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Abstract

The channel assignment problem is the problem of assigning radio
frequencies to transmitters while avoiding interference. This problem
can be modeled and examined using graphs and graph colorings.
L(2,1) coloring was first studied by Griggs and Yeh [6] as a model of
a variation of the channel assignment problem. A no-hole coloring,
introduced in [4], is defined to be an L(2, 1) coloring of a graph which
uses all the colors {0,1,...,k} for some integer k. An L(2, 1) coloring
is irreducible, introduced in [3], if no vertex labels in the graph can
be decreased and yield another L(2,1) coloring. A graph G is inh-
colorable if there exists an irreducible no-hole coloring on G.

We consider the inh-colorability of bipartite graphs and Cartesian
products. We obtain some sufficient conditions for bipartite graphs
to be inh-colorable. We also find the optimal inh-coloring for some
Cartesian products, including grid graphs and the rook’s graph.
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1 Introduction

Graph coloring is a well-studied and fertile topic in graph theory. Motivated
by the problems from real world applications, many interesting variations
and generalizations of graph coloring have evolved. For a survey see [9]. One
such variation is motivated by the channel assignment problem in wireless
communication.

The channel assignment problem is the problem of assigning radio frequen-
cies to transmitters while avoiding interference. This problem can be mod-
eled and examined using graphs and graph colorings. L(2,1) coloring was
first studied by Griggs and Yeh [6] as a model of a variation of the chan-
nel assignment problem. An L(2,1) coloring of a graph G is an integer
labeling of the vertices where adjacent vertices differ in label by at least
two, and vertices that are at distance two from each other differ in label
by at least one. That is, an L(2,1) coloring of G is a vertex labelling
f:V(G) — {0} UZ* such that

1. |f(u) — f(v)] = 2 for all uv € E(G),
2. |f(u) - f(v)| 2 1 if d(u,v) =2.

The span of an L(2,1) coloring f on a graph G is the max f(u) for all
u € V(G). The span of a graph G, denoted by A(G), is the minimum span
of all L(2,1) colorings on G. An L(2,1) coloring on G whose span is equal
to the span of G is called a span coloring of G.

A full coloring, introduced in [5], is an L(2, 1) coloring that uses every label
{0,1,...,M(G)}. There are many graphs that do not have a full coloring.
For example, a complete graph K, on n > 1 vertices does not have a full
coloring. A relaxation of full colorings was introduced in [4]. An L(2,1)
coloring f on a graph G is a no-hole coloring if f : V(G) — {0,1,2, ..., k}
is onto for some k. For example, Cs does not have a full coloring, but has
a no-hole coloring, as shown in Figure 3. A sufficient condition for a graph
to be no-hole colorable is provided in [4].

Theorem 1. [4] Every graph G with n > A(G) + 1 is no-hole colorable.

The irreducibility of an L(2,1) coloring was introduced in [3]. An L(2,1)
coloring is irreducible if no vertex labels in the graph can be decreased
and yield another L(2,1) coloring. Formally, the reducibility of an L(2,1)
coloring can be defined as follows. Let C(G) be the set of L(2, 1)-colorings
of G. A coloring f € C(G) is reducible if there exists g € C(G) such that
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g(u) < f(u) for all u € V(G) and g(v) < f(v) for some v € V(G). We
denote this reduction from f to g by g < f.

An L(2,1)-coloring f is ¢rreducible if it is not reducible. A graph G is
inh-colorable if there exists an irreducible no-hole coloring of G. Figure 1
provides examples of the above discussed variations of L(2,1) colorings.
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(a) An irreducible L(2, 1) coloring.
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(b) A reducible L(2,1) coloring.
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(c) A reducible no-hole L(2, 1) coloring.
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(d) An irreducible no-hole L(2, 1) coloring.

Figure 1: Examples of variations of L(2, 1) colorings

Theorem 2. [3] Let C(G) be the set of all L(2,1)-colorings of G. A col-
oring f € C(G) is reducible if and only if there exists g € C(G) with g < f
and g(v) < f(v) for only one v € V(G).

Let G be an inh-colorable graph. For any inh-coloring f of G let k =
max f(u), u € V(G). The lower irreducible no-hole span A;;},(G) and the
upper irreducible no-hole span A}, (G) are the minimum and maximum k
respectively, over all inh-colorings f on G. In other words,

Aiph(G) = rrt‘in{max f(u) : u € V(G), f is an inh-coloring on G}
Aiph(G) = m?x{ma.x f(u) :u € V(G), f is an inh-coloring on G}

If G is not inh-colorable, then A, (G) = Ajpp (G) = .

Note that not every graph is inh-colorable. For example, a complete graph
is not no-hole colorable and hence not inh-colorable. On the other hand
there are graphs with the property that every no-hole coloring is reducible.
One such example is shown in Figure 2.

Several classes of graphs have been investigated for their inh-colorability,
including trees, paths, cycles [3], unicyclic graphs and hex graphs [8]. One
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Figure 2: For this graph, every no-hole L(2,1) coloring is reducible

of the interesting and challenging problems is to determine whether for a
graph G, M(G) = Ay (G). It has been shown in [7] that for a tree T', other
than a star, A(T") = Ajpp(T). Note that not every graph has this property,
for example A(Cg) = 4 and X1, (Cs) = 5 as shown in Figure 3.

0 0
2
4 2 4
4 5
2 1
0 3
(a) An optimal L(2,1) (b) An optimal inh
coloring of Cs. L(2,1) coloring of Cs.

Figure 3: 4 = A\(Cg) < A;ph(Cs) =5

In this paper we discover three more classes of graph with the property
that A(G) = A1 (G). In Section 2 we investigate the inh-colorability of
bipartite graphs. We provide some sufficient conditions for a bipartite graph
to be inh-colorable. In Section 3 we concentrate our efforts on finding the
inh span of a special class of bipartite graphs, grid graphs, and show that
the span of a grid graph is the same as its inh span.
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The study of the inh-colorability of a grid graph is important because many
wireless networks have a grid structure. Also, grid graphs are one of the
basic Cartesian products, which are defined as follows. Let G and H be two
graphs. The Cartesian product of G and H, denoted by GOH, is defined
as follows: the vertex set V(GOH) = V(G) x V(H), and two vertices (a, b)
and (z,y) are adjacent if and only if either a =z and by € E(H),or b=y
and az € E(G). For example, a grid graph is the Cartesian product of two
paths. In Section 4 we determine the inh span for the Cartesian product of
two complete graphs and the Cartesian product of a complete graph and a
path and show that the graphs in these two classes also satisfy the property
that A(G) = Ay, (G). We conclude this paper in Section 5 with some open
problems.

2 Bipartite Graphs

We begin this section by showing that a complete bipartite graph is not
inh-colorable.

Observation 3. If G is a complete bipartite graph then G is not inh-
colorable.

Proof. Let G be a complete bipartite graph with independent sets S; and
S3. We first note that diam(G) = 2. Thus, each color class of any L(2,1)-
coloring of G may contain at most one vertex. Let f be an L(2, 1)-coloring
on G. Let i = max(f(x)) where u € S1, and let j = max(f(v)) where
v € Sp. Now ¢ # j since each color class has at most one vertex. Wlog,
assume i < j. Then the color class 7 + 1 is empty since every vertex in S,
is adjacent to the vertex labeled i and no vertex in S has a label greater
than . This creates a hole at i 4+ 1 since there is a vertex with label larger

than 7 4+ 1, namely j. a

Next we look at a few conditions that are sufficient for a bipartite graph to
be inh-colorable.

Theorem 4. Let G be a bipartite graph with independent sets Sy and S, of
cardinalities n and m respectively. Suppose there exist vertices v1,v3 € S
such that N(v1) = S and | %] < |[N(v2)| < m. Then G is inh-colorable.

Proof. Let G be a bipartite graph with independent sets S; and S; of
cardinalities n and m respectively where there exist vertices v;,v; € S
such that N(v1) = Sz and [ 2] < [N(v2)] < m.
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Since [%] < |N(v2)| < m there exists an ordering of the vertices of S as
{u1,u2,us,...,um} where ug;_ovz € E(G) fori =1,2,...,| %], um-1v2 €
E(G) and u,,v; ¢ E(G). Note vz may be adjacent to other vertices in S;.

Define f(u;) =i—1fori=1,2,...,m and f(v2) = m. Since N(v;) = Sz,
d(us,u;) = 2 for all u;,u; € Sz and hence no vertex in S; can be reduced.
Since v, is adjacent to a vertex labeled 0, 3,6,...,m — (m mod 3) — 3, and
m — 2, its label cannot be reduced. Since v is not adjacent to u,, f does
not violate any L(2,1) constraints.

To finish the labeling f, the remaining vertices in S; can be labelled greed-
ily. Since these vertices are labeled greedily the resulting labeling must be
irreducible. The labelling f is an L(2, 1)-coloring, and hence all we need to
show is that it contains no holes. The labels 0,1,2,...,m—1 are all used to
label S;. The label m is used to label v. Since no vertex in S is adjacent
to a vertex labelled m or greater when labelled greedily, the label cannot
create a hole. Thus f is an inh-coloring of G. W]

Theorem 5. Let G be a bipartite graph with independent sets Sy and S,
where |S)| = |S2|. If [L‘S;—‘-lj + 1 < deg(w) < |Si1| for all w € V(G) then G
is inh-colorable.

Proof. Let G be a bipartite graph with independent sets Sy, Sa where |S;| =
|S2| = m. Assume |32] +1 < deg(w) < |S1| —1 for all w € V(G)

Since {$#] +1 < [N(u)| <|S1| — 1 where u € S; we can order the vertices
in 81 = {v1,v2,v3,...,Um} such that v, ¢ E(G), uvm-1-2; € E(G) for
i=0,1,...,|252|. Note that u may be adjacent to other v;.

Let v;,v; € Sy. Since deg(v;) > J—S,j“-l and deg(v;) > J§211, by the pigeon hole
principle, v; and v; have a common neighbor in S. Therefore every vertex
in S is at distance two from every other vertex in Sj.

Greedily label the vertices in S) as ordered earlier. Since every vertex in
S, is at distance two from every other vertex in S;, they must all receive
different labels and v,, will receive label m — 1. Next greedily label w.
Since it is adjacent to vm—1-2: for i = 0,1,...,|=52| and not adjacent
Up, it is labeled m. Finish the labeling by greedily labeling the remaining
independent vertices, noting that no vertex in S; is adjacent to a vertex
labeled m or greater. The coloring is an inh-coloring. a

Corollary 6. The Crown is inh-colorable.

Proof. The crown has independent sets S, and Sy, such that |S,| = | S|



It is also the case that deg(u) = |Sn| — 1 for all vertices u in the crown. By
Theorem 5 the crown is inh-colorable. a

We conclude this section with the following conjecture.

Conjecture 1. If G is a bipartite graph that is not complete then G is
inh-colorable.

3 Grid Graphs, P,0F,

Colorings on grid graphs are well studied because grid graphs serve as graph
theoretical models for wireless networks. For examples see [1, 2]. In this
section we will determine the inh span of a grid graph.

Consider the grid graph, P,0P,,, where n > 3 and m > 3. Let v; ; denote
the vertex in the it! row and jth column.

Let {b,} be the sequence 0, 2, 4, 6, 1, 3, 5,0, 2, 4,6,1,3,5,0,2,....
Define a coloring f of P,0OP,, as follows:

o Label the vertices in the first row starting from v, ; using {b,} starting
from 0. That is f(v1,1) =0, f(v1,2) =2,....

e For i = 2,3,...,n, f(vi;1) = f(vi-1,3), and continue the sequence
{bn}. That is, if f(vi;) = bk, then f(v; ;1) = bey1. For example,
when i = 2, f(vz,1) = 4, f(v2,2) = 6, f(va,3) = 1,... and when i = 3,
f(v2,1) =1, f(vg2) =3,....

e If m =5 mod 7, then change f(v1,m) from 1 to 0.
e if m =3 mod 7, then change f(v2,m) from 1 to 0.

An example of the above labeling is shown in Figure 4.

Lemma 7. Consider P,0OP,,, where n > 3 and m > 3 and the coloring
f of P,0OP,, as defined above. Fori=1,2,...,n, if1 <j<m-—1 then
|F(vi,5) = f(vij41)] 2 2, and if 1 < § < m—2 then | f(vi;) — f(vij+2)| 2 1.

Proof. Case 1: m#5 mod 7 and %3 mod 7.

Since every row follows the sequence {bn.}, |f(vi;) — f(vij+1)] = bk —
bit1] = 2 and |f(vi;) — F(vi,j42)] = bk — brga| 23> 1.
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Figure 4: A coloring of PsDPs.

Case 2: m=5 mod 7orm=3 mod 7.

Wilog, assume m =5 mod 7.

If i = 1 and j = m — 1, then by definition, f(v;;) = 6 and f(v;j41) = 0.
Also, if i = 1 and § = m — 2, then by definition of f, f(vi;) = 4 and
f ('Ui,j+2) =0.

However, for other values of i or 7, f(vi;) = bk, f(vij41) = bk41, and if
j#m—1, then f(vijt2) = bry2 Where by is the kB term of the sequence

{bn}. Therefore, |f(vi;) — f(vig41)] = lbk — br4a]| 2 2 and |f(vi;) —
F(vij4+2)| = |bx — brs2| = 3 > 1. Hence the lemma. |

Lemma 8. Consider P,0P,,, where n > 3 and m > 3 and the coloring
f of P,OP,, as defined above. For j =1,2,...,m, if1 <i<n—1 then
[f(vi,3) = f(Wit1,3)| 2 2, and if 1 < i S n—2 then |f(vi3) — f(vir2, )| 2 1.

Proof. Case 1: m# 5 mod 7 and #3 mod 7.

Since for everyrow i = 2,3,...,n, f(vi,1) = f(vi—1,3) and the sequence {b,}
is followed, we have f(v; ;) = bx and f(vi41,5) = bes2 and f(vitz ;) = bkta.
Thus we have | f(vi,;)—f(vit1,5)| = |br—bk+2| 2 3 and |f(vs,3)—F(vit2,5)| =
bk = bra| 2 1.

Case 2:m=5 mod7orm=3 mod 7

56



Wlog, assume m =5 mod 7.

Suppose j # m. Then as in the previous case, since for every row i =
2,3,...,n, f(vi1) = f(vi-1,3) and the sequence {b,} is followed, we have
| £ (vi,5) = f (it 1,5)| = [k —brt2]| = 3 and |f(vs,5) — f(vit2,5)] = |bx—bi+a| 2
1.

Suppose j =m. If i =1, then f(vi;) = f(vi,m) =0, f(vi41,5) = f(va,m) =
5 and f(viy2,;) = f(vsm) = 2. Therefore, |f(vi ;) — f(vit1,;)] = 5, and
|f(vi,j) — f(vige )] = 2. If i > 2, then f(v;1) = f(vi-1,3) and the sequence
{bn} is followed, we have | f(vi,;) — f(vi+1,5)| = |bk —bi+2| = 3 and | f(v; ;) -
f(vig2,5)| = |be — be+4| = 1. Hence the lemma. ]

Lemma 9. Consider P,0P,,, where n > 3 and m > 3 and the coloring f
of P,OP,, as defined above. For1 <i<n—1,if1<j<m-1, then
|f(vi,)—f (vit1,541)| 2 1, and if2 < j < m, then |f(vij)—f(vit1,5-1)| 2 1.

Proof. Case 1: m#Z5 mod 7and #3 mod 7.

Since for every row i = 1,2,...,n—1, f(vi41,1) = f(vi,3) and the sequence
{b.} is followed, we have f(v; ;) = bk, f(Vig1,j+1) = br3 and f(vip1,-1) =
br+1. Therefore, by the definition of {bn}, we have |f(vi ;) — f(Vit1,j+1)| =
bk — bis| 2 1 and |f(vi,5) — f(vitr,5-1)] = |be — bicyr| > 2.

Case2: m=5 mod7orm=3 mod 7
Wlog, assume m =5 mod 7.

Suppose 2 < i < n—1orl < j < m-—1. Since for every row i =
1,2,...,n —1, f(vit1,1) = f(vis) and the sequence {b,} is followed, we
have f(vi,,-) = bk, f(v,-+1,_.,-+1) = bk+3 and f(v,-.,.l,j-l) = bk+1 and thus
|F(vs,5) = F(vit1,541)] 2 1 and |f(vi;) — fvig1,5-1)] 2 2.

If i =1 and j = m, then |f(vi;) — f(vi41,j-1)| = |f(v1,m) = flvem-1)| =
|0 — 3] = 3. Hence the lemma. O

Theorem 10. Letn > 3 and m > 3. Then Xj(PaOPp) < 6.
Proof. Consider the coloring f as defined above for a grid graph P,0OP,,,
where n > 3 and m > 3. We will show that f is an inh L(2,1) coloring.

By Lemmas 7, 8 and 9, we can see that f is an L(2,1) coloring. Also, since
[ uses all labels from 0 to 6, f is a no-hole L(2,1)-coloring. We will now
show that f is irreducible.
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Consider f(v;;). We will show that f(v; ;) cannot be reduced to label
a < f(vi,;) because of f(vpq) Where either 1 < p < 3 or p < ¢, and either
1<g<L3org<j.
Case 1: f(v;,;) = 1.
If i > 3, then f(vi—2;) =0, by definition. If ¢ < 3, then f(vi41,j41) =0 by
the definition of f. Therefore f(v;;) cannot be reduced to a smaller label.
Case 2: f(vi ;) = 2.

f(vi ;) cannot be reduced, because by the definition of f, f(vi;-1) = 0 if
j>1,and if j = 1, then f(vi—z;) = 1 and f(vi—1j41) = 0. Therefore
f(vi,;) cannot be reduced to a smaller label.

Case 3: f(‘U.',j) =3.

f(vi,j) cannot be reduced, because by the definition of f, f(v;j-1) = 1 if
j>1, and if j = 1, then f(v,-_g,j) =2, f('Ug'...l,j.;.l) =1 and f(’l)g',j.;.z) =0.
Therefore f(v; ;) cannot be reduced to a smaller label.

Case 4: f(vi;) =4.

If i = 1, then f(v;;—1) = 2 and f(v;j-2) = 0. If i > 1 and j > 1, then
by definition, f(vi—1;) = 0, f(vij-1) = 2. If j = 1 and i = 2, then
f(ic13) =0, f(vi—1,j+1) = 2, and f(vit1,5+1) = 3. And finally if j =1
and i > 2, we have f(v,-_l_j) =0, f(v,-_l,,-.,.l) =2, and f(v,-_z,j) =3.

Therefore, f(vi;) cannot be reduced to a smaller label.
Case 5: f(vi,j) = 5.

If i = 1, then f(vij-1) = 3, f(vi,j-2) =1 and f(vi41,5-1) =0. If j =1,
then f(v.-_l,j) =1, f(‘v.'_1'j+1) = 3, and f(’l);'-z,j) =4. Ifi>1land j>1,
then f(v;j—1) =3, f(vi-1;) =1if i > 3 or j # m and 0 otherwise.

Therefore, f(v; ;) cannot be reduced to a smaller label.
Case 6: f(vi,j) =6.

If i = 1, then f(v;j—1) = 4, f(vi41,}) =3, f(vis1,j-1) =1 and f(viya;) =
0. Ifj = 1, then f(v‘i,j-l-l) = 1’ f(v‘i—l,j) = 2’ f(v‘i—l,j-i-l) = 4 and
f(vi—z;) = 5. Ifi > 1 and j > 1, then by definition, f(v;;-1) = 4,
f(vic1,;) =2 and f(vi-1,5-1) = 0.

Therefore, f(v; ;) cannot be reduced to a smaller label.

Thus in all cases f(v;;) cannot be reduced to a smaller label because of
f(vp,q) such that either 1 <p <3 orp<i, and either 1 <g<3org<j.
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Therefore, f is irreducible, and hence f is an inh L(2,1) coloring.

Since the largest label under f is 6, we have )‘inh(PﬂUPm) <6. O
Theorem 11. Letn > 4 and m > 4. Ainh(Pa0OPy) = 6.

Proof. Let n > 4 and m > 4. In [10] the authors have shown that

AMP,0PF,) =6 if n > 4 and m > 4. However, we know that A\(G) <
Ainh(G) for any graph G and therefore we have

Ainh(PnBPn) 2 MP,0P,) = 6. (1)
Hence, from (1) and Theorem 10 we get A, (P0Py) = 6. O
Corollary 12. Ainin(P,0OP,) = A(P,DPy), if n> 3 and m > 3.

4 More Cartesian products

In this section we will investigate the inh-colorability of two more Cartesian
products, the Cartesian product of two complete graphs, also known as the
rook’s graph, and the Cartesian product of a complete graph and a path,
and calculate their inh span.

First we will consider K,,0K,,,, where n > 2 and m > 2.

Theorem 13. A; 1 (K,.0Kp,) =mn—1.

Proof. Consider the function f : V(K,0K,,) — {0,1,...,mn—1} defined
by f(vi;) = ((: —1)+ (j —i)n) mod mn. First we will show that the

function f is a bijection.
Let f(vi;) = f(vap) where 1 <i,a<nand1<jb<m,
That is,
(G=-1)+(G—-in) modmn = ((@a—1)+(b—a)n) mod mn

=(i—1) modn = (a—1) modn
=i = a, because 1 <i,a <n.
Since i = a and f(v; ;) = f(va,), we have (j—i) mod m = (b—i) mod m.

However, 1 < j,b < m and therefore j = b. Thus we have shown that f is
an injection.
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However f : V(K.0K,) — {0,1,...,mn — 1} and |V(K,0K,)| = |{0, 1,
..., mn —1}|. Also, we have shown that f is an injection, and hence f is a
bijection.

Since f is a bijection, f is a no-hole coloring. Now we will show that f is
an L(2,1) coloring.

Let z and y be two adjacent vertices of K,OK,.

Since f(vi;) = ((¢—1)+ (j —i)n) mod mn, if z and y are in the same
row, then |f(z) — f(y)| is a multiple of n. However, since f is a bijection
|f(z) — f(¥)] # 0. Therefore, if z = v;; and y = vy x (ie, z and y are in
the same row), then |f(vi;) — f(vix)| =2 n = 3.

Similarly, since f(v; ;) = (( = 1) + (j — i)n) mod mn = (i(1-n)+jn~1)
mod mn, if z and y are in the same column |f(z) — f(y)| =2 n—-12>2.

Also, since f is a bijection, f(z) # f(y) for all z,y € V(K,OK,,). There-
fore, we have shown that f is an L(2,1) coloring.

Since d(z,y) < 2 for all z,y € V(KnOK,,), f(z) cannot be reduced to a
smaller label and still be an L(2,1) coloring.

Therefore, f is an inh L(2, 1) coloring. Since the largest color used in f is
mn—1,

Aiph(KnOKpm) < mn-—1. (2)
However, since d(z,y) < 2 for all z,y € V(K,0Ky,), any L(2,1) coloring

of K,O0K,, must use mn colors. Wlog, assume that the smallest label used
in an L(2,1) coloring is 0. Thus we have,

Ainh(KxO0Km) 2 MKn,OKp) 2 mn—1. (3)
Therefore, from (2) and (3), we have A;p; (K7OKpn) = mn — 1. ]
An example of an optimal inh L(2, 1) coloring of K3OKj is shown in Figure
5.
Corollary 14. A (Ka0K,,) = MKaOKp), ifn>2 end m > 2.

Next we will consider the Cartesian product K,O0F,, where n > 3 and
m > 1.

Theorem 15. Let n > 3 and m > 1. Then Ajpp(KnDOPp) =2n - 1.
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Figure 5: An inh L(2,1) coloring of K30K,.

Proof. Let vo,v1,...,vn—1 be the vertices of K,,. Assume v;; denotes the
ith vertex of K, (i.e, v;) in layer j of K,OPF,,.

Define a coloring f as follows:

o f(vo,1) =0, f(v11) =2, f(v21) =4, ..., f(Va-11) =2(n—1).

L f(v0,2) = 3, f(vl,Z) = 51 f(v2,2) = 7) ceey f(vn—2,2) = 2(n - 2) + 3,
f(vn—1,2) =1

o f(vij;) = f(vk,j—2), where k = (i —1) modn,0<i<n-—1and
3<jsm

Note that for layer j > 2, to get the coloring we rotate the coloring of layer
J — 2 clockwise one position. See Figure 6 for an example.

Claim: f is an L(2,1) coloring.

Let z and y be two adjacent vertices in K,OPF,,. If z and y are in the same
layer, then by definition of f, |f(z) — f(y)| = 2. On the other hand, let =
and y be in adjacent layers, say z = v;; and y = v; j41. If j = 1, then by
definition, |f(z) — f(y)| > 3. Similarly, since the labeling of layer 3 is the
labeling of layer 1 rotated clockwise one position and n > 3, if j = 2 then
|f(z) — f(¥)| = 3. Also, since we rotate the labels clockwise one position,
if j > 2, then for k=i — |&52| mod n

— (. N | F(vka),if jis odd
fe) = flosg) = { f (‘U:,zl), if  is even
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and
f(vk,2), if j is odd

F) = flvi41) = { f(vg,3), if 7 is even.
Therefore, [f(z) — f(y)| > 3.

Now suppose z and y are at a distance two. If x and y are in adjacent
layers, then by definition, f(z) # f(y). On the other hand, if z = v;;
and y = v; j+2, (i.e, = is in layer j and y is in layer j + 2), then again by
definition f(z) # f(y) (because the coloring of layer j + 2 is obtained by
rotating the colors of layer j one position clockwise).

Thus, f is an L(2,1) coloring, and hence the claim.

We will now show that f is an inh L(2,1) coloring. By definition, f uses
all colors from O to 2n — 1 in the first two layers, and since layer 7 > 2
is colored by rotating the colors of layer j — 2 clockwise one position, the
largest label used under f is 2n — 1. Thus f is a no-hole coloring. Also,
any two adjacent layers will have labels from 0 to 2n — 1, and d(z,y) < 2
if z and y are in adjacent layers. So for any label f(z) > 0, f(z) cannot be
reduced to a smaller label and therefore f is irreducible.

Therefore, f is an inh L(2,1) coloring of K,OPy, and thus we have,
Ainh(I{nDPm) < lf' =2n-—1. (4)

In addition, any two vertices z and y in K,,0P,, that are in the adjacent
layers have d(z,y) < 2. Since there are at least two layers (because m > 2),
any L(2,1) coloring of K,,DP,, must use at least 2n colors. This implies,

Therefore, from (4) and (5) we get Aina(KnOPn) =2n—1if n > 3 and
m> 1. O

An example of an optimal inh L(2,1) coloring of KsOPF} is given is Figure
6.

Corollary 18. Ay (KnOPp) = A(KaOPp), ifn>3 and m > 1.
5 Conclusion

In this paper we studied the inh-colorability of certain classes of graphs,
including bipartite graphs and certain Cartesian products. We determined
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Figure 6: An optimal inh L(2,1) coloring of KsOP;.

the inh span of the following graphs: grid graphs, the Cartesian product of
two complete graphs and the Cartesian product of a complete graph and
a path. We have also established that the above three classes of graphs
have the property that their inh spans are the same as their spans. We
believe that these results will help us in answering questions about the
inh-colorability of bipartite graphs and Cartesian products.

There are still some more questions that are worth investigating related
to these topics. First, are all bipartite graphs, except a complete bipartite
graph, inh-colorable? We believe that the answer is yes, and posed this
as a conjecture. Also, what other classes of graphs have the property that
Ainh(G) = A(G)? There are different kinds of grids one could consider
while modeling wireless networks and other applications. One example is
triangular grids. P,,0PF, is called the square grid. What can we say about
the inh-colorability of grids that are not square grids? In general, can we
characterize graphs that are inh-colorable?
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