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Abstract

In cellular radio communication systems, the concept of maximum pack-
ing is used for dynamic channel assignment. An H-packing of a graph G
is a set of vertex disjoint subgraphs of G, each of which is isomorphic to a
fixed graph H. The maximum H-packing problem is to find the maximum
number of vertex disjoint copies of H in G called the packing number de-
noted by A(G, H). In this paper we determine the maximum H-packing
number of hexagonal networks when H is isomorphic to P as well as K 3.
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1 Introduction

The maximum packing policy for dynamic channel assignment in cellular
radio communication systems specifies that a new call attempt is admitted
whenever there is some way of rearranging channels so that every call can
be carried. Otherwise the call is blocked and removed from the system [11].
In cellular radio communication systems, maximum packing policy is used
for dynamic channel assignment.

An H-packing of a graph G is a set of vertex disjoint subgraphs of G,
each of which is isomorphic to a fixed graph H. The maximum H-packing
problem is to find the maximum number of vertex disjoint copies of H in
G called the packing number denoted by A(G,H). For our convenience
MG, H) is sometimes represented as A. An H-packing in G is called perfect
if it covers all vertices of G. An F-packing is a natural generalization of H-
packing concept. For a given family F of graphs, the problem is to identify
a set of vertex-disjoint subgraphs of G, each isomorphic to a member of F.
The F-packing problem is to find an F-packing in a graph G that covers
the maximum number of vertices of G.

If H is the complete graph K>, the maximum H-packing problem be-
comes the familiar maximum matching problem. H-Packing, is of prac-
tical interest in the areas of scheduling [1], wireless sensor tracking [2],
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wiring-board design, code optimization (7] and many others. When H is a
connected graph with at least three vertices, Kirkpatrick and Hell proved
that the maximum H-packing problem is N P-complete {7]. Packing lines
in a hypercube has been studied in [6]. Algorithms are available for dense
packing of trees of different sizes [17] and packing almost stars [5] into the
complete graph. The H-packing problem when H is a tree and, in partic-
ular, when H is a path of two edges has been studied by Kelmans et al.
[9].

] One of the most widely studied packing is claw-packing [5]. A claw is
another name for the complete bipartite graph K7 3. A claw-free graph is
a graph in which no induced subgraph is a claw. The packing of induced
stars in a graph has been studied in [10]. Las Vergnas proved that the
{81, ..., Sk }-packing problem where S; ~ K3 ; is polynomially solvable [16].
On the contrary, Hell and Kirkpatrick 8] proved that the packing problem
when F = {S; : i € J} is NP-complete whenever J C N is not of the form
{1,2,...,k}. In this paper we study the packing of hexagonal networks with

S3.

2 Hexagonal Network

In a direct interconnection network, nodes represent processors, while edges
indicate connections between processors for direct message exchange. A
survey of such networks is given in [14]. It is known that there exist three
regular plane tessellations, composed of the same kind of regular polygons:
triangular, square, and hexagonal. They are the basis for the design of di-
rect interconnection networks with highly competitive overall performance.

Hexagonal networks are based on regular triangular tessellations, or the
partition of a plane into equilateral triangles and are widely studied in [3].
Hexagonal network HX (n) of dimension n has 3n%2 — 3n + 1 vertices and
9n? — 15n + 6 edges, where n is the number of vertices on one side of the
hexagon [3]. See Figure 1. The diameter is 2n — 2. There are six vertices
of degree three which we call as corner vertices.

There is exactly one vertex v at distance n — 1 from each of the corner
vertices. This vertex is called the centre of HX (n) and is represented by O.
The vertex set V is partitioned into sets inducing concentric cycles around
O. Call vertex O as level 1, the first cycle around O as level 2 denoted by
C3 and so on and the last cycle farthest from O as level n denoted by C3.
See Figure 1. The level ¢ cycle has 6(i — 1) vertices, 7 > 2.

Hexagonal networks are studied in a variety of contexts. They are ap-
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Figure 1: HX(4)

plied in chemistry to model benzenoid hydrocarbons [15], in image process-
ing and computer graphics [12], and wireless and interconnection networks.
An addressing scheme for processors, and corresponding routing and broad-
casting algorithms for hexagonal interconnection network were proposed by
Chen et al. [3]. The performance of hexagonal networks was further stud-
ied in [4, 13]. In the sequel let C,, and P, denote a cycle and a path on n
vertices respectively.

Definition 1 The subgraph induced by C? and C?_; in HX(n) is called a
circular channel and is denoted by CC(i) fori=3,5,...,n if n is odd and
fori=2,4,...,n ifn is even. CC(%) contains 6(2i — 3) vertices, ¢ > 3 and
CC(2) contains 7 vertices. See Figure 2(a) and 2(b).

The vertices in CC(k) are labelled as shown in the Figure 2. zf, z5, ...,
2%, _15 shown in Figure 2 are consecutive vertices in the circular channel

CC(k).

Theorem 1 Let G be a graph and H be a subgraph of G. Then A\(G,H) <
[+t -

Proof. It is clear that A number of vertex disjoint copies of H in G cover

MG, H) x |V(H)| distinct vertices of G.
Therefore A(G, H) x |[V(H)| < |[V(G)|. O

Remark 1 Since {V(HX(n))| is a prime number, no subgraph will per-
fectly pack HX (n). We note that |[V(HX(n))| — 1 is always a multiple of
6. In the next section we pack HX(n) with Ps.
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Figure 2: Circular channels in HX (4) and HX(5)

3 Packing of HX(n) with P

In this section we study the packing of HX(n) with Ps.

Theorem 2 There erists a perfect H-Packing of HX (n) with [&?JJ
copies of H = Pg.

Proof. By Theorem 1, A(G,H) < n?. Now for k =2,...,n C{ ~ Cgk—s.
Let V(C?) = {1,2,...,6k —6}. Then S; = {6t+ 1,6t 42,6t + 3,6t 44,6t +
5,6t + 6} where 0 < t < k — 2 is a partition of C§ into paths of length 6.

Therefore A\(G,H) > 1+42+...+(n—-1) = "("2_1) = [3"2_63"+1J. Thus
NG, H) = |#=gmtl | O

Remark 2 If a graph G is packed by P,, then G is also packed by Py for
all divisors d of n.

It follows that HX (n) can also be packed by P, and Pj;. Since packing
HX(n) with Py is nothing but perfect matching, we have the following
theorem.

Theorem 3 There exists a perfect matching in HX (n).

3.1 Packing HX(n) with Claw

In this section we describe an efficient algorithm that perfectly packs H.X (n)
with a claw.
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Procedure PACKING (HX(n), K13)

Input: A hexagonal network G of dimension n and H ~ K4 3.

Algorithm: Let k=n.
Mark z} saturated.
While & > 3 Do
While j > 12k — 19 Do

(i) Having marked z¥ move along consecutive vertices in CC(k) till

we arrive at z¥ such that (IN[z¥n N[z¥])| < 1 and d(z¥) = 4)
or (IN[:B"]ON[:C"]I < 2 and d(z%) = 5) or IN[zk]r‘lN[a:"]I = 2,
d(z}) = 4, d(= ) = 5 and |N[z¥] N N[z§]| = 1 where zf is already
marked). Mark x saturated.

Repeat

(ii) Mark w = z¥,,_,o saturated if z%,, o ¢ N[v], for any saturated
vertex v.

(i) k — k — 2.

(iv) Mark z¥ or z% saturated according as w is unsaturated or saturated
respectively.
Repeat

(v) Mark O saturated if n = Omod4 and mark z? saturated if n =
2mod4.
End PACKING

Output: An H-packing of HX(n) with '_;3"‘1‘—_' copies of K73. See
Figure 3.

Proof of Correctness: The subgraph induced by N[v] when v is a sat-
urated vertex contains a subgraph isomorphic to K3 3. For u # v, either
N[u] N N[v] = ® or there exist H; ~ K} 3 in N[u] and H; ~ K, 3 in Nv]
such that Hy N Hy = ®. For k > 1, CC(k) contains |125-18 | number of
saturated vertices. Exactly one copy of K1, 3 shares vertices from successive
channels CC(k) and CC(k — 2). Therefore A(G, H) = Y | 126=18 1218 | 4 2]
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Figure 3: Illustrating the procedure packing K, 3 in HX(4)

4 Conclusion

In this paper we determine the H-packing of hexagonal networks with
H isomorphic to either Ps or Kj3. The H-packing problem when H
is isomorphic to K4, K15 or K16 and the F-packing problem when
F = {S; : i € J} whenever J C N is not of the form {1,2,...,k} are
under investigation.
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