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Abstract

Let G be a simple graph with a vertex set V(G) and an edge set
E(G), and let Z; = {0,1}. A labeling f : V(G) — Z; induces an
edge partial labeling f* : E(G) — A defined by f*(zy) = f(z)
if and only if f(z) = f(y) for each edge zy € E(G). For each
i € Zg, let v5(3) = [{v € V(G) : f(v) = i}| and e;(3) = |{e €
E(G) : f*(e) = i}|. The balance index set of G, denoted BI(G), is
defined as {|es(0) — ef(1)] : |ug(0) — v£(1)] < 1}. In this paper, we
investigate and present results concerning the balance index sets of
trees of diameter four.

1 Introduction

In [12], Lee, Liu and Tan considered a labeling problem in graph theory.
Let G be a graph with a vertex set V(G) and an edge set E(G). A vertex
labeling of a graph G is a mapping f from V(G) into {0, 1}. For each vertex
labeling f of G, we can define a partial edge labeling f* of G as follow: for
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each edge uv in E, define

oo fo i f) = fw) =0,
”“”"{1 if f(u) = f(v) = 1.

Note that if f(u) # f(v), then the edge uv is not labeled by f*. We shall
refer f* as the induced partial function of f. For i = 0,1, let vs(3)
denote the number of vertices of G that are labeled by ¢ under the mapping
f. Similarly, let ey (i) denote the numbers of edges of G that are labeled by
i under the induced partial function f*. In other words, for i = 0,1,

vi(i) = |{u€V(G): f(u) =1}, and,
ef(i) = |{uwve E(G): f*(w)=i}|.

For brevity, when the context is clear, we will simply write v(0), v(1), e(0)
and e(1) without any subscript.

Definition 1. A vertex labeling f of a graph G is said to be friendly
if [vs(0) — v¢(1)] < 1, and balanced if both |vs(0) — vf(1)] < 1 and
les(0) —es(1)| < 1.

It is clear that not all the friendly graphs are balanced.
In [10], A.N.T. Lee, Lee and Ng introduced the following notion as an
extension of their study of the balanced graphs.

Definition 2. The balance index set of a graph G is defined as
BI(G) = {|es(0) — es(1)] : the vertex labeling f is friendly}.

Example 1. Figure 1 shows a graph G with BI(G) = {0, 1,2}. o
(0) (0) (1)
0 1
Q © » Q © v @ o0 ©
1 1
© € @
le(0) — e(1)| =0 le(0) —e(1)] =1 le(0) —e(1)] =2

Figure 1: The friendly labelings of a graph G with BI(G) = {0, 1, 2}.

In [15), Lee, Wang and Wen found the balance index set of cycles.
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k
Proposition 1.1. Let U Ci ; be a finite disjoint union of k cycles, where
i=1
C}, is the cycle of order n; for all1 < i < k. The balance index set is

k , ,
i y_ J{0} if Xon; is even, and,
BI(U Cn) = {{1} if 3 n; is odd.

i=1

We note here that not every graph has a balance index set consisting of
an arithmetic progression.

Example 2. The graph ®(1,3,1,1) is composed of C4(3) with a pendant
edge appended to each of z,, 23 and z4, and three pendant edges appended
to zo. Figure 2 shows that BI(®(1,3,1,1)) = {0,1,2,3,4,6}. Note that 5
is missing from the balance index set.

le(0) —e(1)| =3 le(0) —e(1)] = 4 le(0) — e(1)| =6

Figure 2: The six friendly labelings of (1, 3,1,1).

Some balanced graphs are considered in (3, 4, 5, 8, 12, 16). In general,
it is difficult to determine the balance index set of a given graph. Most of
existing research on this problem have focused on some special families of
graphs with simple structures, see [1, 6, 7, 10, 13, 14, 15].

The double star DS(m, n) is a tree of diameter three such that there are
m pendant edges on one end of P, and n pendant edges on the other end.
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Without loss of generality, we may assume m < n.
From [10], we recall the following

Proposition 1.2. The balance indez set of the double star DS(m, n), where
m<n,is

{n—m n4m z'fm+n is even, or,
BI(DS(m,n)) =
(DS(m,n)) {{n—m—l n—m;tl’ﬂj;f;__—l,%} ifm+n is odd.

g—o—‘
O—O—5® OTO50—0

| &1)-5{0) | =1 |0(1)"(°)|'2
@ ® ©® QO ® Q0 ©
1 3 4 J
xé:—.—o‘ o.ooo ;i—o—o',a,« ®
| eft)-o{0) | =4 Jo{t)o0) [=2 | ofty-c(0) | =3
® ® @.® ® @ 60 O ® O
AN IRV SN RN SN
—D—O— O OO—D+O G—D-+—D—OO—D+—D+®

| o{1)-{0) | =0 1 o{1)-5{0) | =1 1 o(1)-o(0) {=2 | of{1)-e(0) [ =3
Figure 3: BI(DS(1, 3)), BI(DS(1, 4)) and BI(DS(2, 3))

The balance index sets of the graph which are formed by the amalga-
mation of complete graphs, stars, and generalized theta graphs are studied
in [6, 7]. In this paper, we complete the study of the balance index sets of
trees of diameter four.

2 Balance Index Set of Caterpillar CT(a,b,c)

For a graph with a vertex labeling f, we denote ef(x) to be the subset of
E(G) containing all the unlabeled edges.

We say f is friendly if [v(0) —v(1)| < 1.

In [9], Kwong and Shiu developed an algebraic approach to attack the
balance index set problems. It shows that the balance index set depends
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on the degree sequence of the graph. It becomes a very powerful tool to
deal with balance indexes.
Here we twist their approach a little bit and propose our version here:

Lemma 2.1. We have the following equalities:
1. 2¢(0) +e(x) = ) degv;

vEV(0)
2. 2¢e(1) +e(x) = Z degv;
veEv(l)
3. 21E@G)|= ) degv= ) degv+ Y dego.
veV(G) vEV(0) vey(l)

Proof. Each unlabeled edge contains one 0-vertex, and each 0-edge con-
tributes two O-vertices. For a vertex labeled 0, there are deg(v) edges
adjacent to it. Equation 1 follows. Similarly, we can prove Equation 2.
Since deg(v) represents the number of edges adjacent to v and each edge is
adjacent to two vertices, the sum of all degrees is twice of the number of
edges of G. o

Corollary 2.2. For any friendly vertex labeling f, the balance index is

e(0) —e(1) =% ( Z degv — Z degv) .

vEv(0) veEu(l)

For a caterpillar graph CTY(a, b,¢), we name the three vertices on the
spine, 4,4, up, and u.. Thus, in CT(a, b, c), we have a+b+c degree 1 vertices.
The degrees of u,, us, and u. are a+1, b+2, and c+1, respectively. We also
name the non-spinal vertices adjacent to uy by up,1, us,2, .. ., ups. Similarly,
we name non-spinal vertices adjacent to u, or u. by the same way.

Theorem 2.3. For CT(a,b,c), where a + b + ¢ is odd, the balance index

set is
a—-b—c-1
3 .

{

Proof. When a+b+c is odd, the number of vertices of CT(a, b, ¢) is equal
to a + b+ c + 3 which is even. Let a + b+ c+ 3 = 2M. For a friendly
labeling, there are M vertices labeled 0 and M vertices labeled 1.

a—b+c-1
2

a+b—c+1
2

a+b+c+1
2

1 , ’

289



We first consider the case that u,, us, and u. are all labeled 0. Then
there are M — 3 end-vertices labeled 0 and M end-vertices labeled 1. By
Corollary 2.2, we have

e(0) —e(1)

€v(0) vev(l)
= ((M=3)+@+1)+G+2)+(c+1) - M]
= p@+bterl)

%(02 degv— 3 degv)

There are 8 different combinations of the labeling of s, up, and u..
Each labeling produces a balance index by the similar way. We collect all
of them in the following table:

f(ua) | flup) | f(uc) | No. of deg1 0-v | No. of deg1 1-v BI
0 0 0 M—3 M EIZT
0 0 1 M-2 M-1 axocctl
0 1 0 M-2 M-1 a=ote=l
0 1 1 M—1 M—2 a=bel
1 0 0 M—2 M—1 =a3bEetT
1 0 1 M—1 M =2 =eEL=cTl
1 1 0 M—1 M—2 =a=tEcfl
1 1 1 M M—3 =a=t=e=T

Figure 4: 8 different combinations of the labeling of u., us, and u. when
a+b+ciseven

Thus, the set of balance indexes is {&tbfetl etboctl acbie-l
a—b;c-l, —ail;;tcil’ -—aib—cil, —a—b+c-—1, —a-b2—c-1}_ Note that the last
four indexes are the negative of the first four indexes. Therefore,

a+b+ce+1| la+b—c+1| la=b+c-1| la=b—c-1
Bl = 5 .

2 2 2
O
Theorem 2.4. For CT{(a,b,c), where a + b+ c is even, the balance index
set is

’ b )

a+b+ce+2| la+b—c+2| la—b+c| |a—-b—-c¢c
2 ! 2 ! 2 ! 2 ’
—a+b+ec+2| |—a+b—c+2| |—a—b+ec| |-a—b—2¢c
2 ! 2 ! 2 ! 2 )
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Proof. When a+b+c is even, the number of vertices of CT(a, b, ¢) is equal
toa+b+c+ 3 which isodd. Let a + b+ c+ 3 = 2M + 1. For a friendly
labeling, without loss of generality, there are M + 1 vertices labeled 0 and
M vertices labeled 1.

We first consider the case that us, us, and u. are all labeled 0. Then
there are M — 2 end-vertices labeled 0 and M end-vertices labeled 1. By
Corollary 2.2, we have

e(0)—e(1) = (Z degv — Z degv)

€v(0) vev(l)
= S[(M-2)4@+1)+(+2) +(c+1) - M]
= §(a+b+c+2)

There are 8 different combinations of the labeling of u,, up, and u..
Each labeling produces a balance index by the similar way. We collect all
of them in the following table:

f(va) | f(vs) | f(ve) | No. of degl 0-v | No. of deg1 1-v BI
0 0 0 M—2 M afbicty
0 0 1 M-1 M-1 atdocrd
0 1 0 M-1 M-1 a-tc
0 1 1 M M-2 a—x=c
1 0 0 M-1 M-1 =aFbEcEy
1 0 1 M M-2 =etdocrs
1 1 0 M M-2 =e-bre
1 1 1 M+1 M-3 =ezb=c

Figure 5: 8 different combinations of the labeling of u,, us, and u. when
a+b+cisodd

When a friendly labeling with v(1) > v(0), it produces the negative val-

ues of all the above balance indexes. By combining all 16 balance indexes
together, they are aibic_—_t atb—c. 2 a-bic c—!—c -a+b+c+2 —aib—ciiz

—a—b+c -a—b—c _a b c 2 aib—ci2 a-b-k_c a—b—c —aibiciz
2 2 2 2 2 ’

—'—"‘*‘"2;‘*—, ZEﬁ 2“—"2L‘-9 After takmg absolute vale, we have only 8
balance indexes left due to the sign difference. Therefore, the balance index
set is

BI = a+b+c+2| |la+b—c+2]| la—b+c| la=b-¢
- 2 ’ 2 ! 2 ’ 2 !
—a+b+c+2| |-a+b—c+2| |[-a=b+e] |-a=b-¢c])
2 ! 2 ! 2 ’ 2 )
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Example 3. Figure 6 shows the caterpillar CT(1, 1,3) with 8 vertices has
balance index set {0,1,2,3}.

ucn Uc.z ue,a

Ug [Uas1| Up [Up1| Ue [Uet|Ue2|Uca| €(0)-e(1)
ojo|o0|O0O}{1{1]|1i1 0
1{07j010{11t0|1¢{1 1
ofo{1({0(1(0]1 1 2
1010|1001 3

Figure 6: The balance index set of CT(1,1, 3)

Example 4. Figure 7 shows the caterpillar CT(3,0, 3) with 9 vertices has
balance index set {0, 1,2,3,4}.

uu
Uy [Ugq|Ug2|Uas| Ub | Ue [Ues [Uo2|Ucs | (0)-e(1)
0 1 0(0¢(1 1101110 0
ol1(o0({O0O(1|1}10{1]1 1
1(/0({1(11]0]0{1]|0]1 2
1 1({0(0(1{1({0{0]f0O 3
1 1(0(0|1{1{0{0{|1 4

Figure 7: The balance index set of CT(3,0, 3)
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Here we use Theorem 2.3 to prove a special case.
Corollary 2.5. The balance indez set of CT(a,1,a) is
{a+1,a-1,1}.

Proof. By Theorem 2.3, since a+1+a = 2a+1 is always odd, the balance

index set is
{a+1+a+l a—l—a—ll}
2 H

2
ie.,

a—14+a-1
2

a+l—a+1
2

’ ’

{e+1,1,a-1}.
]

Example 5. Figure 8 shows BI(CT(2,1,2)) = {1,3}, BI(CT(3,1,3)) =
{4,2,1} and BI(CT(5,1,5)) = {6,4,1}.

O, O,

Figure 8: The balance index sets of CT(2,1,2), CT(3,1, 3) and CT(5,1,5)

The balance index sets depend on the topological structure of the graphs.
In the following example, we demonstrate two graphs of the same order but
with different balance index sets.
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Example 6. Figure 9 shows the caterpillar 7} with 10 vertices has balance
index set {1,2,4}. However, another caterpillar T, also has order 10 but

its balance index set is {0,2,4}. 0
Ug,2 Ub,1 ‘“62 Ue,l Ue,2 Ue,3 ual Ug,2 Up,1 Up,2 Up,3 U]
© 0 © @ © ®O

0\ O
\Jub
[e(0) - e(l)l =1 le(0) — e(1)| =
ﬂal . ubz U1 Uc,2 Uc3 YUa,1 Ug,2 U1 Ub,2 UH3 Uel
©) @ © © 0
1\ 1 1 0 0
L Uc 8 Ua Vub
le(0) - e(l)l = le(0) — e(1)] =
Ug, Ug,2 Ub,1 U2 Uc,1 Ue,2 Uc3 uol Ug,2 Up,1 Up2 UH3 Uc,dl

a,1
©) @ ©) ORONONE,
1 1
1 1
lua Q/ub luc

[e(0) — e(1)] = 4

®\f

fe(0) - e(l)l =

Figure 9: The balance index sets of P3 x &.

3 Balance Index Sets of Trees of Diameter
Four

In a caterpillar graph CT(a, b, ¢), if b # 0, then we have b P; paths contained
the vertex up. Since P; is of length 2, after adding more adjacent edges and
vertices to the two end vertices of these paths, the new graph is still a tree of
diameter four. We denote this new graph as CTY(a, b, ¢)(us(t1,t2, - , %)),
where t; is the number of edges and vertices added to the vertex up,;.

It is easy to see that a tree of diameter four can be expressed as
CT{(a, b, c)(up(t1, 2, - ,tp)) for some a,b,cand ¢; forall 1 <i <b.

In order to write our final results in an uniform manner, we rename
CT(a,b, c)(ub(ty, ta, - tb)) as CT(d1, do, dz)(ub(ds, dgy- -, ddo+2))- In the
other words, we defined; =a,dp = b,d =c,and d; = t;_» when3 <7 < b.
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By the same reason, we also rename the three vertices on the spine, vy,
v1, and vo where v is the middle one. We also name the vertices adjacent
to vo by vs,v4, -+ ,vay+2. Thus, in CT(dy, do, d2)(us(d3, ds, - - - , daos2)),

do+2
we have Z d; degree 1 vertices. The degree of v; forall1 <i<dp+2is

=
d;+1, aI;d, the degree of vg is dp + 2.

do+2

Theorem 3.1. For CT(dy,do,d2)(us(ds, da, - ,ddy2)), where Y dy is
=0
odd, for a friendly labeling f, the balance index is

1 do+2
e(0) —e(1) = {{E( —1)ft0g, | + (- 1)f<vo>}

i=0

Proof. The number of vertices of CT(dl,do,dz)(ub(ds,d4, -+, ddg42)) is
do+2 do+2

equal to Z d; + 3 which is even if Z d; is odd. Let z d;+3=2M. For

i=0 i=0 =0
a friendly labeling, there are M vertices labeled 0 and M vertices labeled

1.
We first consider the case that v; for all 1 < ¢ are all labeled 0. Then
there are M — 3 — dy end-vertices labeled 0 and M end-vertices labeled 1.

By Corollary 2.2, we have

e(0)—e(l) = = ( Z degv — Z degv)

€v(0) vEu(l)
do+2

= _[(M 3— do)+(do+2)+z:(di+1) M}

SGlE)]

Similarly, we assume that there are k vertices among v; for all 0 <
i < dp + 2 labeled 0. Then, there are M — k end-vertices labeled 0 and
M —(do+3—~k) end-vertices labeled 1. We define P to be the set containing
all the O-vertices among v; for all 0 < i < dy + 2. We also define N to be
the set containing all the 1-vertices among v; for all 0 < i < dy + 2. By
Corollary 2.2, we have
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e(0) —e(1)

= 1 ( Y degu— 3 degv)

Nl

vev(0) vev(l)
= ! [((M —-k)+ Zdegv) - ((M— (do+3—-k)+ Z degv)]
vEP vEN

2
% [(M—k)—(M—(do+3-k)+§{(degv—1)+1]

- Z [(degv —1) + 1]]

vEN
= I ldo+3-2k)+ Y (degv—1)+k— Y (degv—1)
2 veP vEN
— (do + 3 — k)]
1
= 3 Z (degv—1) — Z (degv — 1)]
LveP veEN

Note here that deg(v;)—1 = d; for all0 < i < do+2. deg(vo)—1 = do+1.
For a friendly labeling f, we have

1 do+2

—_ - _1\f(w) g, _1\f (v

e(0)-e(1)_2{ g( 1) (”)d.] +(-1) <°>}.

a

From the result of Theorem 3.1, it is obviously that when all labeling of

v; for all 0 < i < dgy + 2 change signs, e(0) — e(1) changes sign too. Thus,

without missing any balance index, we can assume that vg is labeled 0.
This leads to

do+2
Corollary 3.2. For CT(d1,do, d2)(us(ds, d4,** ,dao+2)), where Z d; is

—~
odd, for a friendly labeling f, the balance index is '

1 [ [dex2
5 { [Z (‘1)1("‘)615] +do + 1}

i=0

le(0) —e(1)} =

Let SC be the set of

do+2
SC = { Z (-1)%d; | t: =0, 1} .

i=1

296



We can simplify Corollary 3.2 into
do+2

Corollary 3.3. For CT(dy,do, da)(us(ds, da, - - - , dao+2)), where Y dy is
odd, the balance indez is =0
{’%(t+do+l)(|te sc}.
do+2
Theorem 3.4. For CT(d1, do, d2)(ub(ds, da, - - ,day42)), where Y d; is
=0

even, for a friendly labeling f, the balance indez is

1 [ [det2
e(0) — (1) = %3 { [Z (—1)f<°*>d.} +1+4 (—1)f(°°>} :

i=0

Proof. The number of vertices of CT(dl,do, dg)(ub(ds,d,;, -+ dgg+2)) is
do+2
equal to z d;+3 which is odd ifn E d; iseven. Let z d;+3 =2M+1.

For a fnendly labeling, there are M + 1 vertices labeled 0 and M vertices

labeled 1.
We first consider the case that v; for all 1 < i are all labeled 0. Then
there are (M +1) —3—dp end-vertices labeled 0 and M end-vertices labeled

1. By Corollary 2.2, we have

(uz degv— ) degv)

€v(0) vEv(l)

e(0) —e(1)

do+2
= 5 (M+1 3- do)+(do+2)+2(d.+1 M]

(&9

Similarly, we assume that there are k vertices among v; for all 0 < i <
do + 2 labeled 0. Then, there are M + 1 — k end-vertices labeled 0 and
M — (do + 3 — k) end-vertices labeled 1. We define P to be the set contain-
ing all the O-vertices among v; for all 0 < i < dy + 2. We also define N to
be the set containing all the 1-vertices among v; for all 0 < i < dg + 2. By
Corollary 2.2, we have
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e(0) —e(1)
= 1 Z degv — Z degv)

.2- v€Ev(0) vev(1)
= -;- [((M-!-l—k)-l— Zdegv) - ((M—(do+3—k)+ Zdegv)]
veEP veN
= %[(M+1—k)—(M—(do+3—k)+2[(degv—1)+l]
veP
- [(degv—1)+1]]
veN
= % 1+(do+3-2k)+2(degv—1)+k—Z(degv—l)
L veP veEN
- _do+3—k)]
= % 1+Z(degv—1)—2(degv—l)]
L veP veN

Note here that deg(v;)—1 = d; for all 0 < i < do+2. deg(vo)—1 = do+1.
For a friendly labeling f, we have

do+2

e(0) —e(1) = % { [Z (—l)f("")d.] +1+ (—1)f<"°)} .

=0

When a friendly labeling with v(1) > v(0), it produces the negative
values of all the above balance indexes. This completes the proof. a
Recall that SC is the set of

do+2
SC = {Z (-1)%d; | t; = 0,1}.

i=1
do+2
Corollary 3.5. For CT(d1, do, d2)(us(ds, da, - -+ ,dag42)), where H_ dj is
i=0

even, the balance indez is

{

-;-(t+do+1)' |teSC}U{‘%(t+do) lteSC}.

298



Proof. For a set of labelings of v; for all 0 < i < dy + 2, name the balance
index of this set OBI. From the result of Theorem 3.4, we know that

1 do+2
OBI =3 { [ > (—1)f(°‘>d,-] +1+ (—1)f‘"°>} :

=0

If all labelings change signs, the new balance index e(0) — e(1) is

1 |'do+2
e0)—e(l) = %3 { > (—1)f<"-'>+1d.-] +1+ (—1)f<"°>+1}
| i=0
1 -d0+2
= :;:§ { z (_l)f(vi)d‘.:l -1+ (_1))'(”0)}
. =0
1 [do+2
= ¥ { > (-1)f("-')d.~] +1+4 (—1)f<"°)} +1
| i=0
= —OBI+1

which depends on OBI.
If we assume that vg is labeled 0, then, the balance index is

do+2
> (—1)’(”‘)d,~] +1+ (—1)"} .

=1

e(0) — e(1) = :!:-;— {

The balance index with vg is labeled 1 can be obtained by 1 — OBI where
OBl is any balance index obtained by assuming vy is labeled 0. Note that

1 do+4-2
vi) 4. o
1-0BI = 1—5{[2(—1)“ )dzJ+do+1+(_1)}

=
1 d0""2
= —5 { [Z (—l)f("‘)di] + do} .
i=1
This completes the proof. a

Example 7. For CT(1,3,2)(us(0,0,3)), first, we can see that SC =
{6,0,2,-4,4,-2,0,—6}. Since 1+ 3+ 2+ 3 = 9 is odd, by Corollary
3.3, we compute 3 + 1 + SC = {10,4,6,0,8,2,4,~2}. Thus, the BI col-
lection is {5,2,3,0,4,1,2,—-1}. By taking absolute value, the result fol-
lows. Figure 10 shows the balance index set of CT(1,3,2)(us(0,0,3)) is
{0,1,2,3,4,5).
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Figure 10: Balance index set of CT(1, 3, 2)(u(0, 0, 3))

Example 8. For CT(1,3,2)(us(0,0,4)), first, we can see that SC =
{7,-1,3,-5,5,-3,—1,-7}. Since 1 + 3+ 2+ 4 = 10 is even, by Corollary
3.5, we compute 3+SC = {5,1,3,-1,4,0,1, —2}. Thus, we have (3+SC)+
1={6,2,4,0,5,1,2,—1}. By taking absolute value and union, the result
follows. Figure 11 shows the balance index set of CT(1, 3, 2)(us(0,0, 3)) is
{0,1,2,3,4,5,6}.

Figure 11: Balance index set of CT(1, 3, 2)(us(0, 0, 4))

By Corollaries 3.3 and 3.5 and Examples 8 and 9, we need to calcu-
late all values in the set SC in order to find the balance index set of
CT(dy, do, d2)(us(ds,ds, -+ ,dap+2)). It is very easy to find the numeri-
cal result by using a computer program. Here, we show one more example
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in detail.

Example 9. For CT(2,4,2)(us(0,0,0,3)), first, we can see that SC =
{7,1,3,-3,3,-3,-1,—7}. Since 2+4+2+3 = 11 is odd, by Corollary 3.3,
we compute 4 + 1 4+ SC = {12,6,8,2,8,2,4,—2}. Thus, the BI collection
is {6,3,4,1,4,1,2,—1}. By taking absolute value, the result follows. Fig-
ure 12 shows the balance index set of CT(1, 3, 2)(u(0, 0, 3)) is {1,2, 3,4, 6}.
Note 0 and 5 are missing.

Figure 12: Balance index set of CT(2, 4, 2)(u4(0,0,0, 3))

References

[1] C.C. Chou and S.M. Lee, On the balance index sets of the amalga-
mation of complete graphs and stars, manuscript.

[2] F. Harary, Graph Theory, Reading, MA, Addison-Wesley, 1994.

[3] Y.S. Ho, S.M. Lee, H.K. Ng and Y.H. Wen, On Balancedness of Some
Families of Trees, to appear in J. Combin. Math. Combin. Comput.

[4] R.Y. Kim, S.M. Lee and H.K. Ng, On balancedness of some graph
construction, J. Combin. Math. Combin. Comput., 66 (2008), 3-16.

(5] Man C. Kong, S.M. Lee, Eric Seah and Alfred S. Tang, A complete
characterization of balanced graphs, J. Combin. Math. Combin. Com-
put., 66 (2008), 225-236.

(6] H. Kwong and S.M. Lee, On balance index sets of chain sum and amal-
gamation of generalized theta graphs, Congr. Numer., 187 (2007),
21-32.

301



[7] H. Kwong, S.M. Lee and D.G. Sarvate, On balance index sets of
one-point unions of graphs, J. Combin. Math. Combin. Comput., 66
(2008), 113-127.

(8] H. Kwong, S.M. Lee, Bill Lo and Y.C. Wang, On uniformly balanced
graphs, manuscript.

[9] H. Kwong and W.C. Shiu, An algebraic approach for finding balance
index sets, Australas. J. Combin., 45 (2009), 139-155.

[10] A.N.T. Lee, S.M. Lee and H.K. Ng, On balance index sets of graphs,J.
Combin. Math. Combin. Comput., 66 (2008), 135-150.

[11] A.Lee, S.M. Lee and H.H. Su, On the balance index set of generalized
friendship graphs, envelope graphs of cycles and cubic trees, to appear
at Congr. Numer.

[12] S.M. Lee, A. Liu and S.K. Tan, On balanced graphs, Congr. Numer.,
87 (1992), 59-64.

[13] S.M. Lee, HK. Ng and S.M. Tong, On the balance index set of the
chain-sum graphs of cycles, Utilitas Math., 77 (2008), 113-123.

[14] S.M. Lee and H.H. Su, On the balance index set of the permutation
graphs, manuscript.

[15] S.M. Lee, Y.C. Wang and Y.H. Wen, On the balance index sets of
the (p, p+1)-graphs, J. Combin. Math. Combin. Comput., 62 (2007),
193-216.

[16] M.A. Seoud and A.E.I. Abdel Magsoud, On cordial and balanced
labelings of graphs, J. Egyptian Math. Soc., 7 (1999) 127-135.

302



