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Abstract

Let G be a nontrivial connected graph of order n and k an integer
with 2 < k < n. For a set S of k vertices of G, let x(S) denote the
maximum number £ of pairwise edge-disjoint trees T1,7T%,...,T; in
G such that V(T:) nV(T;) = S for every pair i, j of distinct integers
with 1 <14,j < £. A collection {T1,T3,...,Te} of trees in G with this
property is called a set of internally disjoint trees connecting S. The
k-connectivity xx(G) of G is defined as xi(G) = min{x(S)}, where
the minimum is taken over all k-element subsets S of V(G). Thus
k2(G) is the connectivity x(G) of G. In an edge-colored graph G in
which adjacent edges may be colored the same, a tree T' is a rainbow
tree in G if no two edges of T are colored the same. For each integer £
with 1 < £ < kx(G), a (k, £)-rainbow coloring of G is an edge coloring
of G (in which adjacent edges may be colored the same) such that
every set S of k vertices of G has £ internally disjoint rainbow trees
connecting S. The (k, £)-rainbow index rxx,¢(G) of G is the smallest
number of colors needed in a (k, £)-rainbow coloring of G. In this
work, we investigate the (k, £)-rainbow indices of small cubic graphs.
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1 Introduction

In an edge-colored graph G in which adjacent edges may be colored the
same, a path P is a rainbow path if no two edges of P are colored the same.
The graph G is rainbow-connected if G contains a u — v rainbow path for
each pair u,v of distinct vertices of G. An edge coloring of a connected
graph G that results in a rainbow-connected graph is a rainbow coloring of
G. If p colors are used in a rainbow coloring, then this coloring is referred to
as a rainbow p-edge coloring. The minimum p for which G has a rainbow p-
edge coloring is the rainbow connection number rc(G) of G. These concepts
were introduced and studied in [4] and studied further in [1, 2, 3, 5, 9, 10].
It is known that computing the rainbow connection number of a graph is
NP-Hard and determining whether a given edge-colored graph (with an
unbounded number of colors) is rainbow connected is NP-Complete (see
[2]).

As described in [5, 7], Ericksen (8] stated in 2007 that following the
terrorist attacks on September 11, 2001, it was observed that intelligence
agencies were not able to communicate with each other through their reg-
ular channels from radio systems to databases. Although such information
needs to be protected because it is critical to national security, procedures
must be in place that permit access between appropriate parties. Erick-
sen went on to say that this can be addressed by assigning information
transfer paths between agencies which may have other agencies as inter-
mediaries, where the number of passwords and firewalls required that are
prohibitive to intruders is large enough so that any path between agencies
has no passwords repeated yet small enough for smooth communication
among agencies. This situation can be modeled by a graph and studied
by means of rainbow colorings. Recently, several generalizations of these
concepts have been introduced.

If G is a connected graph with connectivity x(G) = &, then it follows
from a well-known theorem of Whitney [12] that for every integer £ with
1 < £ < k and every two distinct vertices v and v of G, the graph G
contains £ internally disjoint u — v paths. A generalization of rainbow-
connected graphs based on Whitney’s theorem was introduced in [5]). For
a connected graph G and an integer £ with 1 < £ < &(G), the rainbow
£-connectivity rcy(G) is the minimum number of colors needed in an edge
coloring of G (where adjacent edges may be colored the same) such that
for every two distinct vertices u and v of G, there exist at least £ internally
disjoint 4 — v rainbow paths. Thus rc;(G) = r¢(G). When £ = x(G), the
rainbow £-connectivity of G is simply referred to as the rainbow connectivity
k-(G) of G. These concepts were introduced and studied in [5] and studied
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further in [10].

For example, the connectivity of the 3-cube Q3 is 5(Q3) = 3. Rainbow
p-edge colorings of Q3 are shown in Figure 1 for p = 3,4,7. In the 3-
edge-colored graph shown in Figure 1(a), every two distinct vertices are
connected by a rainbow path; in the 4-edge-colored graph in Figure 1(b),
there exist at least two internally disjoint « — v rainbow paths for every two
distinct vertices u and v; while in the 7-edge-colored graph in Figure 1(c),
there exist at least three internally disjoint u — v rainbow paths for every
two distinct vertices  and v. In fact, rc;1(Qs) = rc(Qs) = 3, rea(Qs) = 4
and rca(Qs) = £,(Q3) = 7 (see [10]).

Figure 1: Rainbow p-edge colorings of Q3 for p = 3,4,7

In (7] the concept of rainbow colorings was extended to involve rainbow
trees in graphs. Let G be a nontrivial connected graph of order n on which
is defined an edge coloring where adjacent edges may be assigned the same
color. A tree T in G is a rainbow tree if no two edges of T are colored the
same. For an integer k with 2 < k < n, an edge coloring of G is called a
k-rainbow tree coloring (or simply a k-rainbow coloring) if for every set S
of k vertices of G, there exists a rainbow tree in G containing the vertices
of S. The k-rainbow indez rxx(G) of G is the minimum number of colors
needed in a k-rainbow coloring of G. Thus rxs(G) is the rainbow connection
number r¢(G) of G. Furthermore,

rxz(G) < 1x3(G) < -+ < 1% (G)
for every nontrivial connected graph G of order n. Rainbow trees and

rainbow indices of graphs were introduced and studied in (7).

For example, consider the graph G of Figure 2, where k-rainbow color-
ings of G are shown for k£ = 2,3,4. In the 5-edge-colored graph shown in
Figure 2(a), every two distinct vertices are connected by a rainbow path;
in the 6-edge-colored graph in Figure 2(b), every three distinct vertices
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are contained in a rainbow tree; while in the 7-edge-colored graph in Fig-
ure 2(c), every four distinct vertices are contained in a rainbow tree. In
fact, rxo(G) = 1¢(G) = 5, rx3(G) = 6 and rxx(G) = 7 for 4 < k < 8 (see

(b)

Figure 2: k-Rainbow colorings of a graph for k = 5,6,7

The concepts and problems concerning rainbow trees gave rise to a
generalized connectivity in [7] using trees with the aid of factorizations.
Let G be a nontrivial connected graph of order n and k an integer with
2 < k < n. For a set S of k vertices of G, let x(S) denote the maximum
number £ of pairwise edge-disjoint trees 71, T3, ..., Tz in G such that V(T3;)n
V(T;) = S for every pair 4,j of distinct integers with 1 < 4,5 < £ A
collection {T1,T%,...,T¢} of trees in G with this property is called a set
of internally disjoint trees connecting S. The k-connectivity kx(G) of G
is defined as xx(G) = min{«x(S)}, where the minimum is taken over all
k-element subsets S of V(G). Thus «2(G) is the connectivity £(G). These
concepts were introduced and studied in [7] and studied further in [11].

For example, consider the complete 3-partite graph G = K3 4,5 whose
partite sets are U = {uj,uz,us}, V = {v1,v2,v3,v4} and W = {wy,
wy, w3, Wq, ws}. Then &(G) = k2(G) = 7. For § = {u,v1, w1}, the
graph G contains the six internally disjoint trees of Figure 3 connecting S.
Furthermore, it can be shown that for each 3-element subset S of V(G), we
have 6 < k3(S) < 9. Therefore, k3(G) = 6 (see [7]).

This generalized connectivity of a graph was extended in (7] to edge-
colored graphs using rainbow trees. For a nontrivial connected graph G of
order n, let k and £ be integers with 2 < k < nand 1 < £ < k(G). A
(k, £)-rainbow coloring of G is an edge coloring of G (where adjacent edges
may be assigned the same color) such that every set S of k vertices of G
has £ internally disjoint rainbow trees connecting S. The (k, £)-rainbow
inder rxi,e(G) of G is the smallest number of colors needed in a (k,£)-
rainbow coloring of G. Therefore, rxx 1(G) = rxx(G) and rxs ¢(G) = rce(G).
In particular, rxz,1(G) = rx2(G) = 1¢(G) and rx3 () (G) is the rainbow
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Figure 3: Six internally disjoint trees in K3 45 connecting {u1,v;,w;}

connectivity &.(G). These concepts were introduced and studied in (7).

For example, it is known that «3(Ks) = 4 (see [7]). Thus, we consider
rxs,¢(Kg) for 1 < £ < 4. In the 3-edge-colored graph shown in Figure 4(a),
for every set S of three vertices, there exist three internally disjoint rain-
bow trees connecting S; while in the 4-edge-colored graph in Figure 4(b),
there exist four internally disjoint rainbow trees connecting S. In fact,
rxs,1(Kg) = rx3 2(Ks) = rx3,3(Kg) = 3 and rx3 4(Ks) = 4 (see [7]).

(b)

Figure 4: A rainbow 3-edge coloring and a rainbow 4-edge coloring of K

In [10] the rainbow f-connectivities of all cubic graphs of order at most
8 and of the Petersen graph were determined for 1 < ¢ < 3. In this work,
we investigate the rainbow indices of three well-known small cubic graphs,
namely the complete bipartite graph K3 3, the Cartesian product K3 x K,
and the 3-cube Q3. We refer to the book [6] for any graph theory notation
and terminology not described in this paper.
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2 Some Observations on the Rainbow Indices
of Cubic Graphs

In this section, we present several useful results on the k-rainbow index
and (k, £)-rainbow index of a graph. For vertices u and v in a nontrivial
connected graph G, the distance d(u,v) between u and v is the length of
a shortest u — v path in G. The diameter diam(G) of G is the greatest
distance between two vertices of G. For a set S of vertices in G, the Steiner
distance d(S) of S is the minimum size of a tree in G containing S. Such
a tree is called a Steiner S-tree or simply a Steiner tree. The k-Steiner
diameter, sdiamy(G), of G is the maximum Steiner distance among all sets
of k vertices in G. Thus if k = 2 and S = {u,v}, then d(S) = d(u,v)
and the 2-Steiner diameter sdiamz(G) simply equals diam(G). There are
some immediate upper and lower bounds for the k-rainbow index rxx(G)
in terms of the order and Steiner diameter of G, regardless of the value of
k. We begin with a result stated in [7].

Proposition 2.1 [7] Let G be a connected graph of order n > 4. For each
integer k with3<k<n-1,

k —1 < sdiami(G) < rxx(G) < n—1 and rx,(G) =n—-1.
Next, we make two useful observations.

Observation 2.2 Let G be an r-regular connected graph of order n > 4.
For each integer k with3 <k <n,

ke(G) <r—1.
In particular, if G is a cubic graph, then ki(G) < 2.

Observation 2.3 For a connected graph G of order n > 4, an integer k
with 3 < k < n and an integer £ with 1 < £ < kx(G),

rxk,¢(G) 2 sdiamg(G) = k - 1. (1)
Purthermore, if the size of G is m, then
Lk —1) < m. (2)

By (2) in Observation 2.3, if G is a connected cubic graph of order =,
then £,(G) = 1 for n > 6 and K,—1(G) = 1 for n > 10. That is, for each
integer £ > 2, rxn ¢(G) is undefined for n > 6 and rx,_1,¢(G) is undefined
for n > 10. In particular, rx, 2(G) is undefined for n > 6 and rx,-1,2(G)
is undefined for n > 10. The following result will be useful to us.
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Proposition 2.4 IfG is a connected cubic graph of order n whose (n—1)-
connectivity is 2, then n < 6 and rX,-12(G) 2 n—1.

Proof. Since k,_1(G) = 2, there is an (n — 1, 2)-rainbow coloring of G.
Let S be an (n —1)-element subset of V(G), where say S = V(G)—{v}. Let
Ty and T; be two internally disjoint rainbow trees connecting S. Assume,
to the contrary, that rx,_;2(G) < n — 2. Then both T; and T> must be
of size n — 2 and so V(T1) = V(T2) = S. Then none of the edges incident
with v belong to the two trees. Since the size of G is %n, it follows that

Sn—3> |E(T)| + |BE(T)| = 2(n - 2).

However, this in turn implies that n < 2, which is impossible. Therefore,
Xn-1,2(G) 2 n — 1 and we may assume that V(T3) = V(G). Hence 3n >
|E(Th)| + |E(T2)] > 2(n — 2). Since the order must be even, n < 6. ]

By Proposition 2.4, if G is a cubic graph of order n > 8, then rx,_1 2(G)
is undefined.

3 Rainbow Indices of Three Small Cubic Graphs

By Observation 2.2, if G is a connected cubic graph, then rxg ¢(G) is un-
defined for £ =3 and k > 3. Also, we have seen that rce(G) = rxz,¢(G) for
each £, where rc¢(G) is the rainbow ¢-connectivity of G. In [10] the rainbow
£-connectivities of cubic graphs of order less than or equal to 8 and the
Petersen graph were determined for 1 < £ < 3. Among the results obtained

are the following:
o rc1(K33) = 2, rca(K3,3) = 3 and rea(Kz3) = 3.
o rc1 (K3 x K3) =2, rea(K3 x K3) = 3 and re3(Ks x Kz) = 6.
e rc1(Qs3) = 3, rc(Q3) = 4 and re3(Qs) = 7.

In this section, we consider these three small cubic graphs and their (k, £)-
rainbow indices for all possible pairs k¥ and £, where 3 < k<nand £=1,2.

3.1 Rainbow Indices of K33

We first determine rxy ¢(K3 3) for all possible values of k > 3 and £ =1,2.
Observe that rxs 2(K3 3) is undefined by (2). We assume that the partite
sets of K33 are U = {uj,uz,u3} and W = {w,,ws, w3}. Figure 5 shows
three rainbow edge colorings of K3 3.
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Figure 5: Three rainbow edge colorings of K33

Proposition 3.1 For G = K33, 1x3,1(G) = rx3,2(G) = 3 and rxx1(G) =
k-1 forda<k<6.

Proof. We first show that rxs(G) = rxs2(G) = 3. Since the Steiner
distance of each partite set is 3, it follows by (1) that rx3¢(G) > 3 for
£=1,2. On the other hand, a proper 3-edge coloring of G (see Figure 5(a))
shows that rxs ¢(G) < 3 for £=1,2.

Next, we show that rx,,1(G) = k—1 for 4 < k < 6. With the aid of
Proposition 2.1 and (1), we need only show that rxi,;(G) < k—1for k = 4, 5.
The 3-edge coloring given in Figure 5(a) is a 4-rainbow coloring; while the
4-edge coloring given in Figure 5(b) is a 5-rainbow coloring. Therefore,
rx1(G)=k—-1for4 <k <6. s

Theorem 3.2 For G = K33, rx4,2(G) = rx5,2(G) = 5.

Proof. The coloring in Figure 5(c) shows that rxx2(G) < 5 for k = 4,5.
Then rxs 2(G) = 5 by Proposition 2.4.

Assume, to the contrary, that rxs2(G) < 4. Let c be a (4,2)-rainbow
coloring of G using the colors in {1,2,3,4}. Then at least three edges of
G are assigned the same color, say there are three edges colored 1. Let
S = {u;,ug,w;, w2} and suppose that T = {T1,T32} is a set of internally
disjoint rainbow trees connecting S. Since the size of every rainbow tree
is at most 4, each tree in 7 contains at most one of uz and w;. There-
fore, every vertex has degree 1 or 2 in each tree. If T} = Py, say, then we
may assume that T} = (u1,w1,uz,ws). However, this implies that both
ws and uz belong to T3, a contradiction. Thus T} = T3 = P5 and fur-
thermore, T} = (uy, w;,, Us, Wiy, u2) and T3 = (w;,, u2, ws, u1, w;,), where
{i1,i2} = {1,2}, is the only possibility. Therefore, c(ujw;,) # c(uow;,)
and c(ujw;,) # c(uow;, ), which in turn, by considering all possibilities of



S, implies that every two independent edges must be assigned distinct col-
ors. Since there are at least three edges colored 1, it follows that there is
a monochromatic K 3, say c(uyjw1) = c(uywz) = c(ujws) = 1. However
then, for 8’ = {ug, w;, ws, w3}, there are no two internally disjoint rainbow
trees connecting S’. Therefore, rx42(G) > 5. .

Table 1 summarizes the numbers rxi ¢(K3 3) for all possible values of k
and ¢, where the dashed lines “-” indicate the corresponding numbers do

not exist.

k=2 k=3 k=4 k=0 k=0
E=1112,1(G) =2 ms1(G)=3 m™1({G) =3 16,1(G) =4 1X6,1(C) =
=2 | rx2,2(G) =3 1rx9,2(G) =3 1rx42(G)=5 rxs,2(G)=5 —
£=3 | rx23(G)=3 —_ — — —

Table 1: The numbers rxx ¢(G) for G = K3 3

3.2 Rainbow Indices of K3 x K,

We next determine rx; ¢(K3 x K3) for all possible values of £ > 3 and
£=1,2. Again rxg2(K3 x K3) is undefined by (2). Let G = K3 x K, with
V(G) = U U W, where the three vertices in each of the two disjoint sets
U = {u1,u2,u3} and W = {w;, w2, w3} form a triangle and w;w; € E(G)
for 1 < i < 3 (see Figure 6). Furthermore, let Xy = {ujuz, ujus, uaus},
Xw = {w1ws, wyws, waws} and Y = {uyw;, uows, ugws}. Figure 6 shows
three rainbow edge colorings of K3 x Ka.

Proposition 3.3 For G = K3 x K3, 1%3,1(G) = rx4,1(G) = 3.

Proof. Since the Steiner distance of the set {uj,ug, w3} is 3, it follows
that rx4,1(G) > rx3,1(G) > 3; while the 3-edge coloring of G in Figure 6(a)
shows that rxs1(G) < rx4,1(G) < 3. .

Proposition 3.4 For G = K3 x K2, rx5,1(G) =rx32(G) = 4.

Proof. The 4-edge coloring of G in Figure 6(b) shows that the two num-
bers are at most 4. Then rx5,1(G) = 4 by (1). To see that rx32(G) > 4,
suppose that there is a (3,2)-rainbow coloring of G using three colors. If
T is a tree of order at most 4 whose vertex set contains U, then two of the
three edges in Xy must belong to T'. Since any rainbow tree must be of
order at most 4, there is only one rainbow tree connecting U, which is a
contradiction. Therefore, rx3 2(G) > 4 and so rx32(G) = 4. .
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(a) (b) (c)

Figure 6: The graph K3 x K3 and
three rainbow edge colorings

Theorem 3.5 For G = K3 x K3, rxg,1(G) = rx4,2(G) = rx5,2(G) = 5.

Proof. By Proposition 2.1, rxe,1(G) = 5. Also, the 5-edge coloring of G
in Figure 6(c) shows that rx 2(G) < 5 for k = 4,5. Therefore, rxs 2(G) =5
by Proposition 2.4.

Assume, to the contrary, that rx42(G) < 4. Let ¢ be a (4,2)-rainbow
coloring of G using four colors. We first verify two claims:

(A) There is no monochromatic triangle.

(B) If e and f are adjacent edges and c(e) = ¢(f), then {e, f} NY = 0.

If (A) is false, then suppose that the three edges in Xy are assigned the
same color. Then every rainbow tree containing U contains at most one of
the three edges in Xy. Therefore, if T is a rainbow tree containing U, then
it must contain at least two of the three edges in Y. This implies that it
is impossible to find two edge-disjoint rainbow trees each of which contains
U.

Next, suppose that (B) is false. Without loss of generality, suppose that
c(uyw;) = c(wyw3) and consider the set § = U U {ws}. Suppose that T;
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and T3 are internally disjoint trees of order at most § connecting S such
that ugwz ¢ E(T1). If T} is a rainbow tree, then V(T1) = S U {ws} and
the edges ugwy and wows must belong to T3. Moreover, two edges in Xy
belong to 7;. However, this implies that it is impossible for T3 to be a
rainbow tree, which is a contradiction.

Therefore, as claimed, (A) and (B) hold. Let E, E3, E3 and E4 be the
color classes and without loss of generality, suppose that |Ey| > [3] = 3.
We consider two cases.

Case 1. Y N Ey # 0, say c(uyw;) = 1. Then by (B) either (i) E; =Y
or (ii) Ey = {ujwi,ugus, wows}. If (i) occurs, then suppose that T} and T3
are edge-disjoint trees containing U. At most one of 77 and 7% can contain
two edges in Xy and so suppose that [E(T1) N Xy| < 1. Then T must
contain two edges in Y, implying that T} is not a rainbow tree. Therefore,
it is impossible to find two internally disjoint rainbow trees connecting S,
where U C S.

If (ii) occurs, then suppose that T; and T are internally disjoint rainbow
trees connecting the set § = UU{ws3} and without loss of generality, ugw; ¢
E(T1). Then either (iia) vjwy, wiws € E(T}) or (iib) upws, wows € E(TY).
If (iia) occurs, then ujuz,ujus € E(T1). Since the three edges incident
with u; all belong to T, it follows that 7> does not contain u;, which is
impossible. If (iib) occurs, on the other hand, then ujus,ujus € E(T}).
Then every tree T' containing u; and ug that is edge-disjoint from T} has to
contain the edges ujw; and ugug, which implies that T' cannot be a rainbow
tree. This is impossible, too. Therefore, (ii) does not occur either.

Case 2. Y N E; = 0. Then we may assume that ujus, ugug € E;. Since
ujug ¢ E; by (A), there is another edge belonging to Xw that is assigned
the color 1. However, a similar argument used in Case 1(ii) shows that it is
impossible to find two internally disjoint rainbow trees connecting the set
S = W U {us}, which is impaossible.

Therefore, rx42(G) = 5, as claimed. "

Table 2 summarizes the numbers rxi,¢(K3 % K3), where the dashed lines
“" indicate the corresponding numbers do not exist.

k=2 k=3 k=4 k=05 k=6
E=11m1(G)=2 1rx31(G)=3 1x%,1(G)=3 rx51(C)=4 rx51(G)=25
£=2 | ™x2,2(G) =3 1x32(G) =4 1x,2(G)=58 1x%5,2(G)=5 _
=3 | rx23(G) =6 —_ — _ _

Table 2: The numbers rxx,¢(G) for G = K3 x K,
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3.3 Rainbow Indices of Q3

We now consider the 3-cube Q3. Suppose that the vertices of Q3 are la-
beled as shown in Figure 7, where then U = {u),us,u3,u4} and W =
{w1, w2, ws, ws} are the partite sets.

Figure 7: The 3-cube Q3

By Proposition 2.4 and (2), rxx,2(Q3) is undefined for k = 7, 8. Figure 8
shows three rainbow edge colorings of Qs.

(2) (b)

Figure 8: Three rainbow edge colorings of Q3

Theorem 3.6 For G = Qs, rx31(G) = 3, 1x4,1(G) = rx5:1(G) = 5,
rxs,1(G) = rx7,1(G) = 6 and rxg1(G) = 7. |

Proof. That rxs;(G) = 7 is immediate by Proposition 2.1. To see that
rx3,1(G) = 3, the coloring in Figure 8(a) shows that rx3,1(G) < 3; while the
Steiner distance of the set S = {u,u2,u3} is 3 and so rx3,1(G) > 3 by (1).

For k = 4,5, the coloring in Figure 8(b) shows that rxx,1(G) < 5; while
the Steiner distance d(S) is 5 for S € {U,U U {w;}} and so it follows by
(1) that rxx,1(G) = 5. Therefore, rx4,1(G) = rx5,1(G) = 5.



For k = 6,7, Figure 8(c) shows that rx, 1(G) < 6 and so rx7,(G) = 6
by (1). If rxg,1(G) = 5, then let ¢ be a 5-rainbow coloring of G using five
colors and, without loss of generality, suppose that F; is a color class with
|Ei| <2 = [2]. If By = {e = vw,e’ = v'w'}, where u,u’ € U and
w,w’ € W, then consider the set § = V(G) — {u,w'}. By assumption,
there exists a rainbow tree T connecting S. Furthermore, T' must be of
size 5 and contain one of the edges e and ¢/. However then, one of the
vertices © and w’ must belong to T, implying that T contains more than 6
vertices, which is a contradiction. If E1 = {e = uw}, then consider the set
8§ =V(G) — {u,w} and a similar argument shows that there is no rainbow
tree connecting S. Therefore, rxg,1(G) > 6 and the desired result follows. m

Theorem 3.7 For G = Qs, rx42(G) =6.

Proof. Since the Steiner distance of the set U is 5, we see that rx4 2(G) >
5. On the other hand, the coloring in Figure 8(c) shows that rx42(G) < 6.
Assume, to the contrary, that there exists a (4, 2)-rainbow coloring ¢ of G
using five colors. Consider the four cycle C = (uj, w2, us, wyq,u;1) and let
Ty and T be internally disjoint trees connecting the set V/(C). Observe
that each of the four edges in C belongs to either Ty or T5. Furthermore,
if e and f are two edges in C that are not adjacent, then e and f belong
to different trees. Therefore, we may assume that ujwy, uswe € E(T}) and
uywy, uswg € E(T2). Then uowy € E(T1) and uqwp € E(T2) and so we
may further assume that uow;,uswy € E(T1) and uyws,uqws € E(T3).
Therefore, both T} and T3 are of size 5, implying that |E;| > 2 for each
color class E; (1 £ 7 £ 5). Also, the two edges ugws and usw; belong
to neither 73 nor T». Therefore, if the 4-cycle formed by the vertices in
the set V(G) — V(C) is denoted by C’, then C’ contains two edges that
are not adjacent and belong to neither of two internally disjoint rainbow
trees connecting V(C). Without loss of generality, suppose that |E;| >
|E2| = :-- > |Es|. Then either (i) |[Ey] =4 and |E;| =2for2 <i<5
or (ii) |[E1| = [E2] = 3 and |Ej| = 2 for 3 < i £ 5. If (i) occurs, then
c(ugws) = c(uqw;) = 1. Also, since C was arbitrarily chosen, every 4-cycle
contains two nonadjacent edges e and f with ¢(e) = ¢(f) = 1. However, this
is impossible since |E; | = 4. If (ii) occurs, then {c(ugws), e(uqw)} = {1,2}
and, in general, every 4-cycle contains two nonadjacent edges e and f such
that {c(e),c(f)} = {1,2}. Again this is impossible. We conclude that
rx4,2(G) > 6 and so rx4,2(G) = 6. ]

Theorem 3.8 For G = Q3, rxg2(G) = 12.

Proof. Let there be given a (6, 2)-rainbow coloring c of G = Q3. Consider
the set § = V(G) — {u1, w2} and suppose that 77 and T are internally
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disjoint rainbow trees connecting S. If u; belongs to neither T; nor T3, then
10 < [E(Th)| + |E(T2)] < |E(G)| — degu1 = 9, which is clearly impossible.
Hence, each of u; and w; belongs to one of the trees T1 and T5. If both
Ty and T, are of order 7, then we may assume that «; € V(T}) and w; €
V(T>). However, this implies that the edge ujws belongs to neither T)
nor Tp. Therefore, 11 = |E(G) — {viwz}| = |E(Th)| + |E(T2)| = 12, a
contradiction. Therefore, we assume that V(T1) = § while V(T3) = V(G)
and E(G) = E(T1) U E(T3). Hence, the five edges incident with u; or
wy belong to Tb and are assigned distinct colors. In general, every five
edges that form a subgraph isomorphic to a double star of order 6 must
be assigned distinct colors. Therefore, if there are two edges e and f with
c(e) = ¢(f), then we may assume, without loss of generality, that e = ujw;
and f = uow;. Now consider the set S’ = V(G) — {us, w4} and let T} and
T4 be internally disjoint rainbow trees connecting S’. We have seen that
the five edges incident with ug or w4 must belong to one of the two trees,
say TJ. However then, either T} is not a tree or T} is not a rainbow tree, a
contradiction. Therefore, no two edges can be assigned the same color. =

Although the exact values of the remaining two rainbow indices of Qs
(namely rx3 2(Q3) and rxs2(Qs)) are unknown, it can be verified that 5 <
rx3.2(Q3) < 6 < rx5,2(Q3) < 8. Table 3 summarizes the numbers rx,¢(Qa).

k=2 k=3 k=4 k=5
=1 rx2,1(G) = 3 Tx3,1(C) = 3 rx4,1(G) =5 rXs,1(G) =9
t=2| mua(@) =4 B5<rxsa(G)<6 mea(G)=6 6% rxs2(G)<8
=3 | rx2,3(G)=7 —_ —_ —

k=06 k=7 k=38
=11 rxe1(CG)=6 rx7,1(G) =6 tXg,1(G) =7
£=2 | rxe,2(G) =12 - —
£=3 — — —

Table 3: The numbers rxx ¢(G) for G = Qs
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