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Abstract

‘We show that the butterfly network and benes network can be embedded
into generalized fat trees with minimum dilation.
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1 Introduction

Graph embedding is an important technique used in the study of compu-
tational capabilities of processor interconnection networks and task distri-
bution. Embeddings of graphs from one class of graphs into another class
of graphs have important applications in computer science. For example,
any finite graph can be considered as a model of a parallel computer, where
vertices correspond to processors and edges represent communication lines
between them [10].

The concept of embedding is widely studied in the area of fixed inter-
connection parallel architectures. A parallel architecture is embedded into
another architecture to simulate one on another. An important feature of
an interconnection network is its ability to efficiently simulate programs
written for other architectures 10, 13].

Embeddings of graphs with a regular structure, like rings, grids, com-
plete trees, binomial trees, pyramids, X-trees, meshes of trees and so on,
have been investigated by numerous researchers [2, 12]. In general, the com-
munication structure of a parallel algorithm can be very irregular. Embed-
dings of such irregular graphs, like binary trees, caterpillars, graphs with
bounded treewidth, have also been studied [3, 15]. However, there has been
no work reported so far on embeddings of butterfly and benes networks into
generalized fat trees in the literature.
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Figure 1: 3-dimensional Butterfly Network

Definition 1 Let G and H be finite graphs with n vertices. V(G) and
V(H) denote the vertex sets of G and H respectively. E(G) and E(H)
denote the edge sets of G and H respectively. An embedding f of G into H
is defined [2] as follows:

1. f is a bijective map from V(G) — V(H)

2. f is a one-to-one map from E(G) to {Ps(f(u), f(v)) : Ps(f(u), f(v)) is
a path in H between f(u) and f(v)}.

The dilation of an embedding f of G into H is given by

dil(f) = max{|P¢(f(u), f(¥))] : (v, v) € E(G)}

where |Ps(f(u), f(v))| denotes the length of the path Py. Then, the dilation
of G into H is defined as

dil(G, H) = mindil(f)

where the minimum is taken over all embeddings f of G into H.

Embedding G into H with minimum dilation is important for network
design and for the simulation of one computer architecture by another (3].

Definition 2 [5] The m-dimensional butterfly BF,,, has n = 2™ (m + 1)
nodes arranged in m + 1 levels of 2™ nodes each. Each node has a distinct
label (w,) where i is the level of the node (0 < i < m) and w is a m-bit
binary number that denotes the column of the node. All nodes of the form
{(w,1), 0 < i < m, are said to belong to column w. Similarly, the i** level
L; consists of all of the nodes (w,1), where w ranges over all m-bit binary
numbers. Two nodes (w,i) and (w',i) are linked by an edge ifi’ = i+1 and
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Figure 2: 3-dimensional Benes Network

either w and w' are identical or w and w’ differ only in the bit in position
i. (The bit positions are numbered 1 through m, the most significant bit
being numbered 1). The edges in the network are undirected. The nodes
on level 0 are called the input nodes or just inputs of the network, and the
nodes on level m are called the output nodes or just outputs. See Figure 1.

Definition 3 [11] An m-dimensional Benes network B, has 2m+1 levels,
each level with 2™ nodes. The level 0 to level m nodes in the network form
an m dimensional butterfly. The middle level of the Benes network is shared
by these butterflies [10]. Figure 2 shows a B3 network.

Leiserson [9] proposed fat trees as a hardware-efficient, general-purpose
interconnection network. Several architectures including the Connection
Machine CM-5 of Thinking Machines, the memory hierarchy of the KSR-1
parallel machine of Kendall Square Research [6], and Meiko supercomputer
CS-2 [8] are based on the fat trees. A different fat tree topology called
"pruned butterfly" is proposed in [1], and other variants are informally
described in [7], where the increase in channel bandwidth is modified com-
pared to the original fat trees [9].

The generalized fat tree GFT(h, m,w) [14] of height » consists of m”
processors in the leaf-level and routers or switching-nodes in the non-leaf
levels. Each non-root has w parent nodes and each non-leaf has m children.
Informally, GFT (h+1, m,w) is recursively generated from m distinct copies
of GFT(h,m,w), denoted as GFT?(h,m,w) = (V},E]),0< j <m—1,
and w"*! additional nodes such that each top-level node (h,k + 7 - wh)
of each GFT?(h, m, w) for 0 <k < wh — 1, is adjacent to w consecutive
new top-level nodes (i.e. level h + 1 nodes), given by (h+ 1,k - w),...,(h +
1,(k+1)-w—1). The graph GFT?(h,m,w) is also called a sub-fat tree of
GFT(h +1,m,w).
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3,000 3,100 3,010 3,110 3,001 3,101 3,011 3,111

0,000 0,001 0,010 0,011 0,100 0,101 0,10 0,111

Figure 3: 3-dimensional Generalized Binary Fat Tree

In this paper we call GFT(h,2,2) a binary fat tree and denote it by
BFT(h). GFT(h,2,2) is precisely defined as follows.

Definition 4 The m-dimensional generalised binary fat tree BFT(m) has
n = 2™ (m + 1) nodes arranged in m + 1 levels of 2™ nodes each. Each
node has o distinct label (z,j) where j 13 the level of the node (0 < j < m)
and z = (am...a;j...a2a1) i a m bit binary number. Two nodes (z,j) and
(z',7') are adjacent if j = j+1 and either w and w' are identical or
z = (am...@j...a201). The edges in the network are undirected. The nodes
on level 0 are called the input nodes or just inputs of the network, and the
nodes on level m are called the output nodes or just outputs. See Figure 3.

In this paper we will find the dilation of embedding BF;, and By, into
GFT(h,m,w).

2 Main Results

Theorem 1 Any graph G can be embedded into its optimal generalized fat
tree GFT (h, m,w) with dilation 2h.

Proof. Choose any edge e = (a,b) € G. Without loss of generality, let
a be mapped to (0;aran—1...a1) and b to (0; bpbr—1...b1). It is sufficient
to give a path between the node (0;asap—i...a;) and the top-level node
t=(k;0,0,...,0) and from ¢ to the node (0; bybr—1...b1).

A possible path form (0;anan—i...a1) to (h;0,0,...,0) is the following
path:

P = {(0; ap...a1), (1; an...a20), (2; an....¢300), - - -, (h — 1;a,0...0), (h;0...0)}

142



Figure 4: BF; can be embedded into BFT'(2)

Again, the w number of node-disjoint paths P;, 0 < i < w — 1, between
the node a and b can be given as:

P, = {(0;an...a1),(1;an...a2i), (2; an....a30s), - - -, (b — 1;a50...0¢),
(:0...08), (h — 1;40...0), (A — 2; brbp_10...0), - - -, (L; bp...bzi),
(0; b...bab1 )}

Thus |P;| = 2h for all 4,0 < i < w — 1. Hence the dilation is 2h. Since
every path between (0; arap—1...a1) to (h;0,0,...,0) must passes through a
top level node, there is no path of length less than 2h between these nodes.
Therefore the dilation is 2h. O

Remark 1 The path P, i1=0,1,...,w — 1 are node disjoint. O
Theorem 2 The m-dimensional Butterfly BF,, can be embedded into
BFT(r), where

,e height of (BFT(r —1)) +2,if m = 2
~ | height of (BFT(r — 1)) + 1, otherwise

for some !, with load one and dilation 2r, where as BF; can be embedded
into BFT(2,2,2) with dilation 4.
Proof. We prove this result by induction on m. Figure 4 illustrates the
embedding of BF} into BFT(2). Assume the result to be true when k = m.
Consider k = m+1. The nodes in the Butterfly are connected in the fat
tree using the path which routes over the least common ancestor in the fat
tree. If there are two unused least common ancestors, one chooses the left
one. Thus, the load is equal to one and dilation is equal to the diameter
2r + 4 or 2r + 2 according as m = 2! or otherwise. O

Theorem 3 The m-dimensional Benes By, can be embedded into BFT(r),

where
_ { height of (BFT(r —1)) +2, if m=2'

height of (BFT(r — 1)) + 1, if otherwise
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GFT(3,3,3)

Figure 5: BFj3 can be embedded into GFT'(3, 3, 3)

for some 1, with load one and dilation 2r, where as B, can be embedded
into BFT(3) with dilation 6. O

Note: In [14] the processors are considered at the leaf-level of GFT'(h, m, w).

If we consider all the nodes as processors, then we get the following results.
Theorem 4 BF,, is isomorphic to BFT(m).

Proof. For each vertex (w, %) in BF,,, we define a function g from V(BF;,)
to V(BFT(m)) as follows:

9((w,3)) = (w,9).

The function g is obviously bijective. Let u = (wy,%;) and v = (wo, i2)
be two distinct vertices in BF,,. It follows that g(u) and g(v) are two
distinct vertices in BFT(m) given as follows:

9(u) = (w1,11), g(v) = (we,%2).
Vertices u and v are adjacent in BFy, <= 12 = i1 + 1 and either w; and
ws are identical or w; and w, differ only in the bit in position iy <= g(u)
and g(v) are adjacent in BFT(m). Hence the graphs BF,, and BFT(m)
are isomorphic. OJ
The following results are easy consequence of the definition of general-
ized fat tree.

Theorem 5 GFT(h,m,w) is a subgraph of GFT(h +1,m,w). O

Theorem 6 If m; > m, w; > w, then GFT(h,m,w) is a subgraph of
GFT(h,my,w1). O,m1,w1). O,my,w). O
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Corollary 1 If h > k and m,w > 1, then BF) can be embedded into
GFT(h,m,w). See Figure 5.

Conjucture: B,, can be embedded into BFT(m + 1) with dilation at
least m 4+ 1. O

3 Conclusion

In this paper we have proved that the dilation of embedding BFy, and B,
into GFT'(h,m,w) is 2h and the dilation of embedding BF,, into BFT(h)
is h. It would be a good line of research to prove the conjuctures cited in

this paper.
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