider a cut-vertex v processed when all the vertices of the blocks B;
attached to v are colored). After that, at each iteration, a cut-vertex w is
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processed and removed from S’. Two situations can happen:

1. Vertex w is the first cut-vertex to be processed and none of its adjacent
vertices is colored. In this case, all vertices belonging to N(w) must
be colored, spending A colors different from the color of w. As the
set of colors C has cardinality (A + 1), all its colors are used.

2. Vertex w is not the first cut-vertex to be processed. So, vertex w is

already colored because it belongs to a block B, attached to another
cut-vertex already processed. It is important to note that B is the
only one attached to w with all vertices colored. This is easy to
prove considering the block-cut-vertex graph of G, since, by Theorem
2, there is only one path from any cut-vertex already processed to
vertex w.
At this point, some vertices of N(w) are already colored, depending
on the nature of block B. If block B is an edge, only one vertex of
N(w) is colored; if it is a cycle, two vertices of N(w) are colored,
otherwise, B = K; and obviously there are i vertices belonging to
N(w) colored with i different colors. We know that [C| = (A + 1)
and A > 4; so, there is at least (|C|—i+ 1) colors available to be used
when coloring the remaining adjacent vertices of N(w). As d(w) < A,
the assignment is always possible.

In any case, after coloring N(w), the blocks attached to w must be
analysed. If the blocks are complete graphs, all vertices are already colored;
the vertices remaining in the other possible cycles must be colored following
Lemma 3. Any vertex, after being colored, must be tested whether or not
it belongs to the set of cut-vertices S; in affirmative case it is inserted on
another set S’. Vertex w can now be considered processed.

It is interesting to note that, at each iteration of the algorithm, a con-
nected subgraph of G is colored.

The detailed algorithm follows. The data structures considered as input
are:

o A block-cactus graph G; the set of adjacency lists N(v), the degree
d(v) of each vertex ve V.
o The set S of cut-vertices of G.

e For each vertex v € S, the set Badj[v] stores the indices of the blocks
attached to v.

e The vertices of each block B of G.

279



Two simple procedures will be called by the algorithm:

e ColorVertex(v,C) colors the vertex v with some color belonging to
set C and tests whether or not it is a cut-vertex; in the affirmative
case, the vertex v must be included in the set S’.

o ColorCycle(B,v) colors the vertices not yet colored of each cycle B
attached to v following directly the constructive proof of Lemma 3.

Algorithm RangeColor BlockCactus;
begin
C—{L,2,...,8+1} % C: set of colors
S —0
Choose v € S such that d(v) = A(G);
ColorVertez(v,C);
while S’ not empty do
Choose w € §';
Ctemp «— C — {c(w)}; % Ctemp: set of available colors
for all « € N(w) do
if u is colored then
Ctemp — Ctemp — {c(u)};
for all u € N(w) do
if u not colored then
ColorVertez(u, Ctemp);
Ctemp «— Ctemp — {c(w)};
for all B € Badj[w] do
if |B| > 3 and B is a cycle then
ColorCycle(B,w);
S e 8 — {w}h
end

Lemma 5 Algorithm RangeColorBlockCactus computes an exact range-
coloring of order A of a block-cactus graph in time complezity O(m).

Proof: The input of the algorithm is a non trivial block-cactus graph
G with A > 4.

By the definition of range-coloring of order A, the coloring of the neighbor-
hood of each vertex v uses d(v) colors. The algorithm colors a cut-vertex
v at each iteration; the only forbidden colors are exactly the ones already
used in some of the vertices belonging to N(v). So, the algorithm uses, for
cut-vertices, at most (A +1) colors. As each cut-vertex is colored once, the
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coloring of all cut-vertices and their adjacent vertices takes, in the worst
case, O(m).

Procedure ColorCycle colors the remaining vertices that belong to a cycle
following the constructive proof of Lemma 3. By the lemma, a cycle is
colored with at most five colors. For a non trivial block-cactus graph,
in the worst case A = 4, so the procedure uses A + 1 colors. Let B =
{vo,v1,...,Vk) be the cycle to be colored by the procedure such that v is
the cut-vertex v. Vertices v, v; and vy are already colored; v; and vy are
adjacent to the vertex vg. For each vertex w colored by the procedure, at
most three colors must be analyzed, so it takes constant time complexity
to color w.

Thus, the algorithm performs in O(m). =

The procedure TotalColor can be used in order to obtain a total coloring
of a block-cactus graph. Its time complexity is O(n?), however, it is possible
to build a more efficient implementation of the algorithm. It is not difficult
to note that the lines of the latin square that give us a total coloring of a
complete graph are simple rearrangements of the first line. For instance,
the first and the second lines of a possible latin square of order seven are
1526374 and 5263741, respectively. So, only one array A is needed in
the implementation. Observe that if A is odd the dimension d of A is t,
otherwise d =t + 1.

Procedure ColorEdge(d,v,w,tc)
begin
i —c(v);
J— c(w);
index — j+1—1;
if indexz > d then index « indez — d;
tc +— A(indez);
end

Finally, we summarize our results about block-cactus graphs.
Lemma 6 A block-cactus graph satisfies the total coloring conjecture.

Proof: A block-cactus graph G with A < 4 is planar, So, it obeys the
TCC.If G has A > 4, by Theorem 4, there is a total coloring using at most
(A +2) colors. In both cases, x7(G) <A +2. m
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6 Conclusion

In this paper, it was shown the relation between range-coloring of order k
and total coloring: if a graph G has a range-coloring of order A(G) with
t colors, there is a total coloring of G that uses (¢ + 1) colors. This result
allowed to prove that the TCC is valid for the block-cactus graphs. It is
interesting to note that this family actually includes two subfamilies: block
graphs and cactus graphs. It can be easily observed that both have disjoints
cuts and both can be represented by a unique tree structure. It is possible
that families with similar properties can use the same reasoning in order to
prove the conjecture.

We exemplify it with the family of path-complete graphs, considered
by Harary [5] in 1962. Soltés [14] proved that these graphs are the sole
connected graphs with n vertices, m edges and maximum average distance
between pairs of vertices. The following definition can be found in [10].

Let m,n,p,t € N,with1<t<n-2and1<p<n-—t-1 Agraph
with n vertices and m edges such that

("_t)(g_t—l) +t<m< (n_t)(g_t—l) +n-2

is called a (n,p,t) path-complete graph, denoted PC,, 5., if and only if

1. the maximal clique of PCy p¢ is Kn—t;

2. PCn’P,g has a t-path Pg+1 = [’Uo,'l)l, oo 'Ug] such that vg € Kt N Piy
and v is joined to K,,—: by p edges;

3. there are no other edges.

Path-complete graphs can be partioned in two subgraphs: one block
consisting of two cliques that have p vertices in common and a path. So, it
is easy to adjust the algorithm RangeColor Block-Cactus in order to obtain

a (A(G) + 1)-range-color for the vertices of graphs belonging to this family
and consequently to obtain a total coloring with A(G) + 2 colors.
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