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ABSTRACT. We give cyclic constructions for loop designs with block size k =
3,4, and 5, and all values of v, and we thereby determine the (v, \) spectrum
for LDs with these block sizes. For k = 3,5 the (v, ) spectrum for LDs is the
same as that for cyclic LDs, but this is not true for k = 4.

1. Introduction

The purpose of this note is to give cyclic constructions for a new type of com-
binatorial design or graph design which we call a loop design. We use the notation
LD(v, k, A, 7). From the graph point of view, we decompose K, (), ), the complete
{(multi)graph on v points with A multiple edges for each pair of points and with j
loops at each vertex, into ordered blocks (i, @2, ...,ax—1,4a;) of size k. Each block
is the subgraph which contains the unordered edges {a,,a;}, for each pair of con-
secutive edges in the list, and which contains the loop at vertex a;. The block
(a,b,¢,d,a) contains the unordered edges {a, b}, {b,¢}, {c,d}, {d,a} and the loop
{a,a}. Each block consists of two cycles (or loops) of lengths 1 and & — 1 which
share a common vertex. When convenient, we denote blocks simply as aba or abca,
etc.

These designs were introduced in [5], and there the necessary conditions were
shown to be sufficient for the existence of LDs for k = 3,4, or 5. Here we show that
the same necessary conditions (Lemma 1, below) aid us in the determination of the
(X, v) spectrum for the existence of cyclic LDs.

It may be noted that LDs have characteristics of other designs such as Mendel-
sohn designs, which apply the idea of cyclic triples of ordered pairs, and balanced
ternary designs (BTDs) in which a point appears in a block 0, 1 or 2 times [4], or
cycle designs in which a graph is decomposed into copies of C;. Undefined terms
can be found in [2] or [6].

A balanced incomplete block design, a BIBD(v, &, }), is a decomposition of K,
into subsets of size k (viewed as copies of K, the complete graph on k vertices).
BIBDs play an important role in later sections, and we give the well-known neces-
sary conditions for existence of BIBDs: vr = bk and A(v — 1) = (k — 1). Here b
is the number of blocks and r is the replication number (the number of blocks in
which each point appears).
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We will define j; to be the number of blocks in which, say, point z occurs as
an interior point in an LD block. This means there are 25 non-loop edges incident
with z in blocks in which x is the endpoint and 2j; edges incident with z in those
blocks in which z is an interior point. It follows that 25 + 2j; = A(v — 1), and
this equation is independent of z. This shows that j; is a constant for any point
in an LD, and, therefore, it is proper to define a replication number for LDs by
r=j+5i=Mv-1)/2

The equations just derived also imply that A(v — 1) is necessarily even, but this
fact is also a consequence of the equation in part (a) Lemma 1, below, which gives
the fundamental necessary condition.

LemMA 1. [B] For any LD(v, k, A, j), it is necessary that

THEOREM 1. (a) j = %‘&%3-; and

(b) ji = j(k - 2).

PROOF. From the definition of LD, the number of blocks and the number of
loops is the same. Part (a) follows from £2;(3) = jv. The right hand side counts
the number of loops (blocks), and the left hand side is the number of non-loop edges
divided by the number of such edges per block. Part (b) follows from part (a) and
the discussion of 7; just above. 0

In the next three sections we show that the (v, A) spectrum for cyclic LDs is
the same as that for LDs provided k& = 3,5. When k = 4, however, the situation
will be quite different.

2. Cyclic Loop Designs With k = 3.

When k = 3, an LD(v, 3, A, j) satisfies j = A(v—1)/4, by Lemma 1. Since each
block has the form (a, b, a), each block represents a 2-cycle in which one vertex has
a loop. Moreover, it follows that A must be even.

THEOREM 2. There erists a cyclic LD(2t + 1,3,2,t) for everyt > 1. There
exists a cyclic LD(2t,3,4,2t — 1) for every t > 2.

PROOF. If v = 2t + 1, the starter blocks are 0i0 for 1 < ¢ < t. When v is even,
the minimum ) is 4. An LD(2¢, 3,4, 2t —1) may be constructed by including starter
blocks 0:0 and i0i for 1 <i < ¢ (]}

THEOREM 3. The necessary conditions for existence of LDs with k = 3 are
sufficient for the existence of cyclic LD(v,3, )\, 7).

PROOF. By Lemma 1, ) and j are directly proportional. Higher values A = 23
(for 0odd v) and A = 4s {even v) may be obtained usimg multiple copies of the base
design (and multiplying j by s) in the previous theorem. a

3. Cyclic Loop Designs With k = 4.

Lemma 1 implies that § = A(v — 1)/6 is a necessary condition when &k = 4. It
is convenient to divide the discussion into the different cases for v mod 6 because
of the following lemma [5] which gives the minimal index A in each case.
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LEMMA 2. A loop design with parameters (v,4, ), ) exists if and only if (), )
18 an integer multiple of the minimal values given in the table:
v 6t 6t+1]| 6t+2 6t +3 6t + 4 6t+5
(M) (6,6t —-1)] (1,¢) [(6,6t+1)](3,3t+1)](2,2+1)](3,3t+2)

For each positive integer v > 7 we define a Difference Triple (see p.32 of [6]),
or DT, to be a set of three positive integers (x,y, z) such that (1) z,y, and z are
distinct and in the set {1,2,...,9—1}; (2) x+y =2 (mod v) or z+y+ z =0 (mod
v). A DT determines a base block for a cyclic triple system (z,y,2) — {0,z,z+y}.
We in turn use the DT to create a base block (0, z,z + y,0) for a loop design.

A base block {a, b, c} in a cyclic design has a full orbit if it is used to generate
the set of blocks {a + i,b + i,c + i} for 0 £ i < v — 1. Any base block may be
transformed into a base block for a cyclic LD under what we call the natural map:

{a,b,¢c} = (a,b,¢c,a).

LEMMA 3. Suppose a BIBD(v,3, ) is cyclically generated by j base blocks which
have full orbits. Then the base blocks, under the natural map, determine blocks for
a cyclic LD(v,4, A, j). Conversely, if the j base blocks of a cyclic LD(v,4, A, j) have
full orbits, then the reverse of the natural map creates a set of base blocks for a
cyclic BIBD(v,3, )).

PROOF. It is only necessary to observe that the corresponding blocks of the
two designs determine the same triangle of regular edges and that each point in the
loop design is an end-point of a block (has a loop) exactly j times. O

ExaMPLE 1. A BIBD(15,3,1) is cyclically generated by the base blocks {0, 1,4},
{0,2,9}, and {0,5,10}. The third base block is described as a short block and is
only used for one-third of the usual development: {0,5,10), {1,6,11}, {2,7,12},
{3,8,13}, and {4,9,14}. At this point, the blocks form a parullel class and each
pair of points which differ by 5 or 10 already appears once. This set of blocks is not
j-balanced, o requirement for an LD. For v = 15, the condition on j (Lemma 1)
requires A = 3.

THEOREM 4. There exist cyclic LD(6t +1,4,1,t), cyclic LD(6t+ 3,4,3,3t+1),
and cyclic LD(6t + 5,4,3,3t + 2) forallt > 1.

PROOF. There are complete sets of difference triples for v =6t + 1 and v =
6t + 3, except for v =9 (see Ch. 7 of [3] or Appendix A of [6]). We use the known
difference triples (all with full orbits) for v = 6¢+1 to create cyclic LD(6t+1,4, 1, ¢).
For v = 6t+3, use the each DT to create 3 base blocks (0, z, z+y,0), (z,z+¥,0, z),
and (z+y,0,z,z+y). These will create an LD(6¢+ 3,4, 3, 3¢+ 1), whether or not a
base block is short - except for v = 9. For LD(9, 4, 3, 4), a suitable set of base blocks
is (0,2,3,0), (0,3,2,0), (0,5,3,0), and (0,4,8,0). We have proved that minimal
index cyclic LD(v,4, A, j) exist for v =6t + 1 or v = 6t + 3. For v = 6t + 5, use the
full base blocks {0, 4,2i,0} for 1 <i < 3t+2. m]

Sets of difference triples with k£ = 3 and even v are in Tables in Chapter 7 of (3],
and these give the smallest possible index for a cyclic BIBD. By Lemma 3, no index
for any cyclic LD can be smaller than any developed as in the tables. Further, if a
short block is used, then to balance j, we have to triple the index in the table. We
summarize the results in the theorem below.
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THEOREM 5. There is a cyclic LD(2n,4, A, j) with minimal indez A given in
the table below (the * in the table indicates where short blocks were used for the

BIBD).
v |12t | 12t +2 | 12 +4 |12t +6 | 126+ 8 12t + 10
A6 | 12 1 12+ 6 )

For every possible value of v we have constructed a minimal index cyclic LD,
and since for any LD (by Theorem 1) the index is neccessarily a multiple of the
minimal one, the existence problem for LDs with k¥ = 4 is solved, and we have
proved the following which may be contrasted with Lemma 2:

THEOREM 6. The necessary conditions for the existence of LD(v,4,],j) are
sufficient for the eistence of cyclic LD(v,4, A\, j) if v is odd, if v = 6t, or if
v = 12t+8. However, if v = 12t+2, 12t+4, or 12t+10, then cyclic LD(v, 5, 2), 2j)
ezist if and only if non-cyclic LD(v, 4, A, j) exist.

4, Cyclic Loop Designs With k = 5.

For convenience, we note that, in this section, j = A(v — 1)/8. We begin with
several examples for small n.

EXAMPLE 2. An ezample with 12 blocks, a cyclic LD(4,5,8,3). The columns
are blocks, and the index is minimal. The first § columns are base blocks.

111222333444
2 23334441112
342413124231
4 3 4141212323
111222333444

Table 1: The blocks of an LD(4, 5,8, 3).
EXAMPLE 3. A cyclic LD(5,5,2, 1) is generated by the starter block (0,2, 3,1,0).

EXAMPLE 4. An LD(6,5,8,5). The blocks are generated cyclically mod 5 using
starter blocks 0021000, 100341, 300123, 000420, 12341, 02410.

EXAMPLE 5. An LD(7,5,4,3). The base blocks are 03620, 01230, 01350.

EXAMPLE 6. An LD(8,5,8,7) with starter blocks expanded mod seven: 02140,
01420, 04210, 02140, 500635, 600356, 300563, c035600.

EXAMPLE 7. A cyclic LD(9,5,1,1) is generated modulo 9 by the starter block
(0,2,5,4,0). This is the smallest possible ezample with index A = 1.

EXAMPLE 8. An LD(10, 5,8, 9) with starter blocks ezpanded mod 9: use 7 copies
0f (0,4, 5, 3,0) and one copy each of (00, 1,0,2, 00), (1,00,2,0,1), (4,00,3,0,4), and
(3,00,4,0,3).

EXAMPLE 9. An LD(11,5,4,5), with minimal index 4. The design is cyclic,
generated mod 11 by the starter blocks: 04530, 04530, 05940, 05610, 02530.

In the rest of this section, we show the necessary conditions are sufficient for
existence of cyclic loop designs with &k = 5 and with v = 24t + s. For even v,
the minimum index will be 8, and for odd v, the minimum index is 1,2 or 4, as

determined from Lemma 1(a).
We use the convenient notation (a,b,¢,d,a) x n to mean "use n copies of the

block (e, b,¢,d,a)."
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EXAMPLE 10. An LD(12,5,8,11) is generated mod 11 using the following blocks:
(0,4,5,3,0) x 8, (,5,0,6,00) and (5,00,6,0,5) x 3.

The only examples for £ = 5 and with index 1 occur for v = 8t + 1.
THEOREM 7. There exist LD(v,5,1,5) for v=1,9,17 (mod 24).

PROOF. Suppose v = 8¢ + 1. Then there is a cyclic LD(v, 5, 1, t) generated by
the ¢ starter blocks (0,4s,8s — 3,45 — 1,0) whre 1 < s < t. (]

The difference family given above has a striking property which was exploited
for certain odd values of v in [8]. The differences between adjacent elements in
(0,4,5,3,0) are, respectively, left to right: 4,1,2,3. When s = 2, the differences
are 8,5,6,7, and so on. We exploit this regularity of the differences to obtain
difference families for other values of v as well.

24t+2: For LD(24t 42,5, 8, 7), use starter blocks, expanded mod 24t + 1. Use
(0,43,83~3,45—1,0)x8, for 1 < s < 3¢t—1. Usealso (0,12t-1,24¢-3,12t-2,0)x 2,
(0,12t — 2,24t — 5,12t — 3,0) % 2 and (0,12t — 3,24t — 4,12t — 1,0) x 2. Also use
(c0,12¢,0,12t + 1,00), (12 + 1, 00,12¢,0,12¢ + 1) x 3.

24t+3; For an LD(24¢+3, 5, 4, j) use the starter blocks (0,4s,8s—-3,45—1,0) x 4
for1 <8< 3t—1, and (0,12¢,24t — 3,12¢ — 1,0) x 2. Also, use one copy each of
block (0,12t — 3,24t — 2,12t + 1,0), with differences 12t —3 and 12t + 1 twice each;
block (0,12t + 1,24¢ + 1,12¢,0) with differences 12¢ + 1 and 12¢ twice each; and
block (0,12t — 2,24t — 3,12t — 1,0) with differences 12t — 2, 12t — 1 twice each.

24t+4: We have an LD(24t + 4,5, 8, j) by expanding these starter blocks mod
24t + 3: (0,4s,8s — 3,45 —1,0) x 8 for 1 < s < 3t. Also use (12¢ + 1, 00,12t +
2,0,12¢ + 1) x 3 and block (o0, 12t + 1,0, 12t + 2, 00).

24t+5: We assume v > 29 and get LD(24¢ + 5, 5,2, 7). Use the starter blocks
(0,4s,8s—3,4s—1)x2for 1 < s < 3t, and use the block (0, 12¢+1, 24t+3,12¢+2, 0).

24t+6 Expand the following blocks mod 24t + 5 : (0,4s,8s — 3,45 — 1,0) x 8,
for 1 < 3 < 3t. Use (0,12t + 2,24t + 5,12t + 1) x 2, and (00,12t + 2,0,12¢ + 1, 00),
and (12t + 2, oo, 12¢ + 1,0, 12¢ + 2) x 3.

24t+T7: For LD(24t+7, 5, 4, j) use (0,4s,85-3,4s-1,0)x4 for 1 < s < 3¢. Also use
(0, 12t+1, 24t+3, 12t+2,0), (oo, 12¢+4, 0,12t + 3, c0), (12t+3,00,12+4,0,12¢+ 3),
(12t+1, 00,12t +2,0,12¢ + 1) x 2.

24t+8 Expand mod 24t + 7. Use (0,45,85 — 3,45 - 1,0) x8for1 < s <
4t. Use (0,12t + 4,24t + 5,12t + 3,0) x 6. Use (00,12t + 4,0,12¢ + 1), (12t + 4,
00,12t +1,0,12¢ + 4). Lastly use two copies of (12t + 2, oo, 12¢ + 3,0, 12¢ + 2).

24t+9 Theorem 7

24t+10 Expand mod 24t + 9 : (0,4s,85 — 3,45 —1,0) x 8 for 1 < s < 3t. Use
(12t +4,00, 12¢+1,0, 12¢ +4), (00, 12t +4,0, 12t +1, 00), (12¢+2,00, 12t +3, 0, 12¢ +
2) x 2.

24t+11 There exist LD(24¢ + 11, 5,4, 5) for ¢ > 0.Use blocks (0,4s,8s —3,4s —
1,0) x4 for 1 < s < 3t. Use (0,12t + 4,24t + 5,12t + 3,0) x 2. Finally, use the
three blocks (0,12t + 5,24t + 9,12t + 4,0), (0,12t + 5,24t + 6,12¢ + 1,0), and
(0,12t + 2,24¢ + 5, 12¢ + 3,0).

24t+12 There exist LD(24t+12,5, 8, j) for 0 < ¢. Use (0,4s,85—3,0) x 8, for 1
< 8 < 3t+1. Usealso (00, 12¢+5,0, 12+6,00) and (12¢+5, 00, 12t+6, 0, 12¢+5) x 3.

24t+13 There exist cyclic LD(24t + 13,5,2,5). Use base blocks (0,4s,8s —
3,45 —1,0) x 2 for 1 < s < 3¢ + 1, and use (0, 12¢ + 5,12t + 11,12t + 6, 0).
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24t+14 Expand these blocks mod 24t + 14: (0,4s,8s — 3,45 — 1,0) x 8, for
1<s<3t+1. Use (00,12t +1,0,12¢ + 5) and (12t + 5, 0o, 12¢ + 6,0, 12¢ + 5) x 3.

24t+15 There exists LD(24t + 15,5,4,7) for s > 0).Use the starter blocks
(0,45,8s-3,45—-1,0) x4, for 1 < s < 3t+1. Use (0,12t +8, 24t +13,12¢t+7,0) x 2.
In this last block, the differences 12¢+7 and 12¢t+8 both occur, but they are additive
inverses mod v. The other two differences mod v in this block (which we use twice)
are 12¢t+5 and 12¢+6. It thus only remains to use 12¢+5 and 12t + 6 as differences
twice more each, and we do this with block (0,12t + 5, 24¢ + 11,12t + 6,0).

24t+16 Expand mod 24t + 15: Use (0,45,85 — 3,45 —1,0) x8for 1 < s <
3t + 1. Use (0,12t + 5,24t + 11,12t + 6,0) x 4. Use (o0, 12t + 7,012t + 8, 00) and
(12t + 7,00,12t + 8,0,12t + 7) x 3.

24t+17 Theorem 7

24t+18 Expand mod 24t + 17. Use (0,45,85 — 3,45 —1,0) x 8 for1 < s <
3t +1. Use (0, 12t + 6,24t + 13,12t + 7,0) x 6. Use (o0, 12t + 9, 0,12¢ + 10, 00), and
(12t + 9,00, 12t + 10,0, 12t + 9) x 3.

24t+19 Use base blocks (0,4s,8s —3,45—1,0) x4 for 1 < s < 3¢+ 2.Also use
(00,12t +9,0,12¢ + 10,) and (12¢ +9,,12¢ + 10,0, 12¢ + 9).

24t+-20 Expand mod 24t+19. Use (0,4s,8s—3,4s—1,0)x8for 1 < s < 3t+2.
Use (oo, 12t + 9,0, 12¢ + 10, 00), (12t + 9,00, 12t + 10,0, 12t +9.) x 3.

24t+21 There exist LD(v,5,2,7) for v = 24t + 21, t > 0.Use starter blocks
(0,45,85—3,4s5—1,0)x2for 1 < s < 3¢+2, and use (0,12t +10, 24t +19,12¢+9,0).

24t+22 Expand mod 24t + 21. Use (0,4s,83 — 3,45 —1,0) x8for 1 < s <
3t +2. Use (0,12t + 9, 24t + 19,12t + 10, 0) x 2 and use (o0, 12t + 9,0, 12t + 10, c0),
(12t + 9,00, 12¢ + 10,0, 12¢ + 9) x 3x.

24t+23 There exist LD(v,5,4,7) for v = 24t + 23, t > 0. Use starter blocks
(0,4s,85—3,4s—1,0) x4 for 1 < s < 3t+2. Use (0, 12t +12, 24t +21,12¢+11,0) x 2
and one copy of (0,12t + 9, 24t + 19, 12¢ + 10,0).

24t Expand mod 24t + 23. Use (0,4s,83 — 3,4s,0) x 8 for 1 <s <3t +2.
Use (0, 12t +9, 24t +19, 12+ 10, 0) x 4 Use (00,12t +11,0,12¢t+12, 00) and (12t +11,
0o, 12¢ + 12,0,12¢ + 11) x 3.

This shows LD(v,5, A, j) exist for every v and with minimal index. In this
section, it is shown that the (v, A) spectrum of cyclic LDs is the same as that of
LDs which are not necessarily cyclic.

THEOREM 8. The necessary conditions for ezistence of LDs 13 sufficient for the
existence of cyclic LDs when k = 5.
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