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Lee, Liu and Tan [11] considered a new labeling problem in graph theory.
Given any vertex labeling f : V — {0,1} of a simple graph G = (V, E),
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Abstract

A vertex labeling f : V — {0,1} of the simple graph G = (V, E)
induces a partial edge labeling f* : E — {0,1} defined by f*(uv) =
f(u) if and only if f(u) = f(v). Let v(i) and e(i) be the number
of vertices and edges, respectively, that are labeled i, and define the
balance index set of G as {|e(0) — e(1)] : |v(0) — v(1)| < 1}. In this
paper, we determine the balance index sets of generalized wheels,
which are the Zykov sum of a cycle with a null graph.

Introduction

define a partial edge labeling f* of G according to

* 0 .f.f =f =0,
f (“”)={1 iffﬁg - ff3§ =1

Note that the edge uv is unlabeled if f(u) # f(v).

Denote by v¢(0) and v¢(1) the number of vertices of G that are labeled 0
and 1, respectively, under the mapping f. Analogously, let e£(0) and ef(1)
denote the number of edges of G that are labeled 0 and 1, respectively, by
the induced partial function f*. When the context is clear, we will simply

write v(0), v(1), e(0), and e(1) without any subscript.
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Definition 1.1. A vertex labeling f of a graph G is said to be friendly if
jvg(0) — v£(1)] < 1, and balanced if f is friendly and |ef(0) —ef(1)| < 1.

Call a graph balanced if it admits a balanced labeling. See [2, 3, 15]
for further results in balanced graphs. It is clear that not all graphs are
balanced. Lee, Lee and Ng [9] introduced the following concept as an
extension of their study of balanced graphs.

Definition 1.2. The balance index set of the graph G is defined as
BI(G) = {|ef(0) — es(1)| : the vertex labeling f is friendly}.

Example 1. It is not difficult to verify that the balance index set of the

graph G displayed in Figure 1 is {0,1,2}. m]
(0) (0) (1)
0 1
Q oo L ¢ O © Q o0 O
1 1
©, L €y
le(0) — e(1)] =0 e(0) —e(1)j =1 |e(0) —e(1)| =2

Figure 1: The friendly labelings of a graph G with BI(G) =.{0,1,2}.

In general, it is a difficult task to determine the balance index set of a
given graph. Balance index sets of special families of graphs with relatively
simple structures had been found (2, 4, 9, 14, 17]. Examples include

BI(St(n)) = {Ek}— Lk} ifn = 2k,

and .
if n is even,

0,1
BI(Cn(2)) = { Eo, 1,}2} if n is odd,

where St(n) is the star with n pendant vertices, and Cy,(t) denotes an n-
cycle with a chord connecting two nonadjacent vertices at distance t — 1
apart on the cycle. Another interesting example can be find in {7):

Theorem 1.1 If G is a k-regular graph of order p, then

0 ifpi )
BI(G) = {Ek%} z'fg :j f;ZZ"



Graphs with more complicated structure such as permutation graphs,
Halin graphs, chain-sum of cycles, and those formed by the amalgamation
of complete graphs, stars, and generalized theta graphs, and L-products
with cycles and complete graphs were studied in (1, 5, 6, 8, 10, 12, 13].

The Zykov sum of the n-cycle C, with the null graph N, is called a
generalized wheel, and is denoted GW(n, m). It is a wheel with m centers
(or hubs) ¢, ¢, ... ,cm, each of which is connected to the n vertices on the
rim. Therefore it has mn spokes, and n edges on the rim. When m =1, we
have the usual wheel W,,. In this paper, we determine the balance index
set of GW(n, m) for all integers n > 3 and m > 1.

2 The BI Sets of Wheels

Most of the existing results on balance index sets are derived via an ad
hoc approach, which relies on the specific structures of the graphs being
studied. It was remarked in [4] that BI(G) depends on the degree sequence
of G. This idea was further explored in [16], in which an algebraic approach
was proposed. Following the same spirit, it is easy to prove the next lemma.

Lemma 2.1 If e* denotes the number of unlabeled edges in the induced
edge labeling of a graph, then for i =0,1,

2e(i) +¢* = Z deg(v),

fw)=i
and
AE(G)| = Y deg(v)= Y degv)+ > deg(v).
veV(G) f(v)=0 f(v)=1
This lemma immediately leads to our key theorem.

Theorem 2.2 For any friendly vertez labeling, the balance index is

( Y deg(v)- Y deg(v)).

e(0) —e(l) =

N =

f(v)=0 f(v)=1

In particular, when G is k-regular, we obtain Theorem 1.1. The wheel
graph W, is bi-regular: all the vertices on the rim have degree 3, but the
center has degree n.

Theorem 2.3 ([10]) The balance index set of GW(n,1) is {253} for all
odd integers n > 3.
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Proof. If n is odd, the wheel graph has n + 1 vertices, thus v(0) = v(1) =
24l Notice that if f is a friendly labeling, by changing the labels of the
vertices from 0 to 1, and 1 to 0, the new vertex labeling is still friendly, but
|e(0) — e(1)] remains unchanged. Hence we may assume the center of the
wheel is an 0-vertex. Then the numbers of 0- and 1-vertices on the rim are
221 and 242 respectively. It follows from Theorem 2.2 that

e(0) — e(1) = % [n +

3(n-1) _3(n+1)] _n-3
2 2 2

This completes the proof. (]

Theorem 2.4 The balance indez set of GW(n,1) is {%,|3 — 3|} for all
even integers n > 4.

Proof. We have two possibilities. In the first case, v(0) — v(1) = —1, then
the number of 0- and 1-vertices on the rim are § —1 and % +1 respectively.
In the second case, v(0) — v(1) = 1, then the numbers of 0- and 1-vertices

on the rim are both 3. The result follows from Theorem 2.2. 0
Example 2. It suffices to describe the vertex labeling on the rim. They
are listed below along with their respective BI sets. m}

n | labelings of C, | BI(GW(n,2))

3 011 0}

5 00111 {1}

7 0001111 {2}

4 0111,0011 {1,2}

6 001111,000111 {0,3}

8 | 00011111,00001111 {1,4}

3 The Casesof 2<m<5

For m > 2, how the centers are labeled does make a difference. hence
we need to analyze the labelings that we could assign to these m centers.
Nevertheless, since interchanging O-vertices with 1-vertices in a friendly

labeling does not alter the value of |¢(0) —e(1)|, we may assume v(0) < v(1).

Theorem 3.1 Forn > 3,

_{{2/n-2|,|n—6]} ifn is odd,
Biewn,) = { 1r = ifn is oven



Proof. If n = 2k + 1, where k > 1, the generalized wheel GW(n,2) has
2k+-3 vertices. We may assume v(0) = k+1, and v(1) = k+2. The vertices
on the rim are of degree 4, and the degrees of the two centers ¢; and ¢, are
2k + 1. We need to analyze three cases, depending on the labels of ¢; and
co. If both are labeled 0, then, on the rim, k — 1 vertices are labeled 0, and
k + 2 are are labeled 1. According to Theorem 2.2,

e(0) — e(1) = 5 [2(2k +1) +4(k — 1) — d(k + 2)] = 2k —5.

The other two cases are handled in a similar fashion. The results are
summarized in the following table, in which n(i) denotes the number of
vertices of degree k on the rim that are labeled 7.

[ fle1) | fle2) [ 7a(0) | ma(1) [ (0) —e(1)
(k—1[k+2[ 2t-5
E |[k+1 —2

E+1| k 1-2k

=lolo
[ Kol K=}

The result for odd n follows immediately. The same argument gives the
result for even n. ]

Theorem 3.2 Forn > 3,

_ [{lk—2],13k - 6]} #n=2k+1,
BI(GW(n,3)) = {{Ilc — 5, k, |3k — 10|, |3k — 5|} if n = 2k.

Proof. If n = 2k + 1, where k > 1, the generalized wheel GW(n,3) has
2k + 4 vertices, hence v(0) = v(1) = k + 2. The vertices on the rim are
of degree 5, and the degrees of the three centers ¢, c; and c3 are 2k + 1.
We need to analyze four cases of values of f(c;). For example, if each c;
is labeled 0, then k — 1 vertices on the rim are labeled 0, and k + 2 are
labeled 1. Thus

qm—ea)=%p@k+1y+wk-1y-ak+2n=3k—a

Results from all four cases are summarized below.

fle) | flea) [ fles) [ ms(0) | ns(1) | e(0) —e(1)
0 0 0 [k—1]k+2] 3k—6
0 0 1 k_|k+1| k-2
0 1 1 |k+1] & 2—k
1 1 1T [k+2[k—1] 6-3k

Hence the balance index set is {|k — 2|, |3k — 6|} if n = 2k + 1. The result
for n = 2k is obtained in a similar fashion. m]
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Theorem 3.3 While B GW(3,4)) = {0,3,6}, we find, forn > 4,

_ [ {3,In—=9],|n—3|,|2n — 15|,|2n — 9|} if n is odd,
BI(GW(n, 4)) = { {0,|n — 6|,]2n — 12}} if n is even.
Proof. The vertices on the rim are of degree 6, and the degrees of the four
centers are n. We need to analyze the values of f(¢;). For n = 3, we may
assume v(0) = 3 and v(1) = 4. There are only 4 cases:

[ flcr) [ flcz) [ f(es) | f(ca) [ n6(0) | ne(1) | e(0) — (1)
0 0 0 1 0 3 -6
0 0 1 1 1 2 -3
0 1 1 1 2 1 0
1 1 1 1 3 0 3

Hence BI(GW(3,4)) = {0,3,6}. If n = 2k+1, where k > 2, we may assume
v(0) = k + 2, and v(1) = k + 3. The following results lead to the balance
index set for odd n > 5.

f(c1) [ flez) | fles) | £(ca) | n6(0) | ne(1) | e(0) —e(1)
0 0 0 0 [k-2]k+3] 2n—15
0 0 0 1 [k-1]k+2 n—9
0 0 1 1 E |k+1 -3
0 1 1 1 [(k+1]| & 3-n
1 1 1 1 |k+2]k-1 9—2n
The argument for even n is similar, and is omitted here. O

Theorem 3.4 BI(GW(3,5)) = {2,6}, BIGW(4,5)) = {1,2,4,5,8}, and
for n > 5, the balance index set of GW(n,5) is

{Ik - 3|,3|k — 3|, 5k — 3]} ifn=2k4+1,
{lk = 7|, k, |3k — 14|, |3k — 7|, |5k — 21|, |5k — 14|} if n = 2k.

Proof. In GW(n,5), the vertices on the rim are of degree 7, the centers
are of degree n. We first consider odd n. For n = 3, since GW(3,5) has 8
vertices, we need v(0) = v(1) = 4. The four different combinations of the
labeling of the centers are tabulated below.

fler) | fleo) | flea) | f(ea) [ flecs) | n7(0) | nv(1) [ €(0) —e(1)
0 0 0 0 1 (] 3 —6
0 0 0 1 1 1 2 -2
0 0 1 1 1 2 1 2
0 1 1 1 1 3 0 6
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In general, for n = 2k + 1, where k > 2, we need v(0) = v(1) = k + 3. We
summarize the various combinations of f(c;) in the next table.

fle1) [ fle2) | f(cs) | flea) [ f(es) [ n7(0) | ne(1) | e(0) —e(1)
0 [F-2]%k+3] 5(k_3)
k—1|F+2] 3(k=3)
k k+1 k-3
k+1 k 3-%k
Fr2 =1 3G-F
F+3[F—2 53R

L K==] k=] [ =1 K =] K]
Ll Ll K=l =] f ol F
~l=l=lolole
N ==
e I

This completes the proof of the case of odd n.
When n = 4, since GW(4,5) has 9 vertices, we may assume v(0) = 4,
and v(1) = 5. The five different combinations of the vertex labels for c; are:

fler) | fez) | flea) | flea) [ fles) | n2(0) | »7(1) | €(0) — e(1)
0 0 0 0 1] O 4 -8
0 0 0 1 1 1 3 =5
0 0 1 1 1 2 2 -2
0 1 1 1 1 3 1 1
1 1 1 1 1 4 0 4

In general, when n = 2k, where k > 3, the graph GW(2k,5) has 2k + 5
vertices, we may assume v(0) = k + 2, and v(1) = k + 3. From the data
depicted below

[ fle1) [ f(ca) | flca) | flea) | f(cs) | n7(0) | n7(1) | e(0) — e(1)

0 0 0 0 0 [k-3|k+3| 5k-21
0 0 0 0 1 k—2{k+2| 3k-14
0 0 0 1 1 k—-1[k+1 k-17

0 0 1 1 1 k k -k

0 1 1 1 1 k+1|k-1 7-3k
1 1 1 1 1 k+2|k-2 14 — 5k

we obtain the desired balance index set. (|

Example 3. Theorem 3.4 asserts that BI(GW(5,5)) = BI(GW(9,5)) =
{1,3,5}, and, interestingly, BI{GW(7,5)) = {0}. In fact, the last result
is not surprising at all. It agrees with Theorem 1.1 because GW(7,5) is a
regular graph. (w}

The results for m = 4,5 suggest the general formula only works when
n is large enough. The question becomes: is there any simple formula that
works for all m and n?
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4 The General Case

In general, on any GW(n,m), the centers are of degree n, and the vertices
on the rim are of degree m+2. Let ¢t denote the number of 0-vertices among
the m centers, then the remaining m —t centers are labeled 1. The numbers
of 0- and 1-vertices on the rim depends on the parity of m + n.

If m + n is even, then v(0) = v(1) = 22, We summarize the numbers
of 0- and 1-vertices on the rim C;,, and among N,, in the following chart.

" Cn Nm
# of O-vertices mit _¢ t
# of 1-vertices || 22 —m+t | m—1
Then
Z deg(v) = (m;—n —t) (m + 2) + tn,
f(v)=0
Z deg(v) = (m;—n —m+t) (m+2)+ (m—t)n.
fw)=1
Therefore
e(0) —e(l) = (m - 2t)(m +22) + (2t —m)n
(2t — m)(n—m - 2)
= 5 .

We need a careful analysis of the range of values that ¢ can assume. We
need t < m as well as t < v(0) = Z}2. Hence ¢t < min (m, 232). Likewise,
t >0, and m —t < v(1) = 2§, Thus max(0, 252) < ¢.

If m + n is odd, we may assume v(0) = ﬂ}'—l, and v(1) = mptl:

| N
# of O-vertices BIR=S — ¢ t
# of 1-vertices || B2 —m 4+t [m —t

Then
Y deg(v) = (lf-;ﬂ - t) (m+2) +tn,
fiwr=o
Y deg(v) = (Ti-é"—ﬂ —m+t) (m+2) + (m — t)n.

f(v)=1
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Therefore
(m—=2t—-1)(m+2)+ (2t - m)n
2
(2t—m)(n—-m—2)— (m+2)
2 ’
where max(0, 2=2=1) < ¢ < min (m, 242=1), Combining these results, we
obtain our main theorem.

e(0) —e(1)

Theorem 4.1 For all integers n > 3, and m > 1, the balance indez set of
GW(n,m) is

{|@=mg=m=) : max (0, 252) < ¢ < min (m, mf=) }
if m+n is even,
{I (2"'")("_';_2)'('""'2)' : max (0, 2=2=1) < ¢ < min (m, B2=1 _l)}

if m+n is odd.
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