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Abstract

A kernel in a directed graph D (V, E) is a set S of vertices of D such
that no two vertices in S are adjacent and for every vertex w in V\§
there is a vertex v in S, such that (,?) is an arc of D. The problem of
existence of a kernel is N P-complete for a general digraph. In this paper
we introduce the acyclic kernel problem for an undirected graph G and
solve it in polynomial time for certain cycle related graphs.
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1 Introduction and Terminology

A kernel [7] in a directed graph D (V, E) is a set S of vertices of D such
that no two vertices in S are adjacent and for every vertex u in V\ S there
is a vertex v in S, such that (%,9) is an arc of D. The concept of kernel in
digraphs was introduced in different ways (12, 18].

Kernels arise naturally in the analysis of certain two-person positional
games. Von Neumann and Morgenstern [18] were the first to introduce
kernels when describing winning positions in 2 person games. They proved
that any directed acyclic graph has a unique kernel. Not every digraph has
a kernel and if a digraph has a kernel, this kernel is not necessarily unique.
All odd length directed cycles and most tournaments have no kernels [2, 3].

If D is finite, the decision problem of the existence of a kernel is N P-
complete for a general digraph [6, 17], and for a planar digraph with in-
degrees < 2, out-degrees < 2 and degrees < 3 [8]. It is further known that
a finite digraph all of whose cycles have even length has a kernel {15], and
that the question of the number of kernels is NP-complete even for this
restricted class of digraphs [16)].

The concept of kernel is widespread and appears in diverse fields such as
logic, computational complexity, artificial intelligence, graph theory, game
theory, combinatorics and coding theory (2, 3|. Efficient routing among a
set of mobile hosts is one of the most important functions in ad hoc wireless
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networks. Dominating set based routing to networks with unidirectional
links is proposed in [1, 11]. A new interest for these studies arose due to
their applications in finite model theory. Indeed, variants of kernel are the
best properties to provide counter examples of 0-1 laws in fragments of
monadic second order logic [10].

In this paper we view the kernel problem from a different perspective.
In the literature, only the existence of kernel of a digraph D and its appli-
cations are extensively studied [13]. Our aim in this paper is to investigate
acyclic orientations of an undirected graph G and determine the acyclic
kernel number of G.

2 Kernel in Oriented Graphs

An orientation of an undirected graph G is an assignment of exactly one
direction to each of the edges of G. There are 2/Z! orientations for G. Let
O. (G) denote the set of all orientations of G. For an orientation O € O, let
G (0) denote the directed graph with orientation O and whose underlying
graph is G.

An orientation O of an undirected graph G is said to be an acyclic
orientation if it contains no directed cycles. Let O, (G) denote the set of
all acyclic orientations of G.

Definition 1 [7] A kernel in a directed graph D (V, E) is a set S of vertices
of D such that no two vertices in S are adjacent and for every vertex u in
V\S there is a vertez v in S, such that (u,9) is an arc of D. u is called
the tail and v is called the head of the arc (,0).

Definition 2 Let D (V, E) be any directed graph. The in-neigh-

borhood of a vertex v, denoted by N~ (v) is the set of all tail vertices with
head vertez v. The out-neighborhood of a vertex v, denoted by N+ (v) is the
set of all head vertices with tail vertexv.|N* (v)| is called the out-degree of
v and [N~ (v)| is called the in-degree of v.

Definition 3 [13] The kernel number k. of G is defined as
kz (G) =min{k(0): 0 € O, (G)}

where k (0O) = min {|K|: K is a kernel of G(O)}.

Deﬁnition 4 [13] The acyclic kernel number kqoof G is defined as
ke (G) =min{x(0): 0 € 0, (G)}
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where k (0) = min {|K|: K is a kernel of G(O)}.

The Acyclic Kernel Problem

Definition 5 The acyclic kernel problem of an undirected graph G is to
find a kernel K of G(O) for some acyclic orientation O of G such that

|K| = Kq-

3 Label Induced Kernel

A graph labeling is an assignment of integers to the vertices or edges or
both, subject to certain conditions. Graph labeling has a wide range of
applications. For instance, we can find labeling of graphs showing up in x-
rays, crystallography, coding theory, radar, astronomy, circuit design and
communication network addressing [4, 5]. Their theoretical applications
are numerous, not only within the theory of graphs but also in other areas
of mathematics such as combinatorial number theory, linear algebra and
group theory admitting a given type of labeling [9].

Definition 6 Let G be a graph with vertez set V (G) and edge set E (G).
Then a labeling f of G is an injection from V (G) to {1,2,...,|V|}.

Definition 7 [14] Let G be an undirected graph. A labeling f from the ver-
tex set V (G) to {1,2,...,|V|} is said to induce a digraph G (f) if E(G (f))
satisfies the following condition: (i,0) € E (G (f)) if and only if f (u) <
f (v). The labeling is called a topological ordering and the digraph is called
an ascent graph.

Theorem 1 A digraph G is an ascent graph if and only if it is acyclic.

Proof. Let G be an ascent graph. Then there exists an onto function f :
V(G) — {1,2, ...,|V|} such that (z,9) € E(G) if and only if f (v) < f (v).
Suppose there exists a cycle C : uou...uxlo in G. This implies f(up) <
f(ug). But (ux,ug) € E(C). Hence f(ux) < f(ug), & contradiction.
Thus G is acyclic. Conversely let G be an acyclic digraph. Then there
exists at least one linear ordering v; < ... < v, of the vertex set V (G) =
{v1,v2,...,vn} such that an edge (v;,v;) of G has the direction (%;,v;) if
and only if v; < v; [14]. Since G has topological ordering, G is an ascent
graph. O

In the sequel we obtain a lower bound for the acyclic kernel number of
certain cycle related graphs and prove that the lower bound is tight.
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4 Kernel in Circular fan F' (m, k) with k Chords

Definition 8 Let C : z1%3...x,,21 be a cycle on m vertices. Let u be a
new vertez. The graph obtained by adding edges (u,z;) i=1,2,...,m—2k
to C and chords (Tm,Zm—2),

(mm—2k+31 xm—2k+1) and (xm—iaxm—(i+3))) where 1 = 1,3,..,2k — 5 is
called a circular fan with k chords and s denoted by F(m,k), k 2 2.
The new edges are called spokes of F (m,k). See Figure 1.

u

Figure 1: Circular fan with four chords F'(m,4)

Theorem 2 Let G be the circular fan F (m, k)with k > 2 chords and m 2
8. Then kg = [-’25] +1.

Proof. Let G be the circular fan F (m, k)with k 2> 2 chords and m > 8.
Case 1: [£] is even: Define a labeling f: V (G) —

{1,2,...mym+1} by f(w) =m+1, f(Tm—(8i-6)) =

{m,m -1,....m— [%-I + l}and f (IBm_(s,'_e,)) =

{m—[%],..,m—[5] +1} where i = 1,2,..., [£] Let the remaining ver-

tices be labeled as 1,2,..,m — [£] arbitarily by f. Orient the edges

(%,w) € E(G) if and only if f(v) < f(w), rendering f a topological

ordering. Then by theorem 1, G is acyclic. We claim that vertices labeled
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m+1,m,m—1,..,m— [£] + 1 constitute an acyclic kernel set K of G.
Since u is a vertex of degree m — 2k, u covers atmost m — 2k vertices
of G. All the remaining 2k vertices of G are of degree 3. Thus at least
[ -'25] + 1 vertices must be in the kernel set. Thus &, > [ -’25] + 1. Now
{1, Tm—(8i-6)) Tm—(8i=3) }, ¢ = 1,2,..., [£] is a kernel for F(m,k) which
forms an independent set. Thus x, = [§] + 1. See Figure 2.

Figure 2: Encircled vertices form a kernel in F (16, 4)

Case 2:[£] is odd: Define a labeling f: V (G) —
{1, 2, MM+ 1} by f ('LL) =m++ 1, f (.‘Bm_(si_s)) =
{m,m—1,..,m—[4] +1} wherei=1,2,...,[4]and
f (Tm-gi-3)) = {m— [£],...,m—[5] + 1} where j = 1,2, ...,
[£] — 1 Let the remaining vertices be labeled as 1,2,...,m — [£] arbitarily
by f. Orient the edges (7, w) € E (G) if and only if f (v) < f (w), rendering
J a topological ordering. Then by theorem 1, G is acyclic. We claim that

vertices labeled

m+ 1,m,m - 1,..,m — [£] + 1 constitute an acyclic kernel set X of G.
Since u be a vertex of degree m — 2k, u covers atmost m — 2k vertices
of G. All the remaining 2k vertices of G are of degree 3. Thus at least
[£] + 1 vertices must be in the kernel set. Thus x, > [§] + 1. Now
{u’zm—(Si—G)’zm—(Bj—Zi)}v i=12,., "%-' and j = 1,2, .., [%] —lisa
kernel for F (m, k) which forms an independent set. Thus k, = [ -’,ﬂ + 1.
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Theorem 3 The acyclic kernel problem for the circular fan F (m, k)with
k 2 2 chords and m 2> 8 is polynomially solvable.

5 Kernel in Double Headed Circular Fan

Definition 9 Let C : z1z2...2mT1 be a cycle on m vertices. For z; €
V (C), the graph obtained by adding edges (zi,u), i = 1,2,...,m — 3 and
(z:,v), i=m—2,m—1,m to C is called Double headed circular fan. It is
denoted by DF (m). The new edges are called spokes of DF (m).

Theorem 4 Let G be the double headed circular fan DF (m), m > 7. Then
Ko =2.

Proof. Define a labeling f: V (G) — {1,2,...m,m +1,m+2} by f (u) =
m+2, f(v) =m+1and f(zn) = m. Orient the edges (7,%) € E(G)
if and only if f(v) < f(w) rendering f a topological ordering of V (G)
such that the vertices labeled m + 2, m + 1 have in-degree m — 3 and 3
respectively. Then by theorem 1, G is acyclic.

We claim that vertices labeled m 42, m 41 constitute an acyclic kernel

set K of G.
Since u is a vertex of degree m — 3, u covers atmost m — 3 vertices of

G. All the remaining four vertices of G are of degree 3. Thus at least one
of these vertices must be in the kernel set. Thus K, > 2. Now {u,v} isa
kernel set for DF (m) which forms an independent set. Thus k, = 2. See
Figure 3.

Theorem 8 The acyclic kernel problem for the double headed circular fan
DF (m), m 2 7 is polynomially solvable.

6 Kernel in Double Headed Circular Fan with
k Chords DF (m,k)

Definition 10 A Double fan is defined as P, + Ks.
It is easy to prove the following result.

Theorem 6 Let G be a double fan. Then kg = 2.
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Figure 3: DF (10) with kernel vertices encircled

Definition 11 Let C : z1Z3...zm21 be a cycle on m vertices. For z; €
V (C), the graph obtained by adding

(a) edges (z;,u), i =1,2,..,m—(2k +3) and (z;,v), i=m—(k+3),m—
(k+2),m— (k+1) to C and chords (Tm,ZTm—2),

(xm-zk,ivm-(zk-o-z)) ) (xm—(k—l)azm—(k+5)) and (wm—i7$m—(i+3)): where
i=1,3,..,|%2| andi = k+4,k+6,...,2k — 2 when k is even or by
adding

(b) edges (zi,u), i =1,2,...m—(2k + 3) and (z;,v), i =m—(k+4),m—
(k+3),m— (k+2) to C and chords (Tm, Tm—2),(Tm-2k) Tm—(2k+2)) »
(xm—k:zm—(k+6)); (xm—(k—z),wm-(k+1)) and (Svm—i, wm-(i+3)): where i =
1,3,.., %52 | —1andi=k+5k+7,..,2k — 2 when k is odd

8 called a Double headed circular fan with k chords where k 2> 2 and is
denoted by DF (m,k). The new edges are called spokes of DF (m, k). See
Figure 4.

Theorem 7 Let G be DF (m,k) with k > 2 chords and m > 11. Then
Ko 2 [ -'2"-] + 2.

Proof. Let G be DF (m, k) with k > 2 chords and m > 11. Since u is
a vertex of degree m — (2k + 3), u covers atmost m — (2k + 3) vertices of
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Figure 4: DF (m,4)

G. All the remaining 2k + 3 vertices of G are of degree 3. Thus at least
[£] + 2 of these vertices must be in the kernel set. Hence ko > [£] + 2.

Theorem 8 The acyclic kernel problem for the double headed circular fan
with k chords DF (m, k) is polynomially solvable.

7 Conclusion

We have discussed the acyclic kernel number problem for oriented graphs.
In this paper, we have proved that the acyclic kernel problem for the circu-
lar fan with k chords F (m, k), double headed circular fan DF (m), m > 7
and double headed circular fan with k chords DF (m, k) are polynomi-
ally solvable. Further the acyclic kernel problem for circular ladders and
Petersen graphs are under investigation.
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