On the Crossing Number of Honeycomb
Related Networks

Bharati Rajan!, Indra Rajasingh!, P.Vasanthi Beulah?
1Department of Mathematics, Loyola College, Chennai 660 034, India
2 Department of Mathematics, Queen Mary’s College, Chennai 600 034, India
vbeulah@yahoo.com

Abstract

The crossing number of a graph G is the minimum number of crossings of its
edges among the drawings of G in the plane and is denoted by c¢r(G). In this
paper we obtain bounds for the crossing number for two different honeycomb
tori namely, the honeycomb rectangular torus and the honeycomb rhombic torus
which are obtained by adding wraparound edges to honeycomb meshes.
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1 Introduction

Crossing number minimization is one of the fundamental optimization prob-
lems in the sense that it is related to various other widely used notions.
Besides its mathematical interest, there are numerous applications, most
notably those in VLSI design [2, 8, 9] and in combinatorial geometry [18].
The study of crossing numbers of graphs also finds applications in areas of
network design and circuit layout. Minimizing the number of wire crossings
in a circuit greatly reduces the chance of cross-talk in long crossing wires
carrying the same signal and also allows for faster operation and less power
dissipation. We refer to [15, 19] for more details about such applications.

A drawing D of a graph G is a representation of G in the Euclidean
plane R? where vertices are represented as distinct points and edges by
simple polygonal arcs joining points that correspond to their end vertices.
A drawing D is good or clean if it has the following properties.

1. No edge crosses itself.
2. No pair of adjacent edges cross.
3. Two edges cross at most once.

4. No more than two edges cross at one point.
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The number of crossings of D is denoted by cr(D) and is called the
crossing number of the drawing D. The crossing number cr(G) of a graph
G is the minimum cr(D) taken over all good or clean drawings D of G. If
a graph G admits a drawing D with cr(D) = 0 then G is said to be planar;
otherwise non-planar. It is well known that Kj, the complete graph on 5
vertices and K3 3 the complete bipartite graph with 3 vertices in its classes
are non-planar. According to Kuratowski’s famous theorem, a graph is
planar if and only if contains no subdivision of K5 or K3 3.

The study of crossing numbers began during the Second World War
with Paul Turdn. For an arbitrary graph computing c¢r(G) is NP-hard [6).
Hence from a computational standpoint, it is infeasible to obtain exact so-
lutions for graphs, in greneral, but more practical to explore bounds for the
parameter values [4]. Richter and Thomassen [14] discussed the relation be-
tween crossing numbers of the complete and the complete bipartite graphs.
The bound for cr(K,) and cr(K,,») are obtained by Guy [7]. In particular,
Pan et al. [12] have shown that ¢r(K;;) = 100 and cr(Ky2) = 153. Nahas
[11] has obtained an improved lower bound for Kp, . In [5, 13] the crossing
number of some generalized Petersen graphs P(2n +1,2) and P(3k + h, 3)
has been discussed. For hypercubes and cube connected cycles the crossing
number problem is investigated by Sykora et al. [17]. Cimikowski [4] has
obtained the bound for the crossing number of mesh of trees. We have ob-
tained the bounds for the crossing number for two different representations
of the standard butterfly network [1].

Honeycomb tori have been recognized as an attractive alternative to
existing torus interconnection networks in parallel and distributed appli-
cations. In this paper, we have obtained upper bounds for the crossing
number for two different honeycomb tori namely, the honeycomb rectangu-
lar torus and the honeycomb rhombic torus.

2 Honeycomb Related Networks

Honeycomb meshes can be built from hexagons in various ways. The sim-
plest way to define them is to consider the portion of the hexagonal tessel-
lation which is inside a given convex polygon. Stojmenovic {16] considers
three types of meshes which differ by their boundary. Honeycomb hexagon
mesh (HHM) is inside a regular hexagon (Figure 1(a)), honeycomb rec-
tangular mesh (H ReM) is inside a rectangle (Figure 1(b)) and honeycomb
rhombic mesh (HRoM) is inside a rhombus (Figure 1(c)). Stojmenovic [16]
introduced three different honeycomb tori by adding wraparound edges on
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honeycomb meshes namely, the honeycomb rectangular torus, the honey-
comb rhombic torus, and the honeycomb hexagonal torus.

(@) (b) (c)

Figure 1: (a). Honeycomb hexagonal mesh (b). Honeycomb rectangular
mesh (c). Honeycomb rhombic mesh

2.1 Honeycomb Rectangular Torus

The honeycomb rectangular mesh [20] HReM(m,n) is the graph with ver-

tex set
V(HReM(m,n))={(¢,7):0<i<m,0<j < n}

such that (7,7) and (k,!) are adjacent if they satisfy one of the following
conditions:

l.i=kandj=1+1
2. j=landk=i-1ifi+jiseven

where m and n are positive even integers. Figure 2 depicts a honeycomb

rectangular mesh HReM(4,4).
Honeycomb rectangular torus is a honeycomb rectangular mesh with
wraparound edges. The honeycomb rectangular torus HReT'(m,n) is the

graph with

V(HReT (m,n)) = {(4,j):0<i<m,0<j<n}
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i=0 1 2 3

Figure 2: Honeycomb Rectangular Mesh HReM(4,4)

such that (i,7) and (k,!) are adjacent if they satisfy one of the following
conditions:

1. i=k and j = £ 1(modn).

2. j=land k=i~ 1(modm) if i + j is even.

i=0 1 2 3

Figure 3: Honeycomb Rectangular Torus HReT'(4,4)

Clearly, H ReT (m, n) has m vertical wraparound edges and % horizontal
wraparound edges. We call the remaining edges as straight edges. See
Figure 3. It follows from Figure 4 that a subdivision of K3 3 is contained in
HReT(4,4) and more so in any HReT(m, n). By Kuratowski’s theorem this
means that the Honeycomb rectangular torus is non-planar. We therefore
consider different drawings of HReT'(m,n) and determine the crossings in
each case.
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1

Figure 4: A subdivision of K33 in HReT(4,4)

Lemma 1 If no edge is drawn as exterior arc, then the number of crossings

z's-:’-"zﬁ—m—n.

Proof. HReT(m,n) has m vertical wraparound edges and § horizontal
wraparound edges. Each of m vertical wraparound edges crosses § — 1
straight edges and contributes 5 — 1 crossings. Each of § horizontal wrap-
around edges crosses m — 2 straight edges and contributes m — 2 crossings.
Apart from this, the horizontal and vertical wraparound edges cross each
other which will give rise to -21-(mn) crossings. Hence the number of cross-
ings is 322 — m — n. See Figure 5(a).

Lemma 2 If the horizontal wraparound edges are drawn as exlerior arcs,
then the number of crossings is 1(mn — 2m).

Proof. If the horizontal wraparound edges in HReT'(m,n) are drawn as
exterior arcs, only vertical wraparound edges contribute for crossing. Each
of these edges contributes 5 — 1 crossings. Hence the total number of
crossings in this case is equal to m(% — 1) = J(mn — 2m). See Figure 5(b).

Lemma 3 If the vertical wraparound edges are drawn as exterior arcs, then
the number of crossings is (mn — 2n).

Proof. In this case, only horizontal wraparound edges contribute for cross-
ing. Each of these edges contributes m — 2 crossings. Hence the total num-
ber of crossings in this case is equal to 3(m —2) = (mn — 2n). See Figure
5(c).

Lemma 4 If all the wraparound edges are drawn as exterior arcs, then the
number of crossings is 1(mn).
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Proof. Here the horizontal and vertical wraparound edges cross each other
so that there are only 3m crossings. Hence the number of crossings is
3(mn). See Figure 5(d).

i

(a) (0

p—

© ()

Figure 5: Different Drawings of HReT'(6,4)

In view of lemma 2 and lemma 3, we have the following result.
Theorem 5 Let G = HReT(m,n) be a honeycomb rectangular torus.
Then cr(G) < (mn — 2z) where z = maz{m,n}.

2.2 Honeycomb Rhombic Torus

Assume that m and n are positive integers, where n is even. The honeycomb
rhombic torus HRoT (m,n) is the graph with

V(HRoT(m,n)) = {(4,7):0<i<m,0< j—i < n}

such that (i,7) and (k,!) are adjacent if they satisfy one of the following
conditions:

1. i=k and j =1 £ 1(mod n).
2. j=land k=i—1ifi+ 7 is even.

3.i=0,k=m-1,and =3+ mif jis even.
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HRoT(m,n) has m vertical wraparound edges and Z diagonal wrap-
around edges. Here also we consider different drawings of H RoT'(m,n) and
determine the crossings in each case. See Figure 6.

8

7

6

Figure 6: HRoT'(6,4)

Lemma 6 If no edge is drawn as exterior arc, then the number of crossings
jo 3MN n

s = - m— 3

Lemma 7 If the vertical wraparound edges are drawn as exterior arcs, then
the number of crossings is z(mn —n).

Lemma 8 If the diagonal wraparound edges are drawn as ezterior arcs,
then the number of crossings is 3(mn — 2m).

Lemma 9 If all the wraparound edges are drawn as exterior arcs, then the
number of crossings is 1(mn).

The proofs of the above lemmas are similar to those of honeycomb
rectangular torus. Thus we have the following result.

Theorem 10 Let G = HRoT(m,n) be a honeycomb rhombic torus. Then
cr(G) £ 3(mn — ) where z = maz{2m, n}.
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3 Conclusion

We have obtained upper bounds for the crossing number of two different
honeycomb tori namely, the honeycomb rectangular torus and the honey-
comb rhombic torus. The crossing number problem for honeycomb hexag-
onal torus and generalized honeycomb torus are under investigation.
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