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ABSTRACT. Let G be a (p,q)-graph where each edge of G is
labeled by a number 1, 2,...,q without repetition. The vertex sum
for a vertex v is the sum of the labels of edges that are incident to
v. If the vertex sums equal to a constant (mod k) where k> 2 ,
then G is said to be Mod(k)-edge-magic. In this paper we
investigate graphs which are Mod(k)-edge-magic. When k =p, the
corresponding Mod(p)-edge-magic graph is the edge-magic graph
introduced by Lee (third author), Seah and Tan in [10]. In this
work we investigate trees, unicyclic graphs and (p,p+1)-graphs
which are Mod(2)-edge-magic.
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L Introduction. All graphs in this paper are simple graphs with no loops or
multiple edges.

Lee, Seah and Tan [10] introduced the following concept of edge-magic
graphs
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Definition 1.1 Let G be a (p,q)-graph in which the edges are labeled 1,
2,...,q without repetition. The vertex sum for a vertex v is the sum of
the labels of the incident edges at v. If the vertex sums are constant,
mod p, then G is said to be edge-magic ( in short EM).

Example 1. Figure 1 shows a graph G with 6 vertices and 8 edges that is EM
with different constant sums.

¢=0 (mod 6) ¢=1{mod6) ¢=3 (mod 6) ¢=5(mod 6)
Figure 1.

Example 2. The following maximal outerplanar graphs with 6 vertices are EM.

Figure 2.

A necessary condition for a (p,q)-graph to be edge-magic is q(q+1)=0 (mod
p). However, this condition is not sufficient. There are infinitely many
connected graphs , such as trees and cycles, satisfy this condition that are not
edge-magic.

Now we introduce the following concept.
Definition 1.2 Letk >2 and G be a (p,q)-graph in which the edges are
labeled 1, 2,...,q without repetition. The vertex sum for a vertex v is the
sum of the labels of the incident edges at v. If the vertex sums are
constant, mod k, then G is said to be Mod(k)-edge-magic ( in short

Mod(k)-EM).

A necessary condition for a graph to be edge-magic is given in the following
Theorem
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Theorem 1.1, If p= 0 (mod k) then a necessary condition for G to be Mod(k)-
edge-magic is that q(q+1) = 0 (mod k).

Example 3. The path P, with 4 vertices is Mod(2)- EM, but not Mod(k)-EM for
k=3,4.

Figure 3.
v vy V3V,
Figure 3.

Example 4. The graph G in Figure 4 is Mod(k)- EM, for k=2,3,4,6 but not 5.

Mod(2)-EM Mod(3)-EM Mod(4)-EM Mod(6)-EM
Figure 4.

2. (p, q)-Graphs which are Mod(k)-EM for all k.

Stewart [19,20] defined that a graph is supermagic if the edges are
labeled 1,2,3,...q so that the vertex sums are constant. He showed that K3, K4,

K3 are not supermagic and when n = 0 (mod 4), K, is not supermagic. For n>5,
Kp, is supermagic if and only if n= 0 (mod 4). For a generalization of this result
see [6]. Hartsfield and Ringel ([3]) exhibited some new examples of supermagic
graphs.

It is clear that
Theorem 2.1. If a (p,q)-graph G is supermagic then it is Mod(k)-EM for all k

=23,....p.

Ho and Lee [6] extended the result of Stewart to regular complete k-partite
graphs. Shiu, Lam and Cheng [14] considered a class of supermagic graphs
which are disjoint union of K; ;. A general construction of supermagic graphs is
considered in [15].

Example 5. It is easy to see that the classical concept of a magic square of n
boxes corresponds to the fact that the complete bipartite graph K(n,n) is super
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magic if n >3. Thus K(n,n) is Mod(k)-EM for all k> 2. Figure 5 shows K(3,3) is
super magic.

In [7] supermagic regular complete multipartite graphs and supermagic
cubes are characterized. In [11] and [1] supermagic labellings of the M&bius
ladders and two special classes of 4-regular graphs are constructed. Some
constructions of supermagic labellings of various classes of graphs are described
in [1,6,7,21].

3. Mod(2)-EM graphs.

Theorem 3.1. A necessary condition for a (p,q)-graph G to be Mod(2)-EM is
that g(q+1) = ps (mod 2), where s is the common vertex sum under a Mod(2)-
EM labeling. Possible values, mod 2, for s are given in the following table:

pe0(mod2) | pal(mod2)
q =0 (mod 2) 0,1, 0,1
q= 1 (mod?2) 0,1 0,1

We note here C; is not Mod(2)-EM. The more general result is
Theorem 3.2. The cycle Cy, is not Mod(2)-edge-magic for all k> 1.

Theorem 3.3. The cycle Cy is Mod(2)-edge-magic for all k> 2.

Proof. Label the edges of the cycle by 1,2,3,...,2k consecutively. It is obvious
that each vertex has sum which is an odd integer. Hence the cycle Cy is
Mod(2)-edge-magic for all k>2.4

Corollary 3.4. The 2-regular graph C(n,,ny,...ny) with k disjoint cycles C(ny),..
...,C(my) is Mod(2)-edge-magic for any even n;,n,,...,nx >4, and k> 2.

We can extend the above result to the following general

Theorem 3.5. For even integer k > 2. The k-regular graph G of even order is
Mod(2)-edge-magic.
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We see that P, is Mod(2)-EM, but P,U P, is not_ There exists two non-
Mod(2)-EM graphs G, H and their union is Mod(2)-EM. The reader can show
that P,xPy, , St(2k-1) are not Mod(2)-EM for k > 2. However, we have

Theorem 3.6. The graph P,xP,, U St(2k-1) is Mod(2)-EM for all k > 2.
Proof. Suppose V(P:xPy) = {u3,uy,..., U} U{vy,Vs,...,v5} and

E(PxPx) = {(u;yuis1): i =1,2,...,2k-1}U{(Vi,vier): § =1,2,...,2k- 13U {(u;,v3): i
=1,2,...,2k}.

V(84(2k-1)) = {X, Y1,Y2-...y-1}and E(St(2k-1)) = {(x,y3): i =1,2,...,2k-1}.

The graph P,xPyy U St(2k-1) has 8k-3 edges.

We label the edges of {(u;,u;+1): i =1,2,...,2k-1}U{(V;,Vi1): i =1,2,...,2k-1}
by the even numbers {2,4,6,...,8k-4} arbitrarily and {(u;,v;): i =1,2,...,2k}U
{(x,yi): 1=1,2,...,2k-1} by odd numbers {1,3,5,....,8k-3}.

The labeling is clearly a Mod(2)-EM.[]

Example 6. Figure 6 shows that P,xP, U St(3) is Mod(2)-EM.
1

G=PxP, H=S8t(3)
Figure 6.

The following construction of graphs was introduced in [4].

Definition 3.1. Given graphs G and H with n and m vertices, respectively, the
corona of G with respect to H is the graph G © H with vertexset V(GO H)=V
(G) O {n distinct copies of V (H) denoted V(H,), V(H,), . . ., V(H,)and edge set
E(G © H) =E(G)O {n distinct copies of E(H) denoted E(H,), E(H,), . . ., EH,)}
O{(, v) : v; OV (G), v OV(H)}.

Theorem 3.7. The corona of cycle C,© K, is Mod(2)-edge-magic for all n> 3.

Theorem 3.8. The corona of cycle C,,© C, is Mod(2)-edge-magic for all even
n,m>4,

We skip the proof, for the reader can check easily from the scheme of the
following example.

Example 7. Figure 7 shows that C;® C; is Mod(2)-EM.
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Definition 3.2.Given two graphs G and H. The composition of G with H, denote
by GfH], is the graph with vertex set V (G) xV (H) in which (u,; v;) is adjacent
to (uz; v,) if and only if uju, € E(G) or u; = u, and v,v, € E(H).

Theorem 3.9. If G is a (p,q)-graph , with q is even, then G[N;] is Mod(2)-EM .
Proof. Let V(N,) = {v,, v2}. Suppose q(G) =2n, we have q(G[N:]) =2nx4 =8n.
Let 2 = {{1,3,5,7}, {9,11,13,15}.,,,,, {8n-7,8n-5,8n-3,8n-1}}
Q= {{2,4,6,8}, {10,12,14,16}.,,,,, {8n-6,8n-4,8n-2,8n}}.
Suppose f: E(G) == UQ is a bijection, we define a mapping
F: G[N;] —{1,2,...,8n} as follows
If flu,w) = {a,,a,,2;,a4}, then we label the edges of G[N,] by

F((u, v)))=2,, F((u,v5)) =2z, F((W,v1))=a3, F((W,v2))=a,

It is clear that G[N,] is Mod(2)-EM under F.{]

Example 8. The following (6,6)-graph G is not Mod(k)-EM for any
k=2,3,4,5.However, G[N,] is Mod(2)-EM for different F;, i=1,2.
Uy U,

U,
u, ug

Uy
Not Mod(2)-EM
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(@, ,)= (1,35, 7}
f((u,u,))= {9,11,13,15)
f((u,u,)= {17,19.21,23}
£((u,.u,))= (24,68}
f((u,,u,)= {10,12,14,16)

f((ug.u,))= {18,20,22,24}

Mod2)-EM

Figure 8.

Corollary 3.10. Every finite graph G is an induced subgraph of a Mod(2)-EM
graph.

4. Mod(2)-Edge-Magic Trees.

In this section, we give a condition for trees to be Mod(2)-EM. First we
recall the following definition.

Definition 4.1. Given a graph G=(V,E), a matching M in G is a set of pairwise
non-adjacent edges; that is, no two edges share a common vertex. A perfect
matching is a matching which matches all vertices of the graph. That is, every
vertex of the graph is incident to exactly one edge of the matching.

Theorem 4.1. A tree T is Mod(2)-EM if it has a perfect matching.

Proof. If T has a perfect matching then its order is even, say p =2k. So its has k
edges in the perfect matching P. We label all the edges in P by {1,3,5,...,2k-1}
and the remaing edges in T by {2,4,6,...,2k-2}. It is obvious that each vertex has
a sum which is an odd integer. Hence the tree T is Mod(2)-edge-magic.®%

Example 9. Figure 9 shows a tree which is Mod(2)-EM and has a perfect
matching.
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Figure 9.
Corollary 4.2. The path Py is Mod(2)-edge-magic for all k> 1.
Corollary 4.3. The corona of path P,© K, is Mod(2)-edge-magic for all n> 2.

Example 10. Figure 9 shows that P,© K, is Mod(2)-edge-magic for n=3 and 4.
X ) X3

Figure 10.

Remark. One may wonder if the result of Theorem 4.1 can be extended to a
“forest’’. We note that the forest 2K, has a perfect matching but it is not
Mod(2)-EM.

5. Mod(2)-Edge-Magic Unicyclic Graphs.

As the proof of Theorem 4.1., we can show that
Theorem 5.1. A unicyclic graph G is Mod(2)-EM if it has a perfect matching.

Let Gph(*) be the class of all graphs (G,u) with a distinguished vertex u.
For (G1,u3), (G2,uz) in Gph(*), the amalgamation of (Gy,u,), (G2,u2) is the graph
obtained by disjoint union of G,, G, and identify two vertices u, and u..
We denote the resulting graph by Amal((Gy,u;) (Gz2,u2)). This construction can
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be extended to the amalgamation of an arbitrary number of graphs.Let G=(V,E)
and SC V. If ¢ : S— Gph(*), then we can form G amalgamate the graphs {¢(s) =
(Gsuy) : (Gyou,) in Gph(*)} by forms the disjoint union of G and { ¢(s) = (Gy,us) :
(Gsus) in Gph(*)}by identify s with u, We denote the resulting graph by
Amal(G, S; 9).

Example 11 . The following two unicyclic graphs are of order 6. One is not
Mod(2)-EM and the other is Mod(2)-EM.

u, u,
Uz
Ug
Not Mod(2)}-EM Mod{2)-EM
Figure 11.

Corollary 5.2. If C, is a cycle with vertex set {c,,c,,...,c,} and Py, is a path with
vertex set {Vy,Va,...,Vn}, then Amal((Cap+1, €1),(P2m, V1)) is Mod(2)-EM.

Example 12.

" Figure 12.

Corollary_5.3. The unicyclic graph Amal((Cay, €1, €2), {(P2m, V1), (P21, V1)}) is
Mod(2)-EM.
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Ex 13

Figure 13.

Corollary 5.4. The graph Amal((SP(2k+1, 25),v}), (C2q+1,€1)) is Mod(2)-EM for
anyk,s>landn>1.

Example 14.

Amal((SP(@, 2),v,), (C5,c4))

Figure 14.

Corollary 5.5. Suppose S CV(C;,) and ¢ : S— Gph(*) where ¢(s)= (P24+1,V1),
for some a. Then the graph Amal (Cy,S, ¢ ) is Mod(2)-EM.

We illustrate the above result by the following example.

Example 15.
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5= {cy. €, €5, C6}.9(¢1)= P3 $(c;)= 5 6(c5)= Py, $(ce)=P;.

Figure 15.

6. (p.p+1)-graphs which are Mod(2)-EM.

We consider five special classes of Mod(2)-EM (p,p+1)-graphs in this section.
(A) One-point Union of cycles.

Let G, H be two graphs with uEV(G) and vEV(H) respectively. The
amalgamation of (G,u) with (H,v) is the graph obtained by forming the disjoint
union of G and H and then identifying u and v. The construction is called the
one-point union. We will use Amal(G,H,{u,v}) to denote the amalgamation of
(G,u) and (H, v). The following graphs C(4,4) and C(3,5) are the
Amal(C,4,Cs,{u,u}) and Amal(C;,Cs,{u,v}) respectively (Figure 16).

o P ]

C@4,9) CG:9)
Figure 16.

Theorem 6.1. One-point union C(n,n+1) is Mod(2)-EM for any n > 3.

Proof. Ifn is odd, we label the edges of C, component by 2,4,6,...,2n and the
edges of C,+; component by 1,3,5,...,2n+1. It is clear that C(n,n+1) is Mod(2)-
EM.

If n is even, we label the edges of C, component by 2,4,6,...,2n and the edges of
Cps1 component by 1,3,5,...,2n+1. It is clear that C(n,n+1) is Mod(2)-EM.[]

(B)YCycle with a chord.

Notation. For a cycle C, with vertex set {¢,,Cz,...,C,}, we denote by C,(t) the
cycle with a chord (c,,¢y).
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Theorem 6.2. The cycle with a chord C,(f) is Mod(2)-EM if and only if
()t=st+l ifn=2s

(2)t=s+1 ifn=2s+1

Proof. We see that the graphs C(t) for (n,t) = (4,3) and (5,3) are Mod(2)-EM.

Figure 17.

If n is even, and n=2s > 4, C,(t) has 2s+1 edges. If the graph is Mod(2)-EM,
then we see that among {1,2,3,...,2s+1} numbers we have s+1 odd numbers
{1,3,5,...,2s+1} , these numbers should label the edges of Cy(t) consists of
{(c1,€2),(€2,€3)...,(c,1)}. Thus t must equal s+1. The remaining numbers { 2,4,
,..-,28} will be assigned to the other edges of C,(t) . The similar argument can
apply for n is odd.[]

C) The th aph O(¢;.8,,65).

The theta graph ®(£,,L,,L5), which consists of three paths of length £,,,,83
joined at their endpoints u and v. It has p = £,+€,+8;—1 vertices.

Theorem 6.3. For any £,,8,> 1, the theta graph ©(¢,,£3,£;) is Mod(2)-EM, if
(1)&; = & +Ep-1,
2) &=, +¢L,.

We skip the proof, but illustrate the labeling scheme by the following
examples.

Example 16.
(D) (£1,82,83) =(3,4,6), €3 = £;+L5-1,
3

—
w

8(3.4,6)



(2) (£|3£2’83) =(2’4’6)$ 83 = zl'i'f'Z’
1

8(2.4,6)
2 12

4 10
6 8

Figure 18.

(D)The dumbbell graph DB (£,,6,,85).

The dumbbell graph DB (£,,£5,£3), consists of two cycles of length £,and €,,
connected by a path of length €;at its endpoints u and v, and has p = £;+8+¢; =1
vertices .

DB(6.4,2)
Figure 19.

Theorem 6.4. The dumbbell graph DB (£,,¢,,8;) is Mod(2)-EM for
M=+ 8,

@ &L=4+¢ -1,

B)e=¢+¢8,.

We skip the proof, but illustrate the idea by examples.

Example 17.
(]) (81,82,(-3) =(395’2)

DBG,52) ©

(2) (£I,£2s£3) =(394,6), B = El'*‘ 82 'l,
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DB(3.4,7)
Figure 20.

In section 4 and 5, we show that a tree or uncyclic graph that has a perfect
matching is always Mod(2)-EM. However, this result cannot be extended to
(p,p+1)-graphs. We have the following example which shows such an extension
is impossible.

Example 18. The following (10,11)-graph has a perfect matching {(x,,v1),
(X2,V2), (V3,Vs), (Xa,Va), (Ve,v7)}. If it is Mod(2)-EM , the perfect matching must
be labeled by even numbers, then vertices vg,v; will have vertex label 1 and x;,x,

will have vertex label 0, which is impossible.
X,

Figure 21.
(E)A special class of (p.p+1)- graphs.

However, we construct infinitely many Mod(2)-EM graphs by extending
specific subclasses of (p,p+1) graphs. '

Theorem 6.4. Let G be any (p,p+1) graph without vertex of degree 1 with

vertex set V(G) = {v},Vy,...,Vp}, we can construct a (2p+2, 2p+3)-graph G#
which is Mod(2)-EM and contain G as an induced subgraph.
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Proof. Let V(G#) = V(G) U {x1,Xa,....XpXp+1,Xp+2} and E(G#) =E(G) U {(x,,
Vl)s(xb VZ)’- -"(xi: Vi)"-a- o (xp-h vp-l)’(xp’ Vp)s(xpﬂ’ Vp)a(xp+2. Vp)}° Thus G# is
constructed by append an edge toeach vertex of G, except the last vertex is
appended with three edges.

Now we label the p+1 edges of G by :2,4,6,...,2p+2. All the p+2 appended
edges by :1,3,5,...,2p+3.

Clearly, the labeling is Mod(2)-EM.[]

Example 19.. The following (11,12)-graph G and its extension G# which is a
Mod(2)- EM (24,25)-graph.

7. Some Unsolved Problems.

We propose the following problems for future research.

Problem 1. Can we find a (p,q)-graph G which is Mod(k)-EM for k=2,3,...,p,
but not super magic?

In 1993 the third author proposed the following conjecture [5] :
Conjecture: Every cubic simple graph of order p &2 (mod 4) is edge-magic
(over Zp).

Problem 2, Characterize Mod(2)-EM 3-regular graphs.

Problem 3. Characterize Mod(2)-EM (p.p+1)-graphs.
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