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Abstract

A graph is representable modulo n if its vertices can be assigned
distinct labels from {0,1,2,...,n— 1} such that the difference of the
labels of two vertices is relatively prime to n if and only if the vertices
are adjacent. The representation number rep(G) is the smallest n
such that G has a representation modulo n. In this paper we de-
termine the representation number and the Prague dimension (also
known as the product dimension) of a complete graph minus a dis-
joint union of paths.

1 Introduction

Let G = (V, E) be a graph with r vertices vy, vs,...,v.. The graph G is said
to have a representation modulo a positive integer n if there exist distinct
positive integers a,,as, . .., a, such that 0 < a; < n, and ged(a; —a;,n) =1
if and only if v; and v; are adjacent. We say that {a,,as,...,a} is a rep-
resentation of G modulo n. Erdés and Evans [6] showed that every finite
graph can be represented modulo some positive integer. This result was
used to give a simpler proof of a result of Lindner, Mendelsohn, Mendel-
sohn, and Wolk [12] that any finite graph can be realized as an orthogonal
Latin square graph. Narayan [14] produced a shorter proof in 2003. The
representation number of a graph G, rep (G), is the smallest n such that G
has a representation modulo n.
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The determination of rep(G) for an arbitrary graph G is a very difficult
problem indeed. It seems to be as difficult, if not more so, than determin-
ing dimp(G) which has been shown to be NP-Complete [11]. Evans, Isaak,
and Narayan (9] showed that the determination of representation numbers
for disjoint unions of many complete graphs is dependent upon the exis-
tence of sets of mutually orthogonal Latin squares. Representation numbers
for several families of graphs including complete graphs, independent sets,
matchings, and graphs of the form K, — P, Km — Ci, Kin — K1 (each
along with a set of isolated vertices) were determined in (8] and [9]. Recently
Evans (7] used linked matrices and distance covering matrices to obtain new
results involving representation numbers for the disjoint union of complete
graphs. Narayan and Urick [15] investigated representation numbers for
split graphs, their complements, stars, and hypercubes. Recently Akhtar,
Evans and Pritikin [3] produced new results involving representation num-
bers of stars.

Evans, Isaak, and Narayan determined the representation number of a
complete graph minus a path [9]. Agarwal, Lopez and Narayan determined
the representation number of a complete graph minus a disjoint union of
two paths [2]. Here we determine the representation number and the Prague
dimension of a complete graph minus a disjoint union of arbitrarily many
paths. Note that in this family of graphs the complement G is a disjoint
union of paths and possibly a set of isolated vertices.

2 Prague Dimension and Representations

A property which is closely related to the representation number of a graph
G is the Prague dimension. The Prague dimension (also known as the
product dimension) was introduced by Nesetfil and Pultr [16] and has been
extensively studied [13], [4], and [5]. We say a graph G has a product
representation of length d if each vertex v of G can be assigned a ordered
d—tuple so that the vertices v and w are adjacent if and only if their vectors
differ in every coordinate. The Prague dimension of the graph G, dimp(G),
is the minimum length d of such a representation.

As developed in [8] and [9], there is a close correspondence between
Prague dimension and modular representation. Suppose G has a represen-
tation modulo n. Let n = pI**py*? ---p3'¢, where p1,p2,...,pq are distinct
primes. We obtain a product representation of G (of length d) as follows:
Suppose the vertex v has label a, then the vector for v is (v1,vs,...,v4),
where v; = a (mod p/™) and 0 < v; < p{™* for 1 < i < d. If vertex v with
label a has vector representation (vy,vs,...,v4) and vertex w with label b
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has vector representation (wj,ws,...,wq), then ged(a — b,n) = 1 implies
that v and w are adjacent if and only if v; # w; for all 1 < i < d, making
this assignment a product representation.

Now given a product representation, a modular representation can be
obtained by choosing distinct primes for the coordinates, provided that the
prime for each coordinate is larger than the value used in that coordinate.
The numbers assigned to the vertices can then be computed using the Chi-
nese Remainder Theorem. The resulting modular representation generated
from the product representation is called the coordinate representation.

In [18] the question of how many prime factors, counting multiplicity, n
must have for a given graph G to be representable modulo n was partially
answered in terms of a type of edge labeling of the complement of G. A
survey of the tools used to work on graph representations, as well as several
results, can be found in [10].

3 Some known results

In this section, we restate some previously known results from (8] involving
the representations modulo an integer and the representation numbers of

graphs.

Theorem 1. A graph has a representation modulo a prime if and only if
it is a complete graph.

Theorem 2. A graph has a representation modulo a power of a prime if
and only if it is a complete multipartite graph.

The disjoint union of graphs G and H will be denoted G + H. That is,
V(G+ H)=V(G)UV(H) and E(G + H) = E(G) U E(H).

Theorem 3. A greph has a representation modulo a product of some pair
of distinct primes if and only if it does not contain an induced subgraph
isomorphic to Ky + 2K, K3 + K, or the complement of a chordless cycle
of length at least five.

The following results deal with the size of the prime divisors of the
representation numbers.

Theorem 4. If G has a representation modulo n, and p is the smallest
prime divisor of n then p > x(G).



We have the following corollary where w(G) is the size of the largest
complete subgraph in G.

Corollary 4.1. If G has a representation modulo n, and p is a prime
divisor of n then p > w(G).

We restate Lemma 2.10 and Corollary 2.12 from Evans, Isaak, and
Narayan [9].

Lemma 5. If G contains a K,, + K1 as an induced subgraph and G is
representable modulo n, then n contains at least m distinct prime factors.

Corollary 5.1. IfG contains a K, + K1 and p; is the smallest prime satis-
fying pi > x(G) then rep(G) = piPit1 - * Pivm—1, WheTe Piy1, Pit2,s -+ s Pitm—1
are the next m — 1 primes larger than p;.

4 Complete Graphs minus disjoint paths

In this section we start by finding the representation number of K, —mPs;41
(complete graph minus disjoint copies of paths of odd length). Our strategy
will be to find a modular representation for K, — mP,j41 by first finding
its product (or coordinate ) representation, thereby finding its Prague di-
mension and representation number.

4.1 Representation number of K, — mPy;,

Theorem 6. Forn >3 and j 21, letl <m < l'z%l'J’ then rep (K, —
mPyji1) = PsPs+1, Where p, is the smallest prime greater than or equal to
n—mj and ps41 is the next highest prime after p,.

Proof. On removing m disjoint copies of P,j;; from the complete graph
K., the largest complete subgraph left in K, — mPs;41 is Kn—mj. From
Corollary 4.1 it follows that, p; > n—mj. Moreover K,, — mPs;,, contains
a K3 + K1, so from Corollary 5.1 we get, rep (K. — mP2j41) 2 PsPs+1-

Next we show that K,, —mP,;41 has a representation modulo p,q, where
g > ps+1. We give a coordinate representation with respect to meod p, and
mod q to the vertices of K, —mP;4, as follows. Let v1,v2,...,v2541 be the
vertices of the “first removed path”. Assign coordinates to these vertices
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as follows (the first coordinate is = mod p, and the second coordinate is
= modgq): for1 <i<2j+1,

if 7 is odd, v; is assigned ([%J , lz—;—l--l) ,

if 1 is even, v; is assigned ﬂ 1
P & 2 |2

Let vg;42,v2543,...,V4542 be the vertices of the “second removed path”.
Assign coordinates to these vertices as follows: for 1 <i<2j+1,

if i is odd, vaj414¢ is assigned ((J+1)+l 5 J (J+1)+[ 21J)’

if ¢ is even, vgj;14¢ is assigned ((J +1) + l 5 J G+ + |-2-|)
Proceeding along the same lines, let U(r—1)(2j4+1)+1s Y(r—1)(2j+1)+21 - - © 1 Ur(2j+1)

be the vertices of the “r*h removed path”, where 1 < r < m. Assign coor-
dinates to these vertices as follows: for 1 <i <2541,

if i is odd, v(r—1)(zj+1)+i I8 assigned ((r -DE+1)+ l:lJ Wr=1)G+1)+ [b;—lJ) )
if i is even, v(r~1)(zj+1)+: is assigned ((r -1+ 1)+ [1 - lJ r=-DF+1)+ [ J)

This is best illustrated in the following table:

vertices mod p, mod ¢
(551 0 0
Vo 0 1
V2j+1 J J
V242 i+1 j+1
V2543 i+1 j+2
V4542 2] +1 2] +1

Now we assign labels to the remaining n — m(2j + 1) vertices which
do not lie on the paths removed. Let ¥y (2j41)411 Um(2j4+1)42; - - - » Un De the
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vertices that do not lie on the paths removed. For 1 <i < n—-m(2j +1),
the vertex vp,(2j41)+: is assigned the label

(mj+m+i-—1,mj+m+i—1).

We claim that this assignment of labels gives the coordinate represen-
tation of K, — mP,j4+1 modulo p,g. Note that the adjacency conditions
follow from the remarks we made in Section 2. We just need to verify
that we have sufficient number of labels. We focus on the smaller prime
ps. The number of residues modulo p, that are consumed (first column of
the table) in assigning labels to the vertices vy,...,vm(2j41) is m(j + 1).
The number of labels consumed (hence the number of residues) for the
VErtices Um(2j4+1)+1) Ym(2j4+1)421+++»¥n 18 n — m(2j + 1). Thus the total
number of labels we require for this assignment is n — mj. As proved ear-
lier, p, > n—mj. Hence we will have sufficiently many residues modulo p,
to achieve the coordinate representation of K, — mPy;41. [ |

Corollary 6.1. The Prague dimension of K, — mPajy is 2.

The following corollary follows immediately from Theorem 3.

Corollary 6.2. K,—mPsj,, does not contain either K24-2K,, or K3+ K,
or the complement of a chordless odd cycle of length at least 5, as an induced

graph.

4.2 Representation number of K, — mPy;

In this section we determine the representation number and the Prague
dimension of K, — mP,; (complete graph minus disjoint copies of paths
of even length). But before we do that, we would like to draw reader’s
attention to a potential problem caused by twin primes in the case of even
paths.

Example 4.1. Let G = Ka9 — 5P, and let p be a prime divisor of rep(G).
The largest complete subgraph in G is Kj9. From Corollaries 4.1 and
5.1 it follows that p > 10 and rep(G) > (11)(13) (note that p = 11 and
g =p+2 =13 are twin primes). We will show that rep (G) # (11)(13).

Suppose we construct a coordinate representation of G with respect
to mod 11 and mod 13, where each vertex v; is assigned a coordinate
representation (z; mod 11,y; mod 13). Let vy, vs,v3,v4 be the first path
removed. The number of residues mod 11 we consume to assign z; for
1 < i < 4 (irrespective of the strategy of assigning labels) is at least 2
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or 3, depending on which prime we “lean on”. Likewise, the number of
residues mod 13 we consume to assign y; for 1 < i < 4 is at least 3 or 2
respectively. In all, we consume a total of 5 residues (adding the number of
residues used modulo both the primes) to assign labels for the first removed
path. Similarly we will consume 5 total residues for each of the five paths
removed. This requires a total of at least 25 residues, but with mod 11
and mod 13 we can only have a total of 24 residues. Thus a representation
is not possible mod (11-13).

Remark. The purpose of this example is multi-fold: it shows that the pos-
sible appearance of twin primes makes the even path case more challenging
and interesting as rep (K, — mP,;) need not be p,p,41, it also shows that
knowing the Prague dimension of a graph may not be sufficient to deter-
mine its representation number. Moreover it emphasizes the need for a
more elaborate criteria for determining g than the one we developed for the
odd path length case in Theorem 6.

Our first result is about the Prague dimension of K, — mP,;. We would
like to point out that a more straightforward proof can be given for Theorem
7 instead of the construction that we have provided here. However our
reason for using this construction early on is to establish the groundwork
that is required for the proof of Theorem 9.

n

Theorem 7. Forn >3 and j > 1, let1 < m < I_EJ’ ps be the small-
est prime greater than or equal to n — mj and q, be the smallest prime
such that g, > p, and ps + g; > 2(n —mj) + m. Then K, — mP,; has a
representation modulo ps;q,, hence it has Prague dimension 2.

Proof. Since K, —mP,; contains K3+ K, therefore it follows from Lemma
5 that dimp (K, — mPa;) > 2. Let p; and g, be the primes as described
in the statement of the the theorem. We give a coordinate representation
with respect to mod p; and mod g, as follows:

Let v1,v2,...,V2j,. .., U(q,—p,~1)2j4+11+ - -+ V(q.—p.)2j D€ the vertices of
the first (g; — p,) removed paths. The coordinates to these vertices are
assigned along the same lines as mentioned in the proof of Theorem 6 but

with some modifications.

In this first stage, we “lean” on the higher prime g; by consuming its
residues more in comparison to that of the smaller prime p,. We do this for
the first g, — p, paths removed. The assignment of labels is best explained
in the following table.
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vertices mod p, mod g,

n 0 0
V2 0 1
Vaj j—1 J
V21 J j+1
V242 J j+2
Vg; 25 -1 25 +1

Y(q,—p,—1)2j+1 (‘Is —Ps — 1).7 (Qs —PDs— 1).(3' +1)
V(gupa-1)2j+2 | (Gs —Ps —1)i | (@s—Ps—1)(F+1)+1

V(gy—p4)2j (gs —Pa)j —1 ] (gs —Ps)j +(gs —ps — 1)

If m > g, — ps then at the end of this first stage a crucial point to be
noted is that the number of residues left (to be consumed) mod p, and
the number of residues left (to be consumed) mod g, are equal.

We proceed to the second stage of the label assignment if m > g, — p,;
otherwise skip to the third stage. If m > g, — p, (i.e. if there are vertices
from the removed paths still left unlabeled after stage 1), we switch our
strategy of leaning only on g, to “alternately leaning” on p, and g,. So for
the (gs — ps + 1)°* path removed, we “lean on the prime p,” and assign the
coordinates as follows:

vertices mod p, mod g,
V(q,—p,)2j+1 | (Qs — Ps)J (gs —ps)(7 +1)

.

Vigu—pa)2i+2 | (95 —Ps)j +1 (@s —ps)(G+1)

Vigo—py+1)2j | (@s —Ps+1)j | (g5 —Ps +1)j + (g5 —pPs — 1)

In essence, to get the labels for the odd row of the (g, — ps + 1)** block
we add (j, 7 +1) to the corresponding odd rows of the (g, — p,)*® block and
to get the even rows of the (g; — ps + 1) block, we add (j + 1, 7) to the
corresponding even rows of the (g; — ps)™" block.

For the next path removed (i.e. the (g, —p,+2)"¢ path) we “lean on the
prime g¢,” and assign the coordinates as follows: to get the coordinates for
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the odd row of the (g, —ps+2)"? block we add (j+1, 7) to the corresponding
odd rows of the (g, — ps + 1)®* block and to get the even rows of the
(gs — ps + 2)™ block, we add (4,5 + 1) to the corresponding even rows of
the (g5 — ps + 1)* block. This yields the following:

vertices mod p, mod g,
Ug=pot1)2i+1 | (9 = Ps +1)7+1 1 (g5 —Ps +1)j + (g5 — Ps)
Vige=pat+1)25+2 | (@s —Ps +1)j +1 (gs —ps +1)(5 +1)

V(gy—p.+2)2j (gs —ps +2)j (gs —Ps +2)7 + (95 — Ps)

The idea is to alternate these two types of blocks until all remaining
blocks are exhausted. For the purpose of an explicit procedure consider the
following: To label the u'h row of the (g, — ps + t)*h block, where 1 <t <

m—(gs —ps) and 1 < u < 2j, we add (j+[(t—u) mod 2, j+1—[(t—u)

mod 2]) to the u*® row of the (g, — ps + ¢ — 1)* block. A key point here is
that, with this procedure, the total number of residues (number of residues
in both columns) that are consumed in labeling vertices of the each of the
remaining m — (g, — p,) paths is still 2j 4 1, same as in the first stage. The
advantage we now have is that we will have sufficient number of residues
left in both mod p, and mod g;.

Now comes the third stage where we label the remaining n — 2mj
vertices which do not lie on the paths removed. To each vertex vomjyi,
where 1 < i < n — 2mj we assign coordinates (z;,y;) such that each z; is
a distinct residue from the set of residues mod p, left after stages 1 and 2
are complete, likewise each y; is a distinct residue from the set of residues
mod g, left after the completion of stages 1 and 2.

We claim that this assignment of labels gives the coordinate representa-
tion of K, — mP,; modulo p,q,;. Note that the adjacency conditions follow
from the remarks we made in Section 2. We just need to verify that we
have sufficient number of labels.

Case (i). If m < g, — p,, then we will not have the second stage, in which
case we directly go from the first to the third stage. In the first stage,
we need mj residues mod p, and in the third stage we need n —2mj
residues mod p,. In all, we need at least n — mj residues mod p;.
Since ps > n — mj, we will have sufficiently many residues to carry
out the labeling assignment.
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Case (ii). If m > g, — ps, then we will have all the three stages. We
compute the total number of residues consumed modulo the prime

Ps.
1. For the first stage, we consume (g, — p,)j residues.
2. For the second stage, we consume [(j + 1) (m — g, + p)] residues.
3. For the third stage, we consume n — 2mj residues.

In all, we need (gs —ps)j + [(J + %) (m — gs + ps)] +n—2mj residues. We
will have sufficiently many residues provided,

. ., 1 .
Ps = (gs — Ps)j + l—(.7+§) (m—gqs +pa)] +n—2mj

. o1 R
> (gs —ps)j + (J+§) (m—gs +ps)+n—2mj
Ps + @5 2 2(n — myj) + m.

But this is exactly the condition we have in the statement of the theorem.
Hence we have a coordinate representation of K, — mPs; modulo p,q, and
dimp(Kn - mng) =2, [ ]

The following corollary follows immediately from Theorem 3.

Corollary 7.1. K, —mP;; does not contain either K2+2K,, or K3+ K,
or the complement of a chordless odd cycle of length at least 5, as an induced
graph.

The following example highlights yet another challenge in finding rep (K,—
mPy;). It shows that that the choice of the smallest prime p, we made in
Theorem 7 need not always give us the representation number.

Ezample 4.2. Let G = K28 — 19Ps, then n — mj = 71. According to the
choice of primes we made in Theorem 7, we have p, = 71 and g, = 97 (thus
Ps+qs > 2(n—mj)+m =161). Is rep (K128 — 19P5) = psq, = 68877 If we
follow the construction in the proof of Theorem 7, then p = 73 and g = 89
also satisfy the condition p + q > 2(n — mj) + m. Therefore K95 — 19F;
has a representation modulo pg = 6497 < p,gs. This means the choice of
the prime p, need not always be the optimal choice.

The following number-theoretic result is useful in finding the rep (K, —
mP,;) in certain cases and also in establishing that it cannot be a product

of three primes.
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Lemma 8. Forn >3 andj>1,letl1<m< I_%J . Suppose there exists
a prime p, such that n —mj < p, < n—mj+m and let g, be the smallest
prime such that g, > p, and p; + g = 2(n — mj) + m. For any primes
Pr, Pt Such that p, < pr < p: < gs, the product p.p; > g,.

Proof. Since n—mj+m > 1, from Bertrand’s postulate [17] it follows that
there exists a prime § such that § € [n—mj+m,2(n-mj+m)] € [n—mj+
m, 2n]. Observe that § satisfies p,+§ > 2(n—mj)+m, consequently g, < §.
From the bounds on m, it follows immediately that < n—mj < p,. Thus
we have

gSpa<qa$'i<2"- (1)
Suppose p; < pr < pr < g5 and prp: < g5, then from inequality (1) we have
& < prpt £ 2n, which implies n < 8. It can be easily verified that among
the finitely many possibilities for the primes p,, p,, p; and g, that exist for
n < 8 there are no cases for which p,p;: < ¢s. [ |

For the purpose of clarity we state the following corollary which is an
easy consequence of Lemma 8.

Corollary 8.1. Let p, and g, be the primes described in the lemma. The
product of any three primes a,b and ¢ such that p;, <a < b < c < g, will
always be greater than psqs.

The next result gives the exact rep (K, — mP,;) in certain cases and
bounds for it in other cases.

Theorem 9. Forn>3 andj> 1, let1 <m < [-%J, ps be the smallest
prime greater than or equal to n — mj and q, be the smallest prime such
that g, > p, and p, + ¢, = 2(n — mj) + m.

1 Ifps > n—mj+ m, then rep(Kn — mPy;) = pspsy1, where pyy is
the next higher prime after p,.

2. If p; < n—mj+m, then rep(Kn — mPy;) € [psps+1,Ps9s] and it will
be a product of two distinct primes both of which will lie in [p,, q,).

Proof. For the sake of a complete argument, we mention that for j = 1,
the graph is K, — mP,, which is a complete multipartite graph and its
representation number has already been discussed by Evans, Isaak and
Narayan [9] (see Theorem 5.5 and Corollary 5.6). We proceed with our
proof as follows:
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On removing m disjoint copies of P;; from the complete graph K,
the largest complete subgraph left in K,, — mPj is Kn_mj. Let z be the
smallest prime divisor of rep (K, — mP;). From Corollary 4.1 it follows
that n — mj < p; < z. Moreover K, — mPs; contains a K3 + K}, so from

Corollary 5.1 it follows that
PsPs+1 < T€p (Kn - mP2j)1 (2)

where p,41 is the next highest prime after p;.

From the proof of Theorem 7 we have that K,, — mP; has a representa-
tion modulo p,q;. Now we will show that the condition given on p, + ¢, in
the statement of the theorem is necessary. Let v1,vs,...,vs; be the vertices
of the “first removed path”. Irrespective of the strategy we use to assign the
coordinates (z; (mod p,),¥:; (mod g,)) to each vertex v;, where 1 < i < 2j,
the total number of residues (adding the number of residues we consume
for both z; and y;) we consume is at least 2j + 1. This holds for all the m
paths that we remove. Hence any strategy will consume at least m(2j + 1)
total residues to label the vertices that are removed. For the remaining
n — 2mj vertices (the ones which do not lie on the paths removed), with
the adjacency requirements, we will need at least n — 2mj residues with
respect to each of the primes p, and g,, hence a total of 2(n—2mj) residues.
In all, the total number of residues we need is at least 2(n — mj) + m, thus
Ps + gs > 2(n — mj) + m. Consequently we have

rep (Kn - mP2j) < Psqs- (3)

Now we consider the two cases:

Case 1: Suppose p; > n — mj + m, then the next highest prime p,41 >
n — mj + m, consequently ps + ps4+1 = 2(n — mj) + m. This implies
Ps41 satisfies all the conditions on ¢; and ¢; = ps4+1. From (2) and
(3) it follows that rep (Kn — mPy;) = PsPsst1.

Case 2: Suppose n — mj < p, < n— mj +m. From (2) and (3) it follows
that psps4+1 < rep(Kn — mPy;) < psgs. Using Corollary 8.1 we can
easily rule out the possibility of the representation number being a
product of three primes, said differently, rep (K, — mP;) will be a
product of two distinct primes. Next we can use Lemma 8 and the
remark we made at the start of the proof about the smallest prime
divisor of rep (K, — mPy;) to establish that the two prime divisors of
rep (K, — mP,;) will lie in the interval [ps, gs).
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We conclude by suggesting that the methods we have developed here can
be extended to the graphs of the form K, —mPy;1; —[Ps; and also to other
complete graphs minus multiple paths of distinct odd and even lengths. It
might be interesting to explore complements of other graphs. The family of
G minus a disjoint union of stars was investigated by Agarwal, Lopez, and
Narayan [1]. While it would surely be a challenge to explore rep(G — T},)
and dimp(G — T,,) where T, is a tree on n vertices, it is likely that some
results could be obtained for certain classes of trees. Another problem of
interest could be to get the exact representation number of K, — mP;;
when n —mj < p, < n—mj + m by closing the bounds we have in (2) and

(3).
Acknowledgements: The authors would like to thank the referee for
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