Acyclic Kernel Number of Oriented Cycle Related Graphs

Indra Rajasingh, Bharati Rajan, S. Little Joice
Department of Mathematics, Loyola College,
Chennai 600 034, India.
littlejoice82@yahoo.com
Abstract

A kernel in a directed graph D(V, E) is a set S of vertices of D such that no two vertices in S are adjacent and for every vertex u in $V \setminus S$ there is a vertex v in S, such that $(\overrightarrow{u,v})$ is an arc of D. The problem of existence of a kernel is NP-complete for a general digraph. In this paper we introduce the acyclic kernel problem for an undirected graph G and solve it in polynomial time for certain cycle related graphs.

Keywords: oriented graph, kernel, acyclic kernel number, *NP*-complete, topological ordering, ascent graph.

1 Introduction and Terminology

A kernel [7] in a directed graph D(V, E) is a set S of vertices of D such that no two vertices in S are adjacent and for every vertex u in $V \setminus S$ there is a vertex v in S, such that $(\overline{u}, \overline{v})$ is an arc of D. The concept of kernel in digraphs was introduced in different ways [12, 18].

Kernels arise naturally in the analysis of certain two-person positional games. Von Neumann and Morgenstern [18] were the first to introduce kernels when describing winning positions in 2 person games. They proved that any directed acyclic graph has a unique kernel. Not every digraph has a kernel and if a digraph has a kernel, this kernel is not necessarily unique. All odd length directed cycles and most tournaments have no kernels [2, 3].

If D is finite, the decision problem of the existence of a kernel is NP-complete for a general digraph [6, 17], and for a planar digraph with indegrees ≤ 2 , out-degrees ≤ 2 and degrees ≤ 3 [8]. It is further known that a finite digraph all of whose cycles have even length has a kernel [15], and that the question of the number of kernels is NP-complete even for this restricted class of digraphs [16].

The concept of kernel is widespread and appears in diverse fields such as logic, computational complexity, artificial intelligence, graph theory, game theory, combinatorics and coding theory [2, 3]. Efficient routing among a set of mobile hosts is one of the most important functions in ad hoc wireless

networks. Dominating set based routing to networks with unidirectional links is proposed in [1, 11]. A new interest for these studies arose due to their applications in finite model theory. Indeed, variants of kernel are the best properties to provide counter examples of 0-1 laws in fragments of monadic second order logic [10].

In this paper we view the kernel problem from a different perspective. In the literature, only the existence of kernel of a digraph D and its applications are extensively studied [13]. Our aim in this paper is to investigate acyclic orientations of an undirected graph G and determine the acyclic kernel number of G.

2 Kernel in Oriented Graphs

An orientation of an undirected graph G is an assignment of exactly one direction to each of the edges of G. There are $2^{|E|}$ orientations for G. Let $O_x(G)$ denote the set of all orientations of G. For an orientation $O \in O_x$, let G(O) denote the directed graph with orientation O and whose underlying graph is G.

An orientation O of an undirected graph G is said to be an acyclic orientation if it contains no directed cycles. Let $O_a(G)$ denote the set of all acyclic orientations of G.

Definition 1 [7] A kernel in a directed graph D(V, E) is a set S of vertices of D such that no two vertices in S are adjacent and for every vertex u in $V \setminus S$ there is a vertex v in S, such that $(\overline{u,v})$ is an arc of D. u is called the tail and v is called the head of the arc $(\overline{u,v})$.

Definition 2 Let D(V, E) be any directed graph. The in-neighborhood of a vertex v, denoted by $N^-(v)$ is the set of all tail vertices with head vertex v. The out-neighborhood of a vertex v, denoted by $N^+(v)$ is the set of all head vertices with tail vertex v. $|N^+(v)|$ is called the out-degree of v and $|N^-(v)|$ is called the in-degree of v.

Definition 3 [13] The kernel number κ_x of G is defined as

$$\kappa_x(G) = \min \left\{ \kappa(O) : O \in O_x(G) \right\}$$

where $\kappa(O) = \min\{|K| : K \text{ is a kernel of } G(O)\}.$

Definition 4 [13] The acyclic kernel number κ_a of G is defined as

$$\kappa_a(G) = \min \left\{ \kappa(O) : O \in O_a(G) \right\}$$

where $\kappa(O) = \min\{|K| : K \text{ is a kernel of } G(O)\}.$

The Acyclic Kernel Problem

Definition 5 The acyclic kernel problem of an undirected graph G is to find a kernel K of G(O) for some acyclic orientation O of G such that $|K| = \kappa_a$.

3 Label Induced Kernel

A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. Graph labeling has a wide range of applications. For instance, we can find labeling of graphs showing up in x-rays, crystallography, coding theory, radar, astronomy, circuit design and communication network addressing [4, 5]. Their theoretical applications are numerous, not only within the theory of graphs but also in other areas of mathematics such as combinatorial number theory, linear algebra and group theory admitting a given type of labeling [9].

Definition 6 Let G be a graph with vertex set V(G) and edge set E(G). Then a labeling f of G is an injection from V(G) to $\{1, 2, ..., |V|\}$.

Definition 7 [14] Let G be an undirected graph. A labeling f from the vertex set V(G) to $\{1, 2, ..., |V|\}$ is said to induce a digraph G(f) if E(G(f)) satisfies the following condition: $(\overrightarrow{u,v}) \in E(G(f))$ if and only if f(u) < f(v). The labeling is called a topological ordering and the digraph is called an ascent graph.

Theorem 1 A digraph G is an ascent graph if and only if it is acyclic.

Proof. Let G be an ascent graph. Then there exists an onto function $f: V(G) \to \{1, 2, ..., |V|\}$ such that $(\overline{u}, \overline{v}) \in E(G)$ if and only if f(u) < f(v). Suppose there exists a cycle $C: u_o u_1 ... u_k u_o$ in G. This implies $f(u_0) < f(u_k)$. But $(\overline{u_k}, \overline{u_0}) \in E(C)$. Hence $f(u_k) < f(u_0)$, a contradiction. Thus G is acyclic. Conversely let G be an acyclic digraph. Then there exists at least one linear ordering $v_1 < ... < v_n$ of the vertex set $V(G) = \{v_1, v_2, ..., v_n\}$ such that an edge (v_i, v_j) of G has the direction $(\overline{v_i}, \overline{v_j})$ if and only if $v_i < v_j$ [14]. Since G has topological ordering, G is an ascent graph. \Box

In the sequel we obtain a lower bound for the acyclic kernel number of certain cycle related graphs and prove that the lower bound is tight.

4 Kernel in Circular fan F(m, k) with k Chords

Definition 8 Let $C: x_1x_2...x_mx_1$ be a cycle on m vertices. Let u be a new vertex. The graph obtained by adding edges (u, x_i) i = 1, 2, ..., m - 2k to C and chords (x_m, x_{m-2}) ,

 (x_{m-2k+3}, x_{m-2k+1}) and $(x_{m-i}, x_{m-(i+3)})$, where i = 1, 3, ..., 2k-5 is called a circular fan with k chords and is denoted by F(m, k), $k \ge 2$. The new edges are called spokes of F(m, k). See Figure 1.

Figure 1: Circular fan with four chords F(m, 4)

Theorem 2 Let G be the circular fan F(m, k) with $k \ge 2$ chords and $m \ge 8$. Then $\kappa_a = \lceil \frac{k}{2} \rceil + 1$.

Proof. Let G be the circular fan F(m,k) with $k \ge 2$ chords and $m \ge 8$. Case 1: $\left\lceil \frac{k}{2} \right\rceil$ is even: Define a labeling $f:V(G) \to \{1,2,...,m,m+1\}$ by f(u)=m+1, $f\left(x_{m-(8i-6)}\right)=\{m,m-1,...,m-\left\lceil \frac{k}{4} \right\rceil+1\}$ and $f\left(x_{m-(8i-3)}\right)=\{m-\left\lceil \frac{k}{4} \right\rceil,...,m-\left\lceil \frac{k}{2} \right\rceil+1\}$ where $i=1,2,...,\left\lceil \frac{k}{4} \right\rceil$ Let the remaining vertices be labeled as $1,2,...,m-\left\lceil \frac{k}{2} \right\rceil$ arbitarily by f. Orient the edges $(\overline{v},\overline{w}) \in E(G)$ if and only if f(v) < f(w), rendering f a topological ordering. Then by theorem 1, G is acyclic. We claim that vertices labeled

 $m+1, m, m-1, ..., m-\left\lceil \frac{k}{2} \right\rceil +1$ constitute an acyclic kernel set K of G. Since u is a vertex of degree m-2k, u covers at most m-2k vertices of G. All the remaining 2k vertices of G are of degree 3. Thus at least $\left\lceil \frac{k}{2} \right\rceil +1$ vertices must be in the kernel set. Thus $\kappa_a \geqslant \left\lceil \frac{k}{2} \right\rceil +1$. Now $\left\{ u, x_{m-(8i-6)}, x_{m-(8i-3)} \right\}, \ i=1,2,..., \left\lceil \frac{k}{4} \right\rceil$ is a kernel for F(m,k) which forms an independent set. Thus $\kappa_a = \left\lceil \frac{k}{2} \right\rceil +1$. See Figure 2.

Figure 2: Encircled vertices form a kernel in F(16,4)

Case $2: \left\lceil \frac{k}{2} \right\rceil$ is odd: Define a labeling $f: V(G) \to \{1,2,...,m,m+1\}$ by f(u)=m+1, $f\left(x_{m-(8i-6)}\right)=\{m,m-1,...,m-\left\lceil \frac{k}{4} \right\rceil+1\}$ where $i=1,2,...,\left\lceil \frac{k}{4} \right\rceil$ and $f\left(x_{m-(8j-3)}\right)=\{m-\left\lceil \frac{k}{4} \right\rceil,...,m-\left\lceil \frac{k}{2} \right\rceil+1\}$ where $j=1,2,...,\left\lceil \frac{k}{4} \right\rceil$ arbitarily by f. Orient the edges $(\overline{v},\overline{w}) \in E(G)$ if and only if f(v) < f(w), rendering f a topological ordering. Then by theorem 1, G is acyclic. We claim that vertices labeled $m+1,m,m-1,...,m-\left\lceil \frac{k}{2} \right\rceil+1$ constitute an acyclic kernel set K of G. Since u be a vertex of degree m-2k, u covers at most m-2k vertices of G. All the remaining 2k vertices of G are of degree g. Thus at least $\left\lceil \frac{k}{2} \right\rceil+1$ vertices must be in the kernel set. Thus $\kappa_a\geqslant \left\lceil \frac{k}{2} \right\rceil+1$. Now $\left\{u,x_{m-(8i-6)},x_{m-(8j-3)}\right\},\ i=1,2,...,\left\lceil \frac{k}{4} \right\rceil$ and $j=1,2,...,\left\lceil \frac{k}{4} \right\rceil-1$ is a kernel for $F\left(m,k\right)$ which forms an independent set. Thus $\kappa_a=\left\lceil \frac{k}{2} \right\rceil+1$.

Theorem 3 The acyclic kernel problem for the circular fan F(m, k) with $k \ge 2$ chords and $m \ge 8$ is polynomially solvable.

5 Kernel in Double Headed Circular Fan

Definition 9 Let $C: x_1x_2...x_mx_1$ be a cycle on m vertices. For $x_i \in V(C)$, the graph obtained by adding edges (x_i, u) , i = 1, 2, ..., m - 3 and (x_i, v) , i = m - 2, m - 1, m to C is called Double headed circular fan. It is denoted by DF(m). The new edges are called spokes of DF(m).

Theorem 4 Let G be the double headed circular fan DF (m), $m \ge 7$. Then $\kappa_a = 2$.

Proof. Define a labeling $f: V(G) \to \{1, 2, ..., m, m+1, m+2\}$ by f(u) = m+2, f(v) = m+1 and $f(x_m) = m$. Orient the edges $(v, w) \in E(G)$ if and only if f(v) < f(w) rendering f a topological ordering of V(G) such that the vertices labeled m+2, m+1 have in-degree m-3 and 3 respectively. Then by theorem 1, G is acyclic.

We claim that vertices labeled m+2, m+1 constitute an acyclic kernel set K of G.

Since u is a vertex of degree m-3, u covers at most m-3 vertices of G. All the remaining four vertices of G are of degree 3. Thus at least one of these vertices must be in the kernel set. Thus $\kappa_{\alpha} \geq 2$. Now $\{u, v\}$ is a kernel set for DF(m) which forms an independent set. Thus $\kappa_{\alpha} = 2$. See Figure 3.

Theorem 5 The acyclic kernel problem for the double headed circular fan DF(m), $m \ge 7$ is polynomially solvable.

6 Kernel in Double Headed Circular Fan with k Chords DF(m, k)

Definition 10 A Double fan is defined as $P_n + \overline{K_2}$.

It is easy to prove the following result.

Theorem 6 Let G be a double fan. Then $\kappa_a = 2$.

Figure 3: DF(10) with kernel vertices encircled

Definition 11 Let $C: x_1x_2...x_mx_1$ be a cycle on m vertices. For $x_i \in V(C)$, the graph obtained by adding

(a) edges (x_i, u) , i = 1, 2, ..., m - (2k + 3) and (x_i, v) , i = m - (k + 3), m - (k + 2), m - (k + 1) to C and chords (x_m, x_{m-2}) ,

 $(x_{m-2k}, x_{m-(2k+2)}), (x_{m-(k-1)}, x_{m-(k+5)}) \text{ and } (x_{m-i}, x_{m-(i+3)}), \text{ where } i = 1, 3, ..., \lfloor \frac{2k-5}{2} \rfloor \text{ and } i = k+4, k+6, ..., 2k-2 \text{ when } k \text{ is even or by adding}$

(b) edges (x_i, u) , i = 1, 2, ..., m - (2k + 3) and (x_i, v) , i = m - (k + 4), m - (k + 3), m - (k + 2) to C and chords $(x_m, x_{m-2}), (x_{m-2k}, x_{m-(2k+2)}), (x_{m-k}, x_{m-(k+6)}), (x_{m-(k-2)}, x_{m-(k+1)})$ and $(x_{m-i}, x_{m-(i+3)}),$ where $i = 1, 3, ..., \lfloor \frac{2k-5}{2} \rfloor - 1$ and i = k + 5, k + 7, ..., 2k - 2 when k is odd is called a Double headed circular fan with k chords where $k \geq 2$ and is denoted by DF(m, k). The new edges are called spokes of DF(m, k). See Figure 4.

Theorem 7 Let G be DF (m, k) with $k \ge 2$ chords and $m \ge 11$. Then $\kappa_a \ge \left\lceil \frac{k}{2} \right\rceil + 2$.

Proof. Let G be DF(m,k) with $k \ge 2$ chords and $m \ge 11$. Since u is a vertex of degree m - (2k + 3), u covers at most m - (2k + 3) vertices of

Figure 4: DF(m, 4)

G. All the remaining 2k + 3 vertices of G are of degree 3. Thus at least $\left\lceil \frac{k}{2} \right\rceil + 2$ of these vertices must be in the kernel set. Hence $\kappa_a \geqslant \left\lceil \frac{k}{2} \right\rceil + 2$.

Theorem 8 The acyclic kernel problem for the double headed circular fan with k chords DF(m, k) is polynomially solvable.

7 Conclusion

We have discussed the acyclic kernel number problem for oriented graphs. In this paper, we have proved that the acyclic kernel problem for the circular fan with k chords F(m, k), double headed circular fan DF(m), $m \ge 7$ and double headed circular fan with k chords DF(m, k) are polynomially solvable. Further the acyclic kernel problem for circular ladders and Petersen graphs are under investigation.

References

- K. M. Alzoubi, P. J. Wan and O. Frieder, New Distributed algorithm for Connected Dominating Set in Wireless Ad Hoc Network, Proc. 35th Hawaii Int. Conf. System Sciences, (2002) 1-7.
- [2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, (2000).
- [3] C. Berge and P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Mathematics, 86 (1990) 27-31.
- [4] G. S. Bloom and S. W. Golomb, Applications of numbered undirected graphs, Proc. IEEE, 65 (1977) 562-570.
- [5] G. S. Bloom and S. W. Golomb, Numbered complete graphs, unusual rulers, and assorted applications, Theory and Application of Graphs, Lecture Notes on Mathematics 642, Springer-Verlag, New York, (1978) 53-65.
- [6] V. Chvatal, On the computational complexity of finding a kernel, Report No. CRM-300, Centre de Recherches Mathematiques, Universite de Montreal, (1973).
- [7] Claude Berge, Graphs, 6, of North-Holland Mathematical Library, North Holland Publishing Co., Amsterdam, 1985, second revised edition of part I of the 1973 English version.
- [8] A. S. Fraenkel, Planar kernel and Grundy with $d \le 3$, $d^+ \le 2$, $d^- \le 2$ are NP-complete, Discrete Applied Mathematics, 3 (1981) 257-262.
- [9] J. A. Gallian, a Dynamic survey of graph labeling, The Electronic Journal of combinatorics 15 (2008) #DS6.
- [10] Jean-Marie Le Bars, Counterexample of the 0-1 Law for fragments of existential second order logic: an overview, The Bulletin of Symbolic Logic, 6(1) (2000) 67-82.
- [11] Jie Wu, Extended Dominating-Set-Based Routing in Ad Hoc Wireless Networks with Unidirectional Links, IEEE Transactions on Parallel and Distributed Systems, 13(9) (2002) 866-881.
- [12] M. Kswasnik, The generalization of Richardson theorem, Discussiones Math. IV, (1981) 11-14.

- [13] Paul Manuel, Indra Rajasingh, Bharati Rajan and Joice Punitha, Kernel in Oriented Graphs, LNCS 5874, IWOCA 2009, Springer-verlag Berlin Heidelberg (2009) 396-407.
- [14] Raul Cordovil and David Forge, Flipping in Acyclic and Strongly connected graphs, (submitted).
- [15] M. Richardson, Solutions of irreflexive relations, Ann. of Math. 58 (1953) 573-590.
- [16] J. L. Szwarcfiter and G. Chaty, Enumerating the kernels of a directed graph with no odd circuits, Inform. Process. Lett. 51 (1994) 149-153.
- [17] J. Van Leeuwen, Having a Grundy-numbering is NP-complete, Report No. 207, Computer Science Dept., Pennsylvania State University, University Park, PA, (1976).
- [18] J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behaviour, Priceton University Press, Princeton, (1944).