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Abstract

Given a graph G, a function f : V(G) — {1,2, ..., k} is a k-ranking
of G if f(u) = f(v) implies every u— v path contains a vertex w such
that f(w) > f(u). A k-ranking is minimal if the reduction of any
label greater than 1 violates the described ranking property. The
rank number of a graph, denoted x,(G), is the minimum & such that
G has a minimal k-ranking. The arank number of a graph, denoted
¥-(G), is the maximum k such that G has a minimal k-ranking. It
was asked by Laskar, Pillone, Eyabi, and Jacob if there is a family of
graphs where minimeal k-rankings exist for all x.(G) < k < ¥-(G).
We give an affirmative answer showing that all intermediate minimal
k-rankings exist for paths and cycles. We also give a characteriza-
tion of all complete multipartite graphs which have this intermediate
ranking property and which do not.

MSC Classification (Primary): 05C78

1 Introduction

A function f : V(G) — {1,2,...,k} is a k-ranking of G if f(u) = f(v)
implies every u — v path contains a vertex w such that f(w) > f(u). A
k-ranking was defined by Ghoshal, Laskar, and Pillone [4] to be (locally)
minimal if the reduction of any label greater than 1 violates the described
ranking property. Another definition of a minimality is that a k-ranking f
is globally minimal if for all z € V(G), f(v) < g(v) for all rankings g. It was
shown by Jamison [6] and Isaak, Jamison, and Narayan [5] that these two
definitions of minimal rankings are equivalent. The rank number of a graph,
denoted x,(G), is the minimum k such that G has a minimal k-ranking.
The arank number of a graph, denoted 1,.(G), is the maximum k such that
G has a minimal k-ranking. It was asked by Laskar, Pillone, Eyabi, and
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Jacob [10] if there is a family of graphs where k-rankings exist for all x,(G)
< k < ¥r(G). We give an affirmative response to their question showing
that all intermediate rankings exist for paths and cycles. Furthermore, we
give a characterization of all complete multipartite graphs which have the
intermediate ranking property and which do not.

If minimal k-rankings exist for all x,(G) < k < ¥.(G) then G is said
to have the intermediate ranking property. It is not too difficult to see that
there exist graphs that do not have the intermediate ranking property. For
example, the star graph K;, has only two possible types of minimal &-
rankings. In the first type, the center vertex is labeled 1, which forces all
other vertices to have different labels. Hence v,(K1,,) = n. If the center
vertex receives a label other than 1 then the vertices with degree 1 can all
be labeled 1. The label of the center vertex can then be reduced to 2, which
gives xr(K1,n) = 2. No other minimal k-rankings exist.

In our search for graphs with the intermediate ranking property we begin
by reviewing known results for rank numbers and arank numbers. Rank
numbers are known or many classes of graphs including paths , cycles, split
graphs, and complete multipartite graphs, Mébius graphs, powers of paths
and cycles, some grid graphs, some trees and unicyclic graphs, and cubic
ladder graphs [3, 4, 11, 1, 12, 13, 14].

However less is known about arank numbers of graphs. It is known
that if a graph has a vertex of degree n — 1 then the arank number is
n [4]. Here assign the label 1 to the vertex with degree n — 1 and all
other vertices are then forced to have different labels. Hence the result is
immediate for complete graphs and wheels. The arank number is known
only for a few other families of graphs: complete multipartite graphs, paths,
and rook’s graphs (the Cartesian product of Kpx K,), and within 1 for
cycles [4, 8, 10, 7).

In this paper we include an unusual twist. It would appear that we
would have to know the both the rank and arank numbers of a graph to
determine if it has the intermediate ranking property or not. However we
will show this to be false. Although we have not completely determined
the arank number of a cycle, we can conclude that cycles do have the
intermediate ranking property.

The focus of this paper will be to explore the intermediate ranking prop-
erty for all classes of graphs where the rank numbers and arank numbers
are known.
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2 Preliminaries

We next give two elementary lemmas that will be used to establish that
paths and cycles have the intermediate ranking property. The first lemma
gives a sufficient condition for joining two rankings of paths to form a
ranking of a larger path. The second lemma states that if the last vertex
of a path has the largest label, the ranking of a path s vertices can be
"wrapped" to form a ranking of a cycle on s vertices, where an edge is
added between the first and last vertices of the path.

Lemma 1 Let f be a minimal ranking of P, on vertices vy, ...,v, and let
g be a minimal k-ranking of P; on vertices wy, ..., we. If f(vs) > f(v;) for
alll <1< s—1and f(v,) > f(w;) for all 1 < i < t then the labeling
h(i) = f(3) for 1 < i < s and h(i) = g(i) for s+ 1 < i < t is a minimal
k-ranking of Psys = P, U P, U {(vs, w1)}.

Proof. The minimal ranking property is clearly preserved on each of
the two small paths. Any path connecting two vertices in different parts
contains a vertex with the highest label. m

Lemma 2 Let f be a minimal k-ranking of P, on vertices vi, ...,vs where
f(vs) > f(v;) for all1 < ¢ < s —1. Then the labeling h(i) = f(i) for
1 £ ¢ < s is a minimal k-ranking of the cycle C, formed by adding an edge
between vertices v; and v,.

Proof. We examine the ranking property for paths between different
pairs of vertices in Cs. Any path connecting two vertices that does not
contain the vertex v, clearly preserves the ranking property. Any path con-
necting two vertices containing the vertex v, preserves the ranking property
since v, has the largest label. m

3 Intermediate k-rankings of paths

Bodlaender et al. [2] proved that x,(Pn) = |logy(n)] + 1 and that optimal
rankings of P, = v;,v9, -+ , v, can be constructed by labeling v; with ac+1
where 2% is the largest power of 2 that divides i . We will refer to this
particular ranking as the standard ranking of a path. Laskar and Pillone
[9] investigated the arank number of a path and gave a construction for
minimal k-rankings where the first vertex of the path is labeled £ — 1 and
the m-th vertex is labeled k for some m dependent on k and the number of
vertices in the path. Kostyuk, Narayan, and Williams (8] showed that this
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construction indeed produced arankings and that ¢,.(P,) = |log; (n + 1))
+ [logy (n+ 1 (2less 1) .

Theorem 3 Let P, be a path on n vertices. There exist k-rankings for all
Xr(Pn) <k< ¢r(Pn)-

Proof. When k = x,(P,) or ¢(P,) the result is clear. We will consider
xr(Prn) < k < ¥(Pn). Let P, be the shortest path where %.(Pn) = k.
We construct a k-ranking of P, as follows. We label the first m vertices
using the 1,-ranking of P,, following the construction given by Laskar and
Pillone [9], where the first vertex is labeled k — 1 and the m-th vertex is
labeled k. We then use the standard ranking of P, for the remaining n —m
labels. For this to work we need to insure that all of the labels in the path
P,_m are less than or equal to k — 1. Since xr(Pn) = |logyn] + 1 we have
k > |logyn] +2. We claim that a path can contain n —m labels that are at
most |logy n| + 1. To prove the claim we note that if we use the standard
ranking of a path the number of labels can be 2l1827] — 1 > 2logan 1 =
n—1>n—m. By Lemma 2, this labeling is a minimal k-ranking of P,,.We
can apply Lemma 1 to conclude that this labeling is a minimal k-ranking
of P,. m

4 Intermediate k-rankings of cycles

Bruoth and Hortisk [3] proved that x,(Cr) = |loga(n — 1)} +2 and Kostyuk
and Narayan [7] showed for any n > 3, ¥.(Cy) is equal to ¥.(P,) or
Vr(Pa) + 1.

Theorem 4 Let n > 3 and C,, be a cycle on n vertices. Then there exist
k-rankings for all x,(Cr) < k < ¥,(Ch).

Proof. When k equalsy,(Cy) or ¥,(Cyp) the result is clear. We will
consider x,(Crn) < k < %(Cr). Let P, be the shortest path where
¥r(Pm) = k. We construct a k-ranking of C,, as follows. We label the
first m vertices using the 1,-ranking of P,,. From the construction given
in [8] we can build a labeling where the first vertex is labeled k£ — 1 and
the m-th vertex is labeled k. Then we append a segment consisting of the
standard ranking of P,_, at the end of the path to form a ranking of P,.
Finally we insert an edge joining the first and last vertices of the path creat-
ing the cycle C,,. For this to work we need to insure that all of the labels in
the path P,_,, are less than or equal to k—2. Since x,(Cy) = [logan] +1,
k > [logon] + 2. We claim that a path can contain n — m labels that are
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at most [logyn]. To prove the claim we note that if we use the standard
ranking of a path the number of labels can be 2/1°8an1 — 1 > glogan _7 —
n—12>n—m. By Lemma 2, this labeling is a minimal k-ranking of C,,. =
We note that an interesting twist has occurred. Although the arank
number of a cycle has not been completely settled, we have shown that
cycles do have the intermediate ranking property. For example, it was
shown by Kostyuk and Narayan (7] that ¢(C3o) = 8 or 9 but it is not known
which is the answer. We highlight this fact in the following proposition.

Propaosition 5 The cycle Cyg has the intermediate ranking property.

Proof. We start by noting that x(Cso) = 6 and ¥(C3p) = 8 or 9. We
know that a x,-ranking and a ¥,-ranking must exist for all graphs. We
display minimal k-rankings for k = 6,7, and 8 in the table below.

k-ranking of Cyg
512134312161213121412131215121
612321454123217121312141213121
712134312156512134312181213121

0o} 3| O] 3~

We consider two cases. If ¥(Cso) = 8 then C3p has the intermediate
ranking property since we have shown the existence of minimal k-rankings
for k = 6,7, and 8. If 9(C3p) = 9 then we know a minimal 9-ranking of
C3o must exist, and then we have the other three rankings by construction.
Although we do not know which case is true, both cases conclude with Csp
having the intermediate ranking property. =

5 Intermediate k—rankings for complete mul-
tipartite graphs

We mentioned in the introduction that stars do not have the intermediate
ranking property. In this section we determine which complete multipartite
graphs have the intermediate ranking property.

We begin with a few basic properties of minimal &-rankings of complete
multipartite graphs. Clearly by the definition of k-ranking only one part
may have a vertex labeled 1. Then by the minimality condition, if a part
contains a vertex labeled 1, then all of the vertices in can be reduced to 1.

Next, we restate a lemma of Ghoshal, Laskar and Pillone [4].
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Lemma 6 Let G be the complete multipartite graph Ky, n,, ...,
Then x-(G) = (X5 ni) — max{ny,ng,..,np} + 1 and ¥.(G) = (Z
min{nl,ng, ,np} +1.

Proof. A minimal k-ranking where & = x,(G) is obtained by labeling
all vertices in the largest part with a 1 and labeling all other vertices in
the other parts with 2, 3, ..., (C5n:) — max{ni,ng,..,np} + 1. A k-
ranking where k = 1,.(G) is obtained by labeling all vertices in the smallest
part with a 1 and labeling all other vertices in the other parts with 2,

y oy (O3 ni) — min{ny,ns,...,np} +1. Both rankings are minimal since
the reduction of any label larger than one would result in the same label
appearing in two different parts, which would violate the ranking property.
|

The following theorem characterizes complete multipartite graphs into
two classes according to whether the graph has the intermediate ranking
property or not.

Theorem 7 Let G be the complete multipartite graph Ky, n,,...,n, where
ny > ng 2 --- 2 np. Then there exist k-rankings for all x,(G) < k < ¥ (G)
if and only if G contains at least one part of order s for all |ny| < s < |n4|.

Proof. Assume G contains at least one part of order s for all |ny| <
8 < |ny|. Consider the subgraph Ko, ,ms,..:;m, Whereny =m; > mgp > - -+
> m; = np and |miy1]| — |mi| < 1. For each i, 1 < i < 4.(G) — x~(G),
we can construct a minimal (x-(G) + i — 1)-ranking of G as follows. Label
all of the vertices in the part m; with 1 and label all other vertices with
2,3,...,(x+(G) +1 — 1). Conversely, let j be the smallest integer such that
j # |na| for any A. Since there is no part of order j, it is impossible to have
a minimal k-ranking of G with j vertices labeled 1. Hence there does not

exist a minimal k-ranking where k = (E‘—1 |74] + 2oy 7l ) ]

6 For which graphs does x,(G) = %.(G)?

The next logical question is: For which graphs G are the rank numbers
and arank numbers equal? We can establish the following results using two
bounds Ghoshal, Laskar, and Pillone [4] which we recall here.

Proposition 8 Let G be a graph and let a(G) be the size of the largest
independent set of G. Then x,(G) < n— a(G).



Proof. A k-ranking of G where k¥ = n — a(G) can be obtained by
labeling each vertex in the largest independent set with 1 and giving all
other vertices distinct labels. We then label the other vertices and reduce
if necessary to insure minimality. ®

Proposition 9 Let G be a graph. Then ¢.(G) > A(G).

Proof. Labeling the vertex of largest degree with 1 forces each of its
neighbors to have different labels. We then label the other vertices and
then reduce labels if necessary to insure minimality. This must result in a
minimal k-ranking where £ > A(G). m

Combining the above two propositions yields, x-(G) < n — a(G) =
A(G) € ¥r(G). Hence n — a(G) = A(G) is a necessary condition for
x+(G) = ¢¥-(G). Applying this idea leads to the following graphs.

® Ky x+(G) =9 (G) =n

o C4; xr(Cs) =9r(Cy) =3

o L3 =P, x P3; xr(L3) = 1l’r(L3) =4

However it is very likely that others exist. We conclude by posing the
following problem.

Problem 10 Determine all graphs G where x.(G) = ¥-(G).
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